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Basic Definitions

A discrete probability space (), Pr) is used to model random experiments.
() is a countable set of elementary events (= outcomes of the experiment).
Pr: () — [0, 1] assigns a probability Pr(w) to each w € QO s.t. Y ,cq Pr(w) = 1.

A set A C Q) is called event. The probability of A is PrlA] =Y ,c4 Pr(w).

Example. Rolling a red and a blue fair six-sided die.

QO ={(1,1),(1,2),(1,3),..., (6,6)}, Pr((i,j)) =% % = 3 foreach (i,j) € Q
A={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)} = rolling a double
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Basic Definitions

A random variable is a function X : (3 — R.
For each x € R we define an event (X =x) ={w € Q| X(w) = x}.

The expected value of X is E[X] =} cx(q) X - Pr[(X = x)].

Example. Rolling a red and a blue fair six-sided die.

O={(1,1),(1,2),(1,3),..., (6,6)}, Pr((i,j)) =% %= 3 foreach (i,j) € Q




Linearity of Expectation

For each set of random variables Xy, Xo, ..., X, () — R,
we define a random variable (X1 + Xo 4+ -+ 4+ X};) : O — R with
(X1 +Xo+-+Xp)(w) = X1 (w) + Xo(w) + -+ -+ Xy (w) for each w € Q).

Linearity of expectation: E[(X; +Xo + - + X;)| = E[X1] + E[Xo] + - - - + E[X},]

Proof of correctness:
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Using Indicator Random Variables ()

Let A be an array filled with n pairwise distinct integers. FINDMAX(A)
How often is the maximum m updated? O(n) times m = A[l]

| | for1=2,3,..., n
Assume that the integers in A are randomly permuted. if Ali] > m
Let X denote the random varibale that counts the m = Alil
number of times m is updated. We define n random variables return m

1 , if m is updated in iteration 1 oo _
i = . indicator random variable
0 , otherwise

Observation. X = (X; + Xo + - - - + X, H,, is the n-th harmonic number;

N—"

Pri(X;=1)]=% = E[X]=0+1-1=1 '”(n;)SHnéln(n) 1.
E[X]:E[X1]+E[X2]+”°__E[Xn]:1+%+”°+%:Hn€@(|ogn)

™

linearity of expectation



Playing until You Win

A Bernoulli experiment has only two outcomes () = {failure, success}.

Let p = Pr(success) be the success probability.

= g = Pr(failure) = 1 — p is the failure probability.

Suppose we repeat such an experiment multiple times. This experiment has a
Assume the outcomes are independent from each other. =~  geometric distribution

Let X be the random variable that counts the number of rounds until we succeed for
the first time.

Pri(X =/)] =g 1p geometric series

=EX]=Ljdr=r4 (,Z qf) =p g (i) =r i =p k=

Al
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Using Indicator Random Variables (I1)

Each time you buy groceries at your local supermarket for more than 10 Euro you get
a random toy for free. The number of pairwise distinct toys is n.

How often do you have to shop to obtain a toy of each type? — random variable X

Observation. Suppose you have already obtained 1 — 1 types of toys. Now you

continue shopping until you receive a new type of toy. This experiment has a

geometric probability distribution! The success probability is p; = n_(;_l).

X; = number of times you have to shop to obtain the i-th type of toy when you
already have 1 — 1 types of toys

= E[X] =E[X1] +E[Xo] +---+EXu] =n- 2+ L+ + 1 +1) € Onlogn)

n



Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer A[j] that is at least as large as the median.

Deterministic approach: Go through all elements, return maximum.  ntime
(Actually, it suffices to go through |n/2] + 1 elements.) O(n)
Randomized approach:
FINDLARGE(A, k € IN)
¢ =0 FINDLARGE has error probability < %
fori=12...k Set k = clog, n for some constant ¢ > 1.
randomly choose r € {1,2,...,n} _ Error probability < %
if Alr| > /¢ |
(= Al runtime O(logn)

return / Remark. We traded correctness for running time.



Finding a Repeated Element

Given: An array A of n natural numbers such that
| 5| of them are identical and | 7 | of them are pairwise distinct.

Task: Find the repeated element. 3/7131313(8/1(3]2

Deterministic approaches:
Compare each element with every predecessor ©(n?) time

Sort the array, then perform a linear sweep.  @(nlogn) time
Compute and report the median. O(n) time
Randomized approach: Success probability in each step
FINDREPEATED(A) S n/2 (n/2)—1 1
while true do ~ n n—1 4
randomly choose i € {1,..., n} = Expected number of steps ~ 4

randomly choose | € {L..., n}\{i} Remark. The algorithm only returns

if Ali] = A[j] then return Ali] correct answers, but may run forever.



Las Vegas and Monte Carlo Algorithms
Las Vegas algorithm. Returns a correct result, but the running time (and possibly
the required space) are random variables.

Examples. FINDREPEATED, RANDOMIZEDQUICKSORT

Monte Carlo algorithm. Returns incorrect result or fails with a certain (small)
probability. The running time may be a random variable.

Examples. FINDLARGE, Karger's randomized MinCut algorithm

Remark. A Monte Carlo algorithm can often be turned into a Las Vegas algorithm
and vice versa.



CLOSEST PAIR

O
Given: (multi-)set of points P = {p1,p>,..., pn} C R o o o
Task: Find a pair of distinct elements p,, p;, € P such that the 5 o
Euclidean distance 6 = ||p,, pp|| is minimum. 0 ] o
o @

Deterministic approaches:
Brute-force O(n?)

Divide and conquer (recall from ADS) ©(nlogn)

Lower bound:
ELEMENT UNIQUENESS: Given numbers a1, 4as, ..., a,. Are they pairwise distinct?

There is no o(nlogn) time algorithm for ELEMENT UNIQUENESS.

(under some assumption concerning the arithmetic model)

= There is no o(nlogn) time algorithm for CLOSEST PAIR.

(under the same assumption concerning the arithmetic model)

Reduction: map each a; to a point (a;,4;) and test if the minimum distance is 0.



A Randomized Incremental Algorithm for CLOSEST PAIR

Define P; = {p1,p2,..., p;} and let §; be the distance of a closest pair in P;.
Idea: 6o = ||p1, p2||. Compute 93,84, ..., 9, by adding the points iteratively.

Suppose we have already determined 0;_1.

: : : : O O
Consider a square grid with cells of size 0;_1 X 0;_1. P

Add the point p;. If §; < 0; 1, then p; must be part o

O
of each closest pair p;, p;. °
. X .
Moreover, p; must lie in the cell of p; or one of the (S|mp-le)
. / 1 o exercise
adjacent cells. 0 o

Each of these cells contains at most O(1) points of P;_1 (<= packing argument).

The coordinates of the cell of p; can be determined in O(1) time assuming the floor
function can be computed in O(1) time.

= The test J; < d;_1 can be performed in O(1) time assuming P;_1 is stored in a suitable
dictionary for the nonempty cells (implementable via dynamic perfect hashing).



Backwards Analysis

If ; = 6;_1, we add p; to the dictionary in O(1) time.
If §; < d;,_1, the cell size changes and we have to rebuild the dictionary in O(i) time.
= total runtime O(n?).

Randomization: In the beginning, randomly permute the point set P.
Probability that adding p; to P;_1 decreases the minimum distance
= Probability that deleting p; from P; increases the minimum distance

How many points p in P; have the property

< .
that the minimum distance in P; \ {p} is larger than in P;? < 2 points

Let X; be the running time used for adding p;.
= E[X;] <%-0(i) + 52 - 0(1) = O(1)

Let X = (X7 + -+ X;;) be the total running time used by the algorithm.
= E[X| =E[X1]+ - -+ E[X,] € O(n)



Discussion

Randomized algorithms (often)

B are faster or use less space than deterministic algorithms in practice,
B have expected runtimes beyond deterministic lower bounds,

B are easier to implement/more elegant than deterministic strategies,
B allow for trading runtime against output quality,

B provide a good strategy for games or search in unknown environments.
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