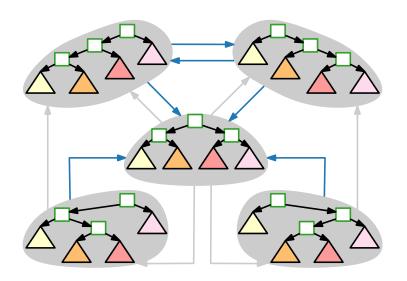
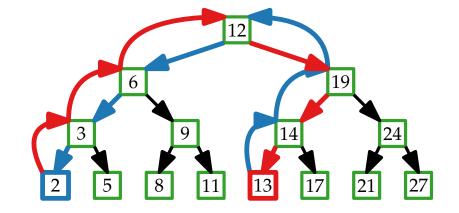
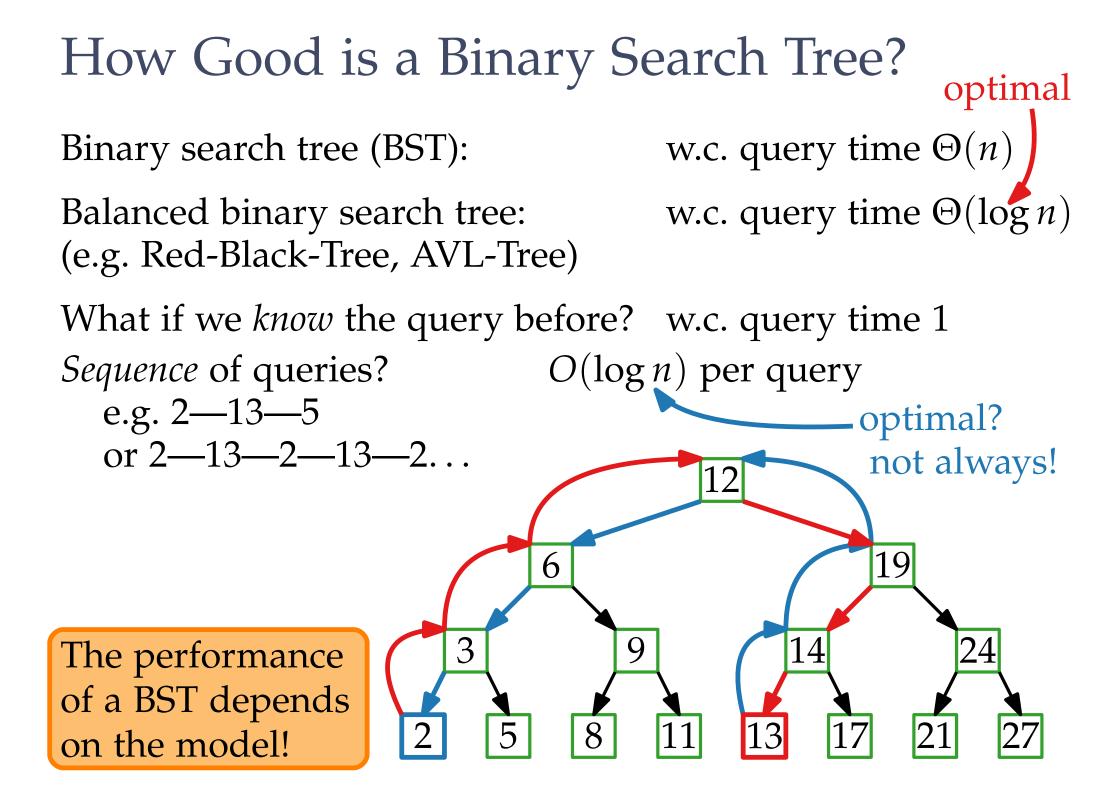


Advanced Algorithms Optimal Binary Search Trees Splay Trees

Johannes Zink \cdot WS22





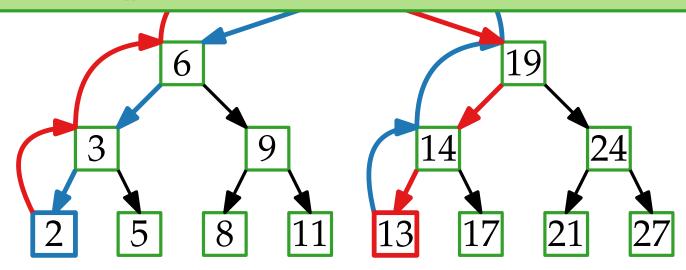


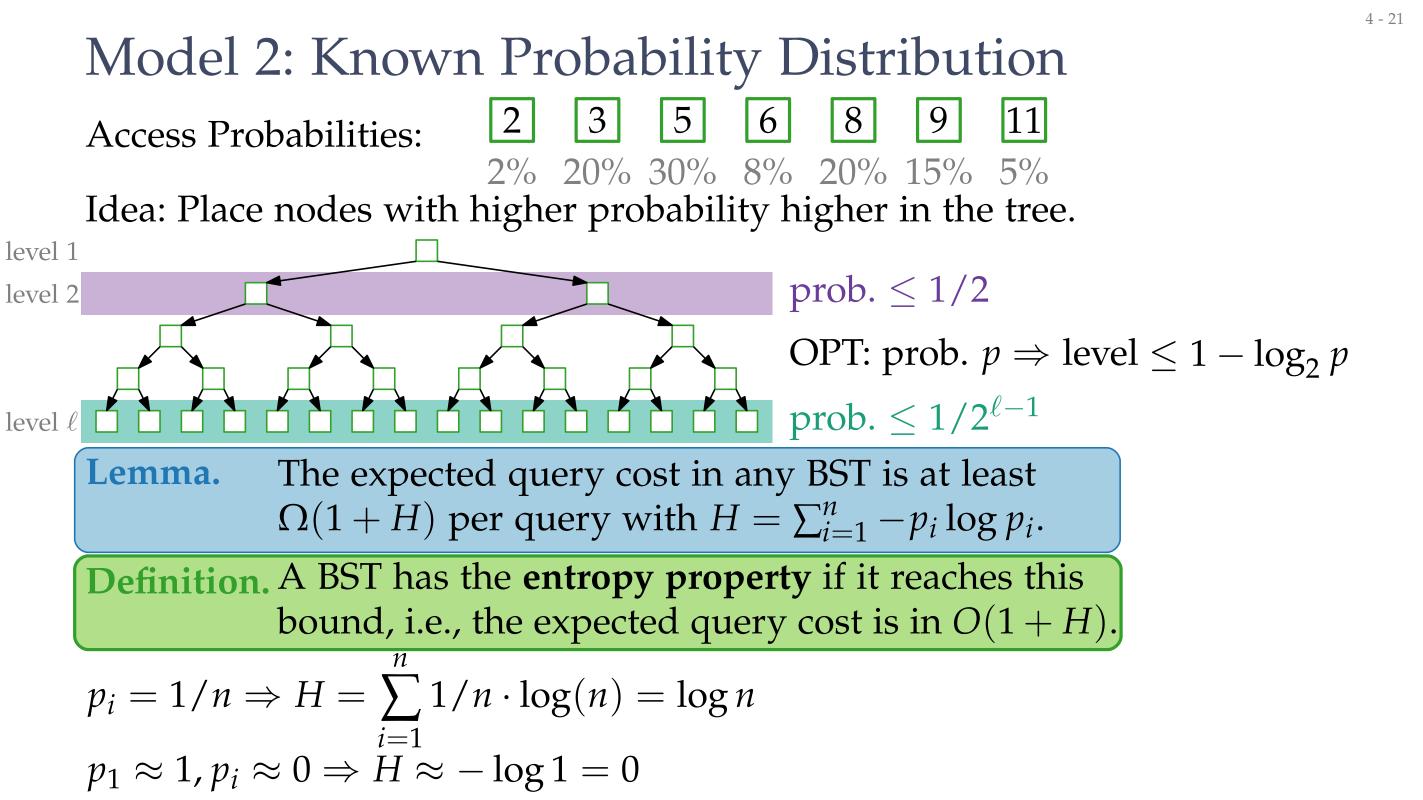
Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

Lemma. The worst-case malicious query cost in any BST with *n* nodes is at least $\Omega(\log n)$ per query.

Definition. A BST is **balanced** if the cost of *any* sequence of *m* queries is $O(m \log n + n \log n)$. \Rightarrow the (amortized) cost of each query is $O(\log n)$ (for at least *n* queries)





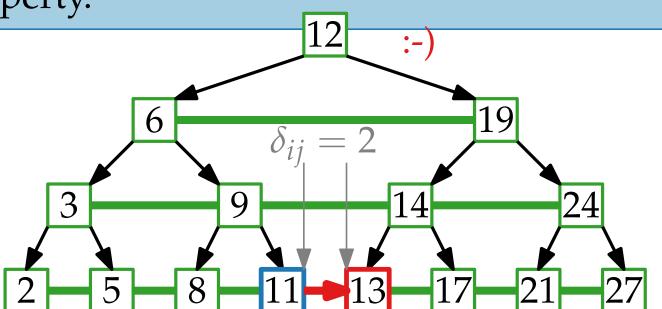
Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key x_i and want to query key x_j next. Let $\delta_{ij} = |\operatorname{rank}(x_j) - \operatorname{rank}(x_i)|$.

Definition. A BST has the **dynamic finger property** if the (amortized) cost of queries are $O(\log \delta_{ij})$.

Lemma. A level-linked Red-Black-Tree has the dynamic finger property.



Model 4: Temporal Locality

If a key is queried, then it's likely to be queried again soon.

A static tree will have a hard time... What if we can move elements? **Idea:** Use a sequence of trees

6 - 12

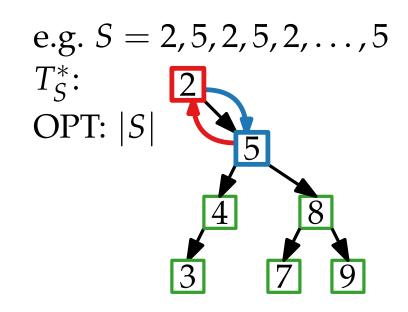
Move queried key to first tree, then kick out oldest key.

Definition. A BST has the **working set property** if the (amortized) cost of a query for key x is $O(\log t)$, where t is the number of keys queried more recently than x.

Model 5: Static Optimality

Given a sequence *S* of queries.

Let T_S^* be the *optimal* static tree with the shortest query time OPT_S for *S*.

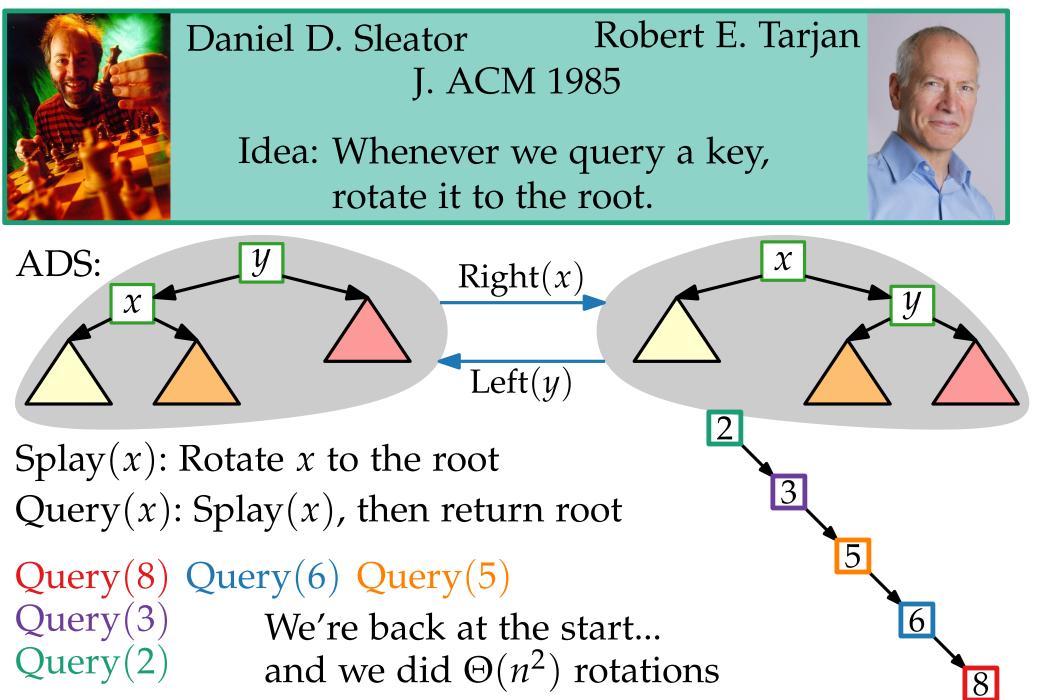


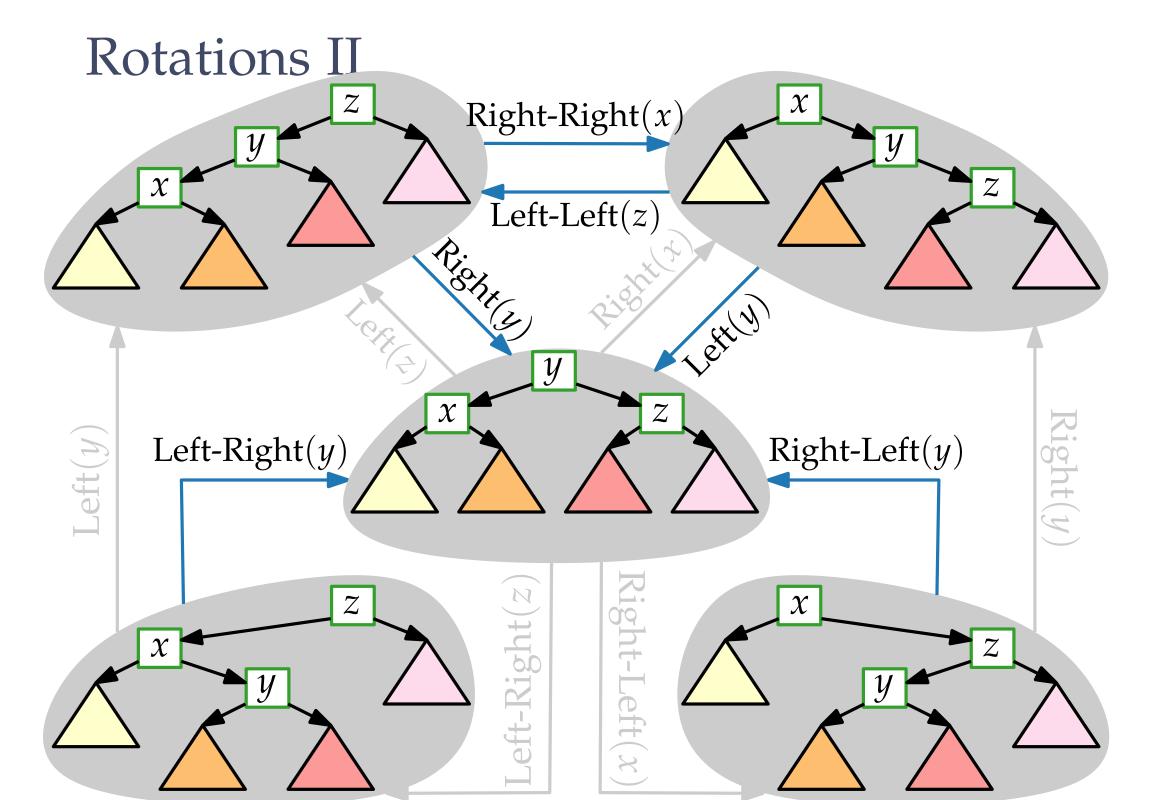
Definition. A BST is **statically optimal** if queries take (amortized) $O(OPT_S)$ time for every *S*.

All These Models ...

Balanced:Queries take (amortized) $O(\log n)$ timeEntropy:Queries take expected O(1 + H) timeDynamic Finger:Queries take $O(\log \delta_i)$ time (δ_i : rank diff.)Working Set:Queries take $O(\log t)$ time (t: recency)Static Optimality:Queries take (amortized) $O(OPT_S)$ time.... is there one BST to rule them all?

Yes!

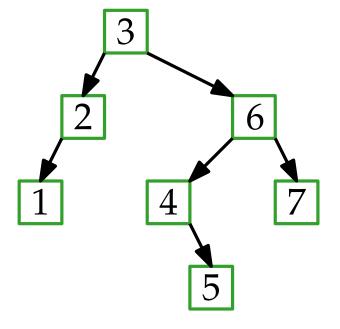




Splay

Algorithm: Splay(*x*) if $x \neq root$ then y = parent of xif y = root then if x < y then Right(x) if y < x then Left(x) else z = parent of yif x < y < z then Right-Right(x) if z < y < x then Left-Left(x) if y < x < z then Left-Right(x) if z < x < y then Right-Left(x) $\operatorname{Splay}(x)$

Splay(3):



Call Splay(*x*):

- after Search(x)
- after Insert(x)
- before Delete(x)

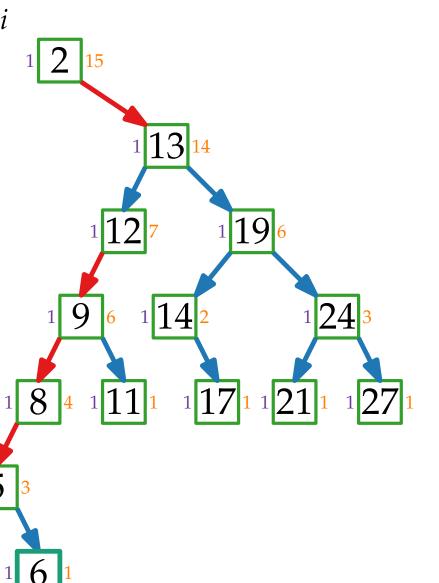
Why is Splay Fast?

w(x): weight of x (here 1), $W = \sum w(x)$ (here n) s(x): sum of all w(x) in subtree of x_i

mark edges: $s(child) \le s(parent)/2$ s(child) > s(parent)/2

Cost to query $x_i: O(\log W + \# red)$ **Idea:** blue edges halve the weight $\Rightarrow \# blue \in O(\log W)$

How can we amortize red edges? Use sum-of-logs potential $\Phi = \sum \log s(x)$ (potential before splay) Amortized cost: real cost + $\Phi_+ - \Phi$ (potential after splay)



What is Potential?

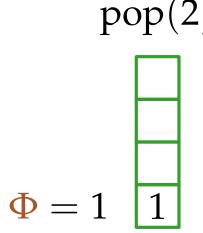
 Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost + $\Phi_+ - \Phi$ total cost = $\Phi_0 - \Phi_{end} + \Sigma$ amortized cost (initial potential) \checkmark (potential at the end)

Example (from ADS): Stack with multipop $\Phi :=$ size of the stack

push:
$$1 + \Phi_{+} - \Phi = 2$$

 $\operatorname{pop}(k): k + \Phi_{+} - \Phi = 0$

total cost = $\Phi_0 - \Phi_{end}$ + amortized cost $\leq \Phi_0 - \Phi_{end} + 2n$ $\leq 2n \in O(n)$



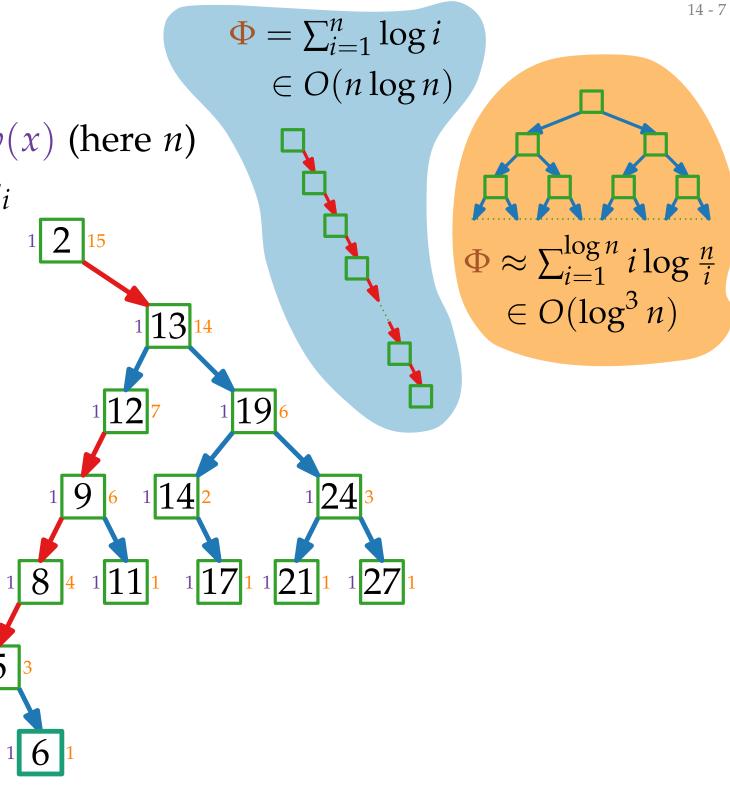
Why is Splay Fast?

w(x): weight of x (here 1), $W = \sum w(x)$ (here n) s(x): sum of all w(x) in subtree of x_i

mark edges: $s(child) \le s(parent)/2$ s(child) > s(parent)/2

Cost to query $x_i: O(\log W + \# red)$ **Idea:** blue edges halve the weight $\Rightarrow \# blue \in O(\log W)$

How can we amortize red edges? Use sum-of-logs potential $\Phi = \sum \log s(x)$ (potential before splay) Amortized cost: real cost + $\Phi_+ - \Phi$ (potential after splay)



Consider any rotation; s(x) before rotation, $s_+(x)$ afterwards

Lemma. After a single rotation, the potential increases by $\leq 3(\log s_+(x) - \log s(x)).$

Proof. Right(x)

Observe: Only s(x) and s(y) change.

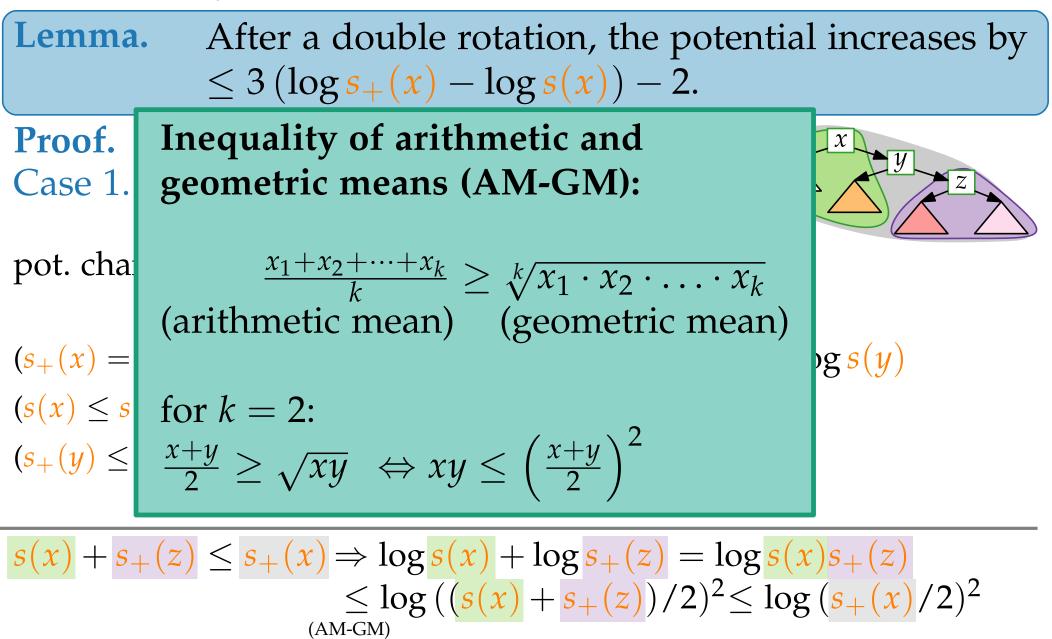
pot. change =
$$\log s_+(x) + \log s_+(y)$$

- $\log s(x) - \log s(y)$

 $(s_+(y) \le s(y)) \le \log s_+(x) - \log s(x)$

 $(s_+(x) > s(x)) \le 3(\log s_+(x) - \log s(x))$ Left(x) analogue

Consider any rotation; s(x) before rotation, $s_+(x)$ afterwards



Consider any rotation; s(x) before rotation, $s_+(x)$ afterwards

Lemma. After a double rotation, the potential increases by $\leq 3(\log s_+(x) - \log s(x)) - 2.$

pot. change $= \log s_+(x) + \log s_+(y) + \log s_+(z)$ $- \log s(x) - \log s(y) - \log s(z)$

 $(s_+(x) = s(z)) = \log s_+(y) + \log s_+(z) - \log s(x) - \log s(y)$

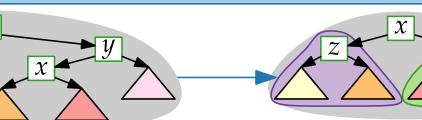
 $(s(x) \le s(y)) \le \log s_+(y) + \log s_+(z) - 2\log s(x)$ $(s_+(y) \le s_+(x)) \le \log s_+(x) + \log s_+(z) - 2\log s(x)$ $\le 3\log s_+(x) - 3\log s(x) - 2$

 $\frac{s(x) + s_{+}(z)}{\leq s_{+}(x)} \ge \log \frac{s(x)}{s(x)} + \log \frac{s_{+}(z)}{s_{+}(z)} = \log \frac{s(x)s_{+}(z)}{s_{+}(x)} = \log \frac{s(x)s_{+}(z)}{(s_{+}(x)/2)^{2}} \le 2\log \frac{s_{+}(x)}{s_{+}(x)} - 2$

Consider any rotation; s(x) before rotation, $s_+(x)$ afterwards

Lemma. After a double rotation, the potential increases by $\leq 3(\log s_+(x) - \log s(x)) - 2.$

Proof. / Left-Right(x) Case 2. Right-Left(x)



pot. change $= \log s_+(x) + \log s_+(y) + \log s_+(z)$ $- \log s(x) - \log s(y) - \log s(z)$

 $(s_{+}(x) = s(z)) = \log s_{+}(y) + \log s_{+}(z) - \log s(x) - \log s(y)$ (s(x) \le s(y)) $\leq \log s_{+}(y) + \log s_{+}(z) - 2\log s(x)$ $\leq 2\log s_{+}(x) - 2\log s(x) - 2$

 $(s_+(x) > s(x)) \le 3\log s_+(x) - 3\log s(x) - 2$

 $\frac{s_+(y) + s_+(z)}{(\text{AM-GM})} \leq \frac{s_+(y)}{2\log s_+(y)} + \log \frac{s_+(z)}{s_+(z)}$

Access Lemma

Lemma.	After a single rotation, the potential increases by $\leq 3 (\log s_+(x) - \log s(x)).$ After a double rotation, the potential increases by $\leq 3 (\log s_+(x) - \log s(x)) - 2.$
Lemma.	The (amortized) cost of Splay(x) is $c(\text{Splay}(x)) \le 1 + 3\log(W/w(x)).$
Proof.	W.l.o.g. <i>k</i> double rotations and 1 single rotation. Let $s_i(x)$ be $s(x)$ after <i>i</i> single/double rotations. Potential increases by at most $\sum_{i=1}^{k} (3(\log s_i(x) - \log s_{i-1}(x)) - 2)$
$ \begin{array}{rcl} \operatorname{root!} & & +3\left(\log s_{k+1}(x) - \log s_{k}(x)\right) \\ \text{(id. entries rem.)} & = 3\left(\log s_{k+1}(x) - \log s(x)\right) - 2k \\ & = 3\left(\log W - \log s(x)\right) - 2k \\ & (s(x) \ge w(x)) & \le 3\left(\log W - \log w(x)\right) - 2k = 3\log(W/w(x)) - 2k \end{array} $	
$2k + 1$ rotations \Rightarrow (amort.) cost $c(\text{Splay}(x)) \le 1 + 3\log(W/w(x))$	

All These Models . . .

Balanced:Queries take (amortized) $O(\log n)$ timeEntropy:Queries take expected O(1 + H) timeDynamic Finger:Queries take $O(\log \delta_i)$ time (δ_i : rank diff.)Working Set:Queries take $O(\log t)$ time (t: recency)Static Optimality:Queries take (amortized) $O(OPT_S)$ time.... is there one BST to rule them all?

Yes!

Querying a Sequence

Let *S* be a sequence of queries. What is the *real* cost of querying *S*? Let Φ_k be the potential after query *k*. (amort. cost to execute Splay(*x*)) \Rightarrow total cost $\Phi_0 - \Phi_{|S|} + \sum_{x \in S} c(\operatorname{Splay}(x))$ How can we bound $\Phi_0 - \Phi_{|S|}$? Reminder: $\Phi = \sum \log s(x)$ $s(x) \ge w(x) \qquad \Rightarrow \Phi_{|S|} \ge \sum_{x \in T} \log w(x)$ $s(\text{root}) = \log W \implies \Phi_0 \leq \sum_{x \in T} \log W$ $\Rightarrow \Phi_0 - \Phi_{|S|} \leq \sum_{x \in T} (\log W - \log w(x)) \leq \sum_{x \in T} O(c(\operatorname{Splay}(x)))$ \Rightarrow as long as every key is queried at least once, it doesn't change the asymptotic running time.

Balance

Lemma. The (amortized) cost of Splay(x) is $c(Splay(x)) \le 1 + 3\log(W/w(x)).$

Definition. A BST is **balanced** if the (amortized) cost of *any* query is $O(\log n)$ (for at least *n* queries in total).

Theorem. Splay Trees are balanced.

Proof. Choose w(x) = 1 for each $x \Rightarrow W = n$ Splay(x) costs at least as much as finding x \Rightarrow total time $= \Phi_0 - \Phi_{|S|} + \sum_{x \in S} c(\text{Splay}(x))$ $\leq \sum_{x \in T} (\log W - \log w(x)) + \sum_{x \in S} c(\text{Splay}(x))$ $\leq n \log n + \sum_{x \in S} (1 + 3 \log(W/w(x)))$ $\leq n \log n + |S| + 3|S| \log n \in O(|S| \log n)$ \Rightarrow Queries take (amort.) $O(\log n)$ time.

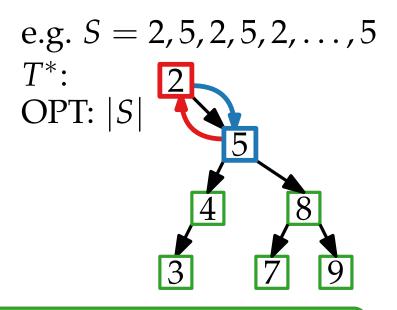
Lemma. The (amortized) cost of Splay(x) is $c(Splay(x)) \le 1 + 3\log(W/w(x)).$

Definition. A BST has the **entropy property** if queries take expected $O(1 - \sum_{i=1}^{n} p_i \log p_i)$ time.

Theorem. Splay Trees have the entropy property. Choose $w(x_i) = p_i \implies W = 1$ **Proof.** Amortized cost to query x_i : $\leq 1 + 3\log(W/w(x_i))$ $= 1 + 3 \log(1/p_i)$ $= 1 - 3 \log p_i$ \Rightarrow expected query time: $O(\sum_{i=1}^{n} p_i(1 - 3\log p_i))$ $= O(1 - \sum_{i=1}^{n} p_i \log p_i)$

Static Optimality

Given a sequence *S* of queries. Let T_S^* be the *optimal* static tree with the shortest query time OPT_S for *S*.



Definition. A BST is **statically optimal** if queries take (amort.) $O(OPT_S)$ time for every *S*.

Theorem. Splay Trees are statically optimal.

Proof. Let f_i be the number of items on path to x_i in T^* . Let $w_i := 3^{-f_i}$. $\Rightarrow W \le 1$ $\Rightarrow c(\operatorname{Splay}(x_i)) = 1 + 3\log(W/w(x_i))$ $\le 1 + 3\log 3^{f_i} \in O(f_i)$

Dynamic Optimality

Given a sequence *S* of queries. Let D_S^* be the optimal *dynamic* tree with the shortest query time OPT_S^* for *S*. (That is, modifications are allowed, e.g. rotations)

Definition. A BST is **dynamically optimal** if queries take (amort.) $O(OPT_S^*)$ time for every *S*.

Splay Trees: Queries take $O(OPT_S^* \cdot \log n)$ time. Tango Trees: Queries take $O(OPT_S^* \cdot \log \log n)$ time. [Demaine, Harmon, Iacono, Pătrașcu '04]

Open Problem. Does a dynamically optimal BST exist?

This is one of the biggest open problems in algorithms.

Conjecture. Splay Trees are dynamically optimal.