
1

Advanced Algorithms

Ski-Rental Problem and Paging
Online Algorithms

Johannes Zink · WS22

                  k
p3

p4 p9p7 p8

page request
p5

p1 p2

p6 p9

2 - 1

Ski-Rental Problem

Winter has begun (even in Würzburg!) . . .

Introduction

2 - 2

Ski-Rental Problem

Winter has begun (even in Würzburg!) . . . this means the skiing season is back!

Introduction

2 - 3

Ski-Rental Problem

Winter has begun (even in Würzburg!) . . . this means the skiing season is back!

� But what if there is not always enough snow?

Introduction

2 - 4

Ski-Rental Problem

Winter has begun (even in Würzburg!) . . . this means the skiing season is back!

� But what if there is not always enough snow?

� Is it worth buying new skis?

� Or should we rather rent them?

2 - 5

Ski-Rental Problem

Winter has begun (even in Würzburg!) . . . this means the skiing season is back!

� But what if there is not always enough snow?

� Is it worth buying new skis?

� Or should we rather rent them?

� We don’t know the weather (much) in advance.

3 - 1

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

3 - 2

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

3 - 3

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

Costs.
� Renting skis for 1 day costs 1 [Euro].

3 - 4

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

� Buying skis costs M [Euros] and you have them forever.

Costs.
� Renting skis for 1 day costs 1 [Euro].

3 - 5

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

� Buying skis costs M [Euros] and you have them forever.

� In the end, there will have been T good days.

Costs.
� Renting skis for 1 day costs 1 [Euro].

3 - 6

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

� Buying skis costs M [Euros] and you have them forever.

� In the end, there will have been T good days.

(When to) buy skis?

Costs.
� Renting skis for 1 day costs 1 [Euro].

3 - 7

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

� Buying skis costs M [Euros] and you have them forever.

� In the end, there will have been T good days.

(When to) buy skis?

Costs.
� Renting skis for 1 day costs 1 [Euro].

Task.
� Not knowing T, devise a strategy if and when to buy skis.

4 - 1

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good days

4 - 2

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

4 - 3

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

� Imagine this was the only good day the whole winter.

4 - 4

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

4 - 5

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

4 - 6

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

4 - 7

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

4 - 8

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e., T > M.

4 - 9

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e., T > M.

� Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

4 - 10

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e., T > M.

� Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

� Strategy II is T/M times worse than the optimal strategy.

4 - 11

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e., T > M.

� Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

� Strategy II is T/M times worse than the optimal strategy.

→ for arbitrarily large T arbitrarily bad

4 - 12

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e., T > M.

� Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

� Strategy II is T/M times worse than the optimal strategy.

→ for arbitrarily large T arbitrarily bad

competitive
ratio

5 - 1

Ski-Rental Problem – Strategy III
Renting costs 1 per day

Buying costs M
T good days

5 - 2

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Renting costs 1 per day
Buying costs M

T good days

5 - 3

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Renting costs 1 per day
Buying costs M

T good days

5 - 4

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

Renting costs 1 per day
Buying costs M

T good days

5 - 5

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)

Renting costs 1 per day
Buying costs M

T good days

5 - 6

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1.

Renting costs 1 per day
Buying costs M

T good days

5 - 7

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

Renting costs 1 per day
Buying costs M

T good days

5 - 8

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

5 - 9

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

5 - 10

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 11

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 12

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 13

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 14

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

�
cdet

cOPT
= X−1+M

min(X,M)
≥ min

(
X−1+X+1

X , M−1+M
M

)
= min

(
2, 2− 1

M

)
= 2− 1

M
M ∞
= 2

costs for deterministic startegy

costs for optimal startegy

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 15

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

�
cdet

cOPT
= X−1+M

min(X,M)
≥ min

(
X−1+X+1

X , M−1+M
M

)
= min

(
2, 2− 1

M

)
= 2− 1

M
M ∞
= 2

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 16

Ski-Rental Problem – Strategy III

case M ≤ X

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

�
cdet

cOPT
= X−1+M

min(X,M)
≥ min

(
X−1+X+1

X , M−1+M
M

)
= min

(
2, 2− 1

M

)
= 2− 1

M
M ∞
= 2

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

case X < M

5 - 17

Ski-Rental Problem – Strategy III

case M ≤ X

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

�
cdet

cOPT
= X−1+M

min(X,M)
≥ min

(
X−1+X+1

X , M−1+M
M

)
= min

(
2, 2− 1

M

)
= 2− 1

M
M ∞
= 2

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

case X < M

5 - 18

Ski-Rental Problem – Strategy III

case M ≤ X

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

�
cdet

cOPT
= X−1+M

min(X,M)
≥ min

(
X−1+X+1

X , M−1+M
M

)
= min

(
2, 2− 1

M

)
= 2− 1

M
M ∞
= 2

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

case X < M

6 - 1

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Renting costs 1 per day
Buying costs M

T good days

6 - 2

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Renting costs 1 per day
Buying costs M

T good days

6 - 3

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

Renting costs 1 per day
Buying costs M

T good days

6 - 4

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

Renting costs 1 per day
Buying costs M

T good days

6 - 5

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

Renting costs 1 per day
Buying costs M

T good days

6 - 6

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

Renting costs 1 per day
Buying costs M

T good days

6 - 7

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

try α = 1
2

Renting costs 1 per day
Buying costs M

T good days

6 - 8

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

try α = 1
2

= 7
4 < 2

Renting costs 1 per day
Buying costs M

T good days

6 - 9

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

try α = 1
2

= 7
4 < 2

= 2

Renting costs 1 per day
Buying costs M

T good days

6 - 10

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

try α = 1
2

= 7
4 < 2

= 2

not better than the deterministic Strategy III

Renting costs 1 per day
Buying costs M

T good days

6 - 11

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� The w.c. ratio is minimum if 3+α
2 = 1 + 1

2α ⇒ α =
√
5−1
2

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

Renting costs 1 per day
Buying costs M

T good days

6 - 12

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� The w.c. ratio is minimum if 3+α
2 = 1 + 1

2α ⇒ α =
√
5−1
2

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

Renting costs 1 per day
Buying costs M

T good days

6 - 13

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� The w.c. ratio is minimum if 3+α
2 = 1 + 1

2α ⇒ α =
√
5−1
2

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

⇒ Strategy IV (with α =
√
5−1
2 ≈ 0.62) is 1.81-competitive, randomized, and better

than any deterministic strategy.

Renting costs 1 per day
Buying costs M

T good days

6 - 14

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� The w.c. ratio is minimum if 3+α
2 = 1 + 1

2α ⇒ α =
√
5−1
2

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

⇒ Strategy IV (with α =
√
5−1
2 ≈ 0.62) is 1.81-competitive, randomized, and better

than any deterministic strategy.

� With a more sophisticated probability distribution for the time we buy skis,
we can expect even a competitive ratio of e

e−1 ≈ 1.58.

Renting costs 1 per day
Buying costs M

T good days

7 - 1

Online vs. Offline Algorithms

7 - 2

Online vs. Offline Algorithms

Online Algorithm

7 - 3

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

7 - 4

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

7 - 5

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

7 - 6

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

7 - 7

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

7 - 8

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

7 - 9

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

7 - 10

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

7 - 11

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

in the w.c. (determ. algo.)

7 - 12

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

in the w.c. (determ. algo.)
in the worst avg.c. (random. algo.)

7 - 13

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

in the w.c. (determ. algo.)
in the worst avg.c. (random. algo.)

� Examples (problems & algos.):
Ski-Rental Problem, searching in unkown environments, Cow-Path Problem,
Job-Shop Scheduling, Insertion Sort, Paging (replacing entries in a memory)

7 - 14

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

in the w.c. (determ. algo.)
in the worst avg.c. (random. algo.)

� Examples (problems & algos.):
Ski-Rental Problem, searching in unkown environments, Cow-Path Problem,
Job-Shop Scheduling, Insertion Sort, Paging (replacing entries in a memory)

7 - 15

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

in the w.c. (determ. algo.)
in the worst avg.c. (random. algo.)

� Examples (problems & algos.):
Ski-Rental Problem, searching in unkown environments, Cow-Path Problem,
Job-Shop Scheduling, Insertion Sort, Paging (replacing entries in a memory)

8 - 1

Paging – Definition

Given (offline/online):

8 - 2

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

                  k
p1 p5 p8

8 - 3

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

                  k
p1 p5 p8

p2 p3 p4 p9p6 p7

8 - 4

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

                  k
p1 p5 p8

p2 p3 p4 p9p6 p7

page request

p3

8 - 5

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

                  k
p1 p5 p8

p2 p3 p4 p9p6 p7

page request

p3

page fault

8 - 6

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

                  k
p1 p5 p8

p2 p3 p4 p9p6 p7

page request

p3
swap

8 - 7

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

                  k
p5 p8

p2 p4 p9p6 p7

page request

p3
swap

p3

p1

8 - 8

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

                  k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3

8 - 9

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / We have to fulfill
a request before we see the next request.

                  k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3 p4 p8 p3 ← σ

8 - 10

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / We have to fulfill
a request before we see the next request.

                  k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3 p4 p8 p3 ← σ

swap

8 - 11

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / We have to fulfill
a request before we see the next request.

                  k
p5 p8

p2 p9p6 p7

page requestfulfilled page requests

p3 p4 p8 p3 ← σ

swap
p1

p4

p3

8 - 12

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / We have to fulfill
a request before we see the next request.

                  k
p5 p8

p2 p9p6 p7

page requestfulfilled page requests

p3 ← σ

p1

p4

p3

p4 p8 p3

8 - 13

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / We have to fulfill
a request before we see the next request.

                  k
p5 p8

p2 p9p6 p7

page requestfulfilled page requests

p3 ← σ

p1

p4

p3

p4 p8 p3

8 - 14

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / We have to fulfill
a request before we see the next request.

                  k
p5 p8

p2 p9p6 p7

page requestfulfilled page requests

p3 ← σ

swap
p1

p4

p3

p4 p8 p3

8 - 15

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / We have to fulfill
a request before we see the next request.

                  k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3 ← σ

swap
p1

p4 p8 p3

8 - 16

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / We have to fulfill
a request before we see the next request.

                  k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3

p1

p4 p8 p3

8 - 17

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / We have to fulfill
a request before we see the next request.

Objective value:

                  k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3

p1

p4 p8 p3

8 - 18

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / We have to fulfill
a request before we see the next request.

Objective value:

� Minimize the number of page faults while fulfilling σ.

                  k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3

p1

p4 p8 p3

9 - 1

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

9 - 2

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

                  k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 3

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

                  k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

page fault

9 - 4

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

                  k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 5

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

                  k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 6

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

                  k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3

swap

p4 p4

9 - 7

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

                  k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 8

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

                  k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

swap

9 - 9

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

� First-in-first-out (FIFO): . . . been in cache the longest.

                  k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 10

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

� First-in-first-out (FIFO): . . . been in cache the longest.

                  k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

swap

9 - 11

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

� First-in-first-out (FIFO): . . . been in cache the longest.

Which of them is – theoretically provable – the best strategy?

                  k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 12

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

� First-in-first-out (FIFO): . . . been in cache the longest.

Which of them is – theoretically provable – the best strategy?

                  k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 1

Paging – Det. Strategies Analysis

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 2

Paging – Det. Strategies Analysis

Proof. (only for LRU, FIFO similar)

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 3

Paging – Det. Strategies Analysis

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 4

Paging – Det. Strategies Analysis

� Initially, the cache contains the same pages for all strategies.

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 5

Paging – Det. Strategies Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 6

Paging – Det. Strategies Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 7

Paging – Det. Strategies Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

� Clearly, MIN also faults in P0; consider Pi (i ≥ 1) and let p be the last page of Pi−1.

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 8

Paging – Det. Strategies Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

� Clearly, MIN also faults in P0; consider Pi (i ≥ 1) and let p be the last page of Pi−1.

Proof. (only for LRU, FIFO similar)

� Show: Pi contains k distinct page requests different from p (implies a fault for MIN).

MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 9

Paging – Det. Strategies Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

� Clearly, MIN also faults in P0; consider Pi (i ≥ 1) and let p be the last page of Pi−1.

Proof. (only for LRU, FIFO similar)

� Show: Pi contains k distinct page requests different from p (implies a fault for MIN).

� If the k page faults of LRU in Pi are on distinct pages (different from p), we’re done.

MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 10

Paging – Det. Strategies Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

� Clearly, MIN also faults in P0; consider Pi (i ≥ 1) and let p be the last page of Pi−1.

Proof. (only for LRU, FIFO similar)

� Show: Pi contains k distinct page requests different from p (implies a fault for MIN).

� If the k page faults of LRU in Pi are on distinct pages (different from p), we’re done.

� Assume LRU has in Pi two page faults on one page q. In between, q has to be evicted
from the cache. According to LRU, there were k distinct page requests in between.

MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 11

Paging – Det. Strategies Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

� Clearly, MIN also faults in P0; consider Pi (i ≥ 1) and let p be the last page of Pi−1.

Proof. (only for LRU, FIFO similar)

� Show: Pi contains k distinct page requests different from p (implies a fault for MIN).

� If the k page faults of LRU in Pi are on distinct pages (different from p), we’re done.

� Assume LRU has in Pi two page faults on one page q. In between, q has to be evicted
from the cache. According to LRU, there were k distinct page requests in between.

� Similarly, if LRU faults on p in Pi, there were k distinct page requests in between.

MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 12

Paging – Det. Strategies Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 13

Paging – Det. Strategies Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

� Let there be k + 1 pages in the memory system.

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 14

Paging – Det. Strategies Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

� Let there be k + 1 pages in the memory system.

� For any deterministic strategy there is a worst-case page sequence σ∗

always requesting the page that is currently not in the cache.

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 15

Paging – Det. Strategies Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

� Let there be k + 1 pages in the memory system.

� For any deterministic strategy there is a worst-case page sequence σ∗

always requesting the page that is currently not in the cache.

� Let MIN have a page fault on the i-th page of σ∗.

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 16

Paging – Det. Strategies Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

� Let there be k + 1 pages in the memory system.

� For any deterministic strategy there is a worst-case page sequence σ∗

always requesting the page that is currently not in the cache.

� Let MIN have a page fault on the i-th page of σ∗.

� Then the next k− 1 requested pages are in the cache already & the next fault occurs
on the (i + k)-th page of σ∗ the earliest. Until then, the det. strategy has k faults.

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 17

Paging – Det. Strategies Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

� Let there be k + 1 pages in the memory system.

� For any deterministic strategy there is a worst-case page sequence σ∗

always requesting the page that is currently not in the cache.

� Let MIN have a page fault on the i-th page of σ∗.

� Then the next k− 1 requested pages are in the cache already & the next fault occurs
on the (i + k)-th page of σ∗ the earliest. Until then, the det. strategy has k faults.

⇒ The competitive ratio cannot be better than |σ∗ |⌈
|σ∗|

k

⌉ |σ∗| ∞
= k.

�

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

11 - 1

Paging – Rand. Strat.

Randomized strategy: MARKING

11 - 2

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

11 - 3

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

11 - 4

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

11 - 5

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

11 - 6

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

11 - 7

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p2 p3

p4 p6 p9p7 p8

p1

p5

Phase P1

11 - 8

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p2 p3

p4 p6 p9p7 p8

page request
p1

p5

p5

Phase P1

11 - 9

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p2 p3

p4 p6 p9p7 p8

page request
p1

p5

p5

Phase P1

choose u.a.r.

11 - 10

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p2 p3

p4 p6 p9p7 p8

page request
p1

p5

p5

Phase P1

swap

11 - 11

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
p1 p5

Phase P1

p5

p2

11 - 12

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
p1 p5

Phase P1

mark requested page p5

p2

11 - 13

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
p1

Phase P1

p5

p2

p3

11 - 14

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
p1

Phase P1

mark requested page p5

p2

p3

11 - 15

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
p1 p5

Phase P1

p5

p2

11 - 16

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
p1 p5

Phase P1

p5

p2

is already marked

11 - 17

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
p1

Phase P1

p5

p2

p2

11 - 18

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
p1

Phase P1

choose u.a.r. p5

p2

p2

11 - 19

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
p1

Phase P1

p5

p2

p2

swap

11 - 20

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request

Phase P1

p5 p2p2

p1

11 - 21

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request

Phase P1

mark requested page p5 p2p2

p1

11 - 22

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request

Phase P1

p5p2

p1

p3

11 - 23

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request

Phase P1

p5is already marked p2

p1

p3

11 - 24

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request

Phase P1

p5p2

p1

p6

11 - 25

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request

Phase P1

p5p2

p1

p6unmark all

11 - 26

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
p5p2

p1

p6unmark all

start new phase Phase P2

11 - 27

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
choose u.a.r. p5p2

p1

p6

Phase P2

11 - 28

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p6 p9p7 p8

page request
p5p2

p1

p6

Phase P2

swap

11 - 29

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p9p7 p8

page request
p5

p1

p6

Phase P2

p2

p6

11 - 30

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p9p7 p8

page request
mark requested page p5

p1

p6

Phase P2

p2

p6

11 - 31

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p9p7 p8

page request
p5

p1

Phase P2

p2

p6 p9

11 - 32

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

                  k
p3

p4 p9p7 p8

page request
choose u.a.r. p5

p1

Phase P2

p2

p6 p9

11 - 33

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

Hk = 1 + 1
2 +

1
3 + . . . + 1

k is the k-th harmonic number and for k ≥ 2: Hk < ln(k) + 1.

Remark.

                  k
p3

p4 p9p7 p8

page request
choose u.a.r. p5

p1

Phase P2

p2

p6 p9

Theorem 3. MARKING is 2Hk-competitive.

12 - 1

Paging – Rand. Strategy Analysis

Proof.

Theorem 3. MARKING is 2Hk-competitive.

12 - 2

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 3

Paging – Rand. Strategy Analysis

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 4

Paging – Rand. Strategy Analysis

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 5

Paging – Rand. Strategy Analysis

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 6

Paging – Rand. Strategy Analysis

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 7

Paging – Rand. Strategy Analysis

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 8

Paging – Rand. Strategy Analysis

� c: number of clean pages requested in Pi

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 9

Paging – Rand. Strategy Analysis

� MIN has ≥ max(c− dbegin, dend) ≥ 1
2 (c− dbegin + dend) = c

2 −
dbegin
2 + dend

2 faults.

Over all phases, all
dbegin
2 and dend

2 cancel out, except the first
dbegin
2 and the last dend

2 .

faults.

� c: number of clean pages requested in Pi

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

faults.

Theorem 3. MARKING is 2Hk-competitive.

12 - 10

Paging – Rand. Strategy Analysis

� MIN has ≥ max(c− dbegin, dend) ≥ 1
2 (c− dbegin + dend) = c

2 −
dbegin
2 + dend

2 faults.

Over all phases, all
dbegin
2 and dend

2 cancel out, except the first
dbegin
2 and the last dend

2 .

faults.

� c: number of clean pages requested in Pi

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 11

Paging – Rand. Strategy Analysis

� MIN has ≥ max(c− dbegin, dend) ≥ 1
2 (c− dbegin + dend) = c

2 −
dbegin
2 + dend

2 faults.

Over all phases, all
dbegin
2 and dend

2 cancel out, except the first
dbegin
2 and the last dend

2 .

� c: number of clean pages requested in Pi

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 12

Paging – Rand. Strategy Analysis

� MIN has ≥ max(c− dbegin, dend) ≥ 1
2 (c− dbegin + dend) = c

2 −
dbegin
2 + dend

2 faults.

Over all phases, all
dbegin
2 and dend

2 cancel out, except the first
dbegin
2 and the last dend

2 .

� c: number of clean pages requested in Pi

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 13

Paging – Rand. Strategy Analysis

� MIN has ≥ max(c− dbegin, dend) ≥ 1
2 (c− dbegin + dend) = c

2 −
dbegin
2 + dend

2 faults.

Over all phases, all
dbegin
2 and dend

2 cancel out, except the first
dbegin
2 and the last dend

2 .

� c: number of clean pages requested in Pi

� Since the first dbegin = 0, MIN has at least c
2 faults per phase.

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 14

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

Theorem 3. MARKING is 2Hk-competitive.

12 - 15

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

Theorem 3. MARKING is 2Hk-competitive.

12 - 16

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

12 - 17

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi so far
s(j): # pages that were stale at the beginning of Pi and have not been requested

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

12 - 18

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi so far
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

12 - 19

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi so far
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 20

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi so far
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 21

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi so far
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 22

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi so far
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 23

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi so far
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 24

Paging – Rand. Strategy Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi so far
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� So the competitive ratio of MARKING is at most
c+c(Hk−1)

c/2 = 2Hk ∈ O(log k)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

�

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 25

Paging – Rand. Strategy Analysis

Proof.
� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi so far
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� So the competitive ratio of MARKING is at most
c+c(Hk−1)

c/2 = 2Hk ∈ O(log k)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

�

No deterministic strategy is
better than k-competitive.

Reminder.

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 26

Paging – Rand. Strategy Analysis

Proof.
� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi so far
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� So the competitive ratio of MARKING is at most
c+c(Hk−1)

c/2 = 2Hk ∈ O(log k)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

�

No deterministic strategy is
better than k-competitive.

Reminder.

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

MARKING is O(log k)-competitive

12 - 27

Paging – Rand. Strategy Analysis

Proof.
� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi so far
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� So the competitive ratio of MARKING is at most
c+c(Hk−1)

c/2 = 2Hk ∈ O(log k)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

�

No deterministic strategy is
better than k-competitive.

Reminder.

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

MARKING is O(log k)-competitive

⇒ exponential improvement!

13 - 1

Discussion

� Online algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

13 - 2

Discussion

� Online algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

� We might also transform a classical problem with incomplete information into an
online problem. E.g.: Matching problem for ride sharing.

13 - 3

Discussion

� Online algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

� We might also transform a classical problem with incomplete information into an
online problem. E.g.: Matching problem for ride sharing.

� Randomization can help to improve our behavior on worst-case instances. You may
also think of: we are less predictable for an adversary.

14

Literature

Main source:

� Sabine Storandt’s lecture script “Randomized Algorithms” (2016–2017)

Original papers:

� [Belady ’66] “A Study of Replacement Algorithms for Virtual-Storage Computer.”

� [Sleator, Tarjan ’85] “Amortized Efficiency of List Update and Paging Rules.”

� [Fiat, Karp, Luby, McGeoch, Sleator, Young ’91] “Competitive Paging Algorithms.”

	Title page
	Ski-Rental Problem
	Motivation
	Definition
	Strategies I and II
	Strategy III
	Strategy IV

	Online vs. Offline Algorithms
	Paging
	Definition
	Deterministric strategy
	Deterministric strategies analysis
	Randomized strategies
	Randomized strategy analysis

	Discussion
	Literature

