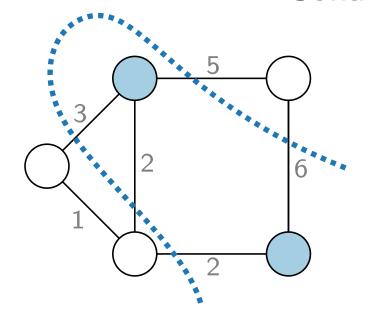


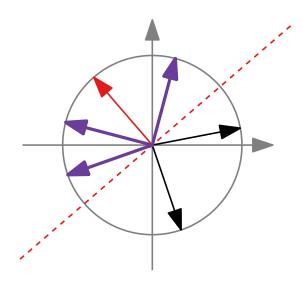
Advanced Algorithms

QP-Relaxation

for MaxCut

Johannes Zink · WS22

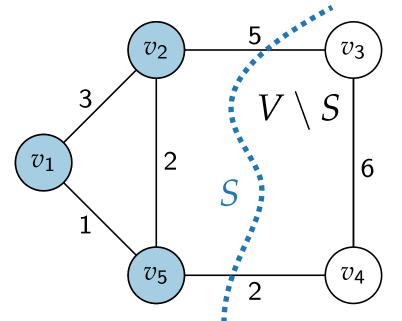




Cut

- Let G = (V, E) be a graph with edge weights $c: E \to \mathbb{N}$.
- A cut of G is a partition $(S, V \setminus S)$ of V with $\emptyset \neq S \neq V$.
- The weight of a cut $(S, V \setminus S)$ is

$$c(S, V \setminus S) = \sum_{\substack{uv \in E, \\ u \in S, v \in V \setminus S}} c(uv)$$



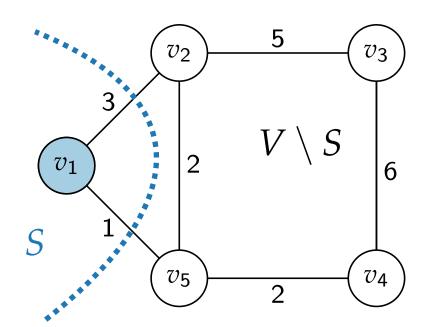
$$c(\{1,2,5\},\{3,4\})=7$$

The MinCut Problem

Input. Graph G = (V, E), edge weights $c: E \to \mathbb{N}$.

Output. Cut $(S, V \setminus S)$ of G with **minimum** weight.

- Has applications in flow networks (*max-flow min-cut theorem*), finding a bottleneck in a network, graph partition problems, clustering, ...
- Can be solved optimally in polynomial time, e.g. by the Stoer-Wagner algorithm.



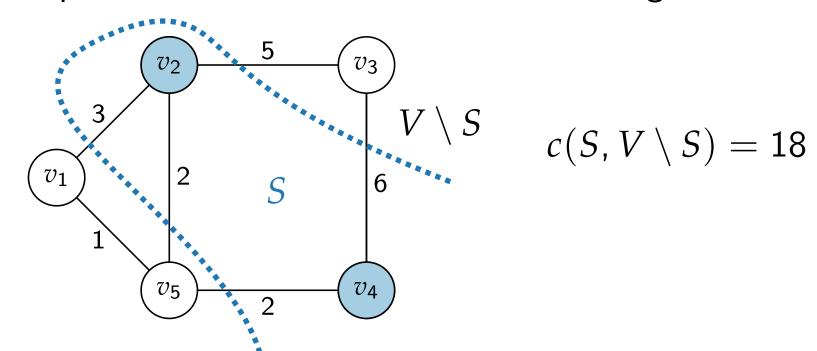
$$c(S, V \setminus S) = 4$$

The MaxCut Problem

Input. Graph G = (V, E), edge weights $c: E \to \mathbb{N}$.

Output. Cut $(S, V \setminus S)$ of G with maximum weight.

- Has applications in statistical physics, where it is used for some models of magnetic spins in disordered systems, and in integrated circuit design for computer chips.
- NP-complete to find a cut with maximum weight.



Randomized 0.5-Approximation for (Unweighted) MaxCut

Theorem 1.

CoinFlipMaxCut is a randomized 0.5-approximation algorithm for MaxCut.

Proof.

- Runs in O(n+m).
- Compute expected weight of cut:

$$\begin{split} \mathsf{E}[c(\mathsf{CoinFlipMaxCut}(G))] &= \mathsf{E}\big[|E(S,V\setminus S)|\big] \\ &= \sum_{e\in E}\mathsf{P}[e\in E(S,V\setminus S)] \\ &= \sum_{e\in E}\frac{1}{2} = \frac{1}{2}|E| \geq \frac{1}{2}\mathsf{OPT}(G) \end{split}$$

Can be "derandomized". Exercise.

 $\begin{array}{c} \text{CoinFlipMaxCut}(G,c\colon E\to 1) \\ S \leftarrow \varnothing \\ \textbf{for each} \ v \in V \ \textbf{do} \\ & | \ \textbf{if} \ \text{coin flip shows Heads} \ \textbf{then} \\ & | \ S \leftarrow S \cup \{v\} \end{array}$

return $c(S, V \setminus S), S$

LP-Relaxation

Integer Linear Program

maximize $c^{\mathsf{T}}x$

$$C \mid X$$

subject to
$$Ax$$
 \leq b x \geq 0 x \in \mathbb{Z}

$$x \in \mathbb{Z}$$

LP-Relaxation

Linear Program

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$ $x \geq 0$

$$C^{\dagger}X$$

Solution,

approximation, or bound

Solve in polynomial time

Assignment for ILP

e.g. rounding

Solution for LP

relax to k dimensions for $k \le n$

quadratic program QP^k

solve

real-valued solution for QP^k

randomized rounding

$$G = (V, E), c$$

approximation for MaxCut on G

integer
1-dimensional
solution

QP(G, c)

Idea.

- Indicator variable for each vertex v_i : $x_i \in \{1, -1\}$

 $\mathbf{QP}(G,c)$

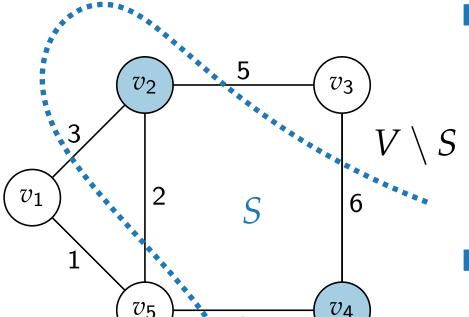
maximize

$$\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} (1 - x_i x_j)$$

$$x_i^2 = 1$$

subject to

$$x_i^2 = 1$$



• Weight matrix c_{ij}

	1	2	3	4	5
1		3			1
2	3		5		2
1 2 3 4 5		5		6	
4			6		2
5	1	2		2	

Solution

$$x_2 = x_4 = 1$$
 $x_1 = x_3 = x_5 = -1$

Note.

- \blacksquare Solving QP(G, c) is NP-hard.
- Otherwise MaxCut wouldn't be NP-hard.

1-dimensional quadratic program relax to k dimensions for k < n

G = (V, E), c

- Here explained for k=2,
- but unknown if QP² can be solved optimally in poly. time.

solve

approximation for MaxCut on G

 \blacksquare QPⁿ can be solved in poly. time.

real-valued solution for QP^k

quadratic program

 QP^k

transform back

integer 1-dimensional solution

randomized rounding

Relaxation of QP(G, c)

$$\mathbf{QP}^2(G,c)$$

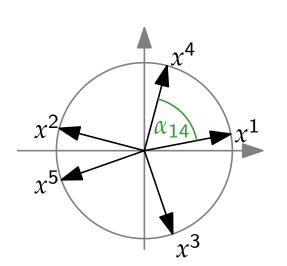
maximize

$$\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} (1 - x^i \cdot x^j)$$

subject to

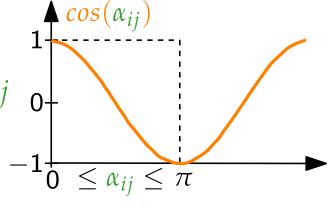
$$\begin{aligned}
y &= 1 &= 1 \\
y &= 1 \\
x^i \cdot x^i &= 1 \\
x^i &= (x_1^i, x_2^i) &\in \mathbb{R}^2
\end{aligned}$$

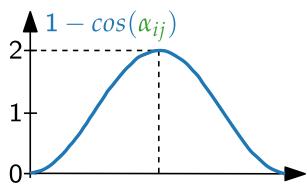
- " · " is scalar product.
- \mathbf{x}^{i} lies on the unit circle.
- $x^i \cdot x^j = |x^i||x^j|\cos(\alpha_{ij})$ $= \cos(\alpha_{ij}) \text{ with } 0 \le \alpha_{ij} \le \pi.$



- We maximize angles α_{ij} since larger α_{ij} increase the contribution of c_{ij} .
- Hence, our objective is:

$$\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} (1 - \cos(\alpha_{ij}))$$

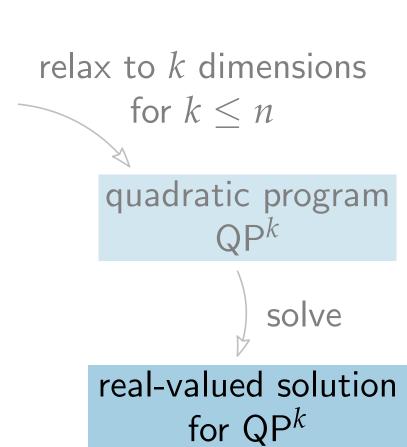




G = (V, E), c

approximation for MaxCut on G

integer
1-dimensional
solution



randomized rounding

■ Here again just for k = 2.

Algorithm RANDOMIZEDMAXCUT

RANDOMIZEDMaxCut(G, c)

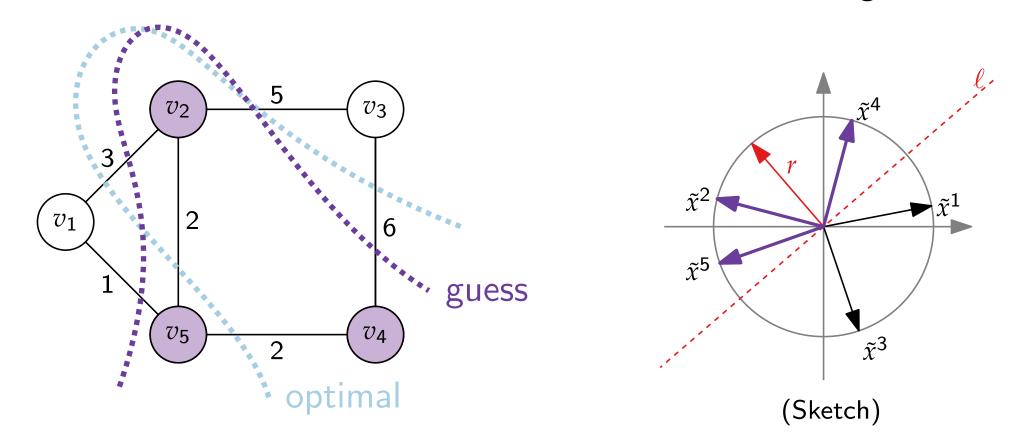
Compute optimal solution $(\tilde{x}^1, \dots, \tilde{x}^n)$ for $QP^2(G, c)$

Pick random vector $\mathbf{r} \in \mathbb{R}^2$

$$S \leftarrow \{v_i \in V : \tilde{x}^i \cdot r \ge 0\}$$

return $c(S, V \setminus S)$

 \tilde{x}^i lies above line ℓ orthogonal to r



RandomMaxCut – Expected Value

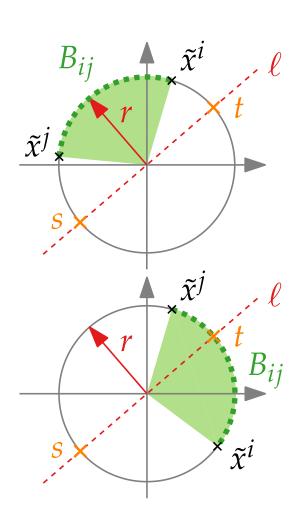
Lemma 2.

Let X be the solution of RANDOMIZEDMAXCUT(G, c). If r is picked uniformally at random, then

$$\mathsf{E}[X] = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \frac{\alpha_{ij}}{\pi}.$$

Proof.

- P[ℓ separates \tilde{x}^i , \tilde{x}^j] = P[s or t lies on B_{ij}] = $\frac{\alpha_{ij}}{2\pi} + \frac{\alpha_{ij}}{2\pi} = \frac{\alpha_{ij}}{\pi}$
- \blacksquare B_{ij} has length α_{ij} .
- If \tilde{x}^i (or \tilde{x}^j) lies $\leq \alpha_{ij}$ before s or t on the perimter of the unit disk, s or t lies on B_{ij} .



RANDOMMAXCUT - Quality

Theorem 3.

Let X be the solution of RANDOMIZEDMAXCUT(G, c).

Then

$$\frac{\mathsf{E}[X]}{\mathsf{OPT}(G,c)} \ge 0.8785.$$

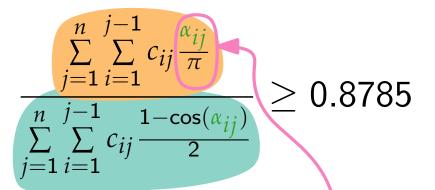
Proof.

- Lemma 2: $E[X] = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \frac{\alpha_{ij}}{\pi}$
- \blacksquare Optimal solution for QP^2 :

$$QP^{2}(G,c) = \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} (1 - x^{i} \cdot x^{j}) = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \frac{1 - \cos(\alpha_{ij})}{2}$$

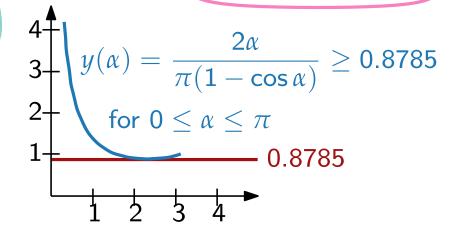
 $\mathbb{Q}\mathsf{P}^2(G,c)$ is relaxation of $\mathbb{Q}\mathsf{P}(G,c)$:

$$QP^2(G, c) \ge QP(G, c) = OPT(G, c)$$



$$\frac{\frac{\alpha_{ij}}{\pi}}{\frac{1-\cos(\alpha_{ij})}{2}} \ge 0.8785$$

$$\Leftrightarrow \frac{\bar{\alpha}_{ij}}{\pi} \ge 0.8785 \frac{1 - \cos(\alpha_{ij})}{2}$$



Example

1. Step: Build QP

maximize
$$\frac{1}{2}\sum_{j=1}^{6}\sum_{i=1}^{j-1}c_{ij}(1-x_ix_j)$$
 subject to
$$x_i^2=1$$

2. Step: Relax QP to QP²

maximize
$$\frac{1}{2}\sum_{j=1}^{6}\sum_{i=1}^{j-1}c_{ij}(1-x^i\cdot x^j)$$
 subject to
$$x^i\cdot x^i = 1$$

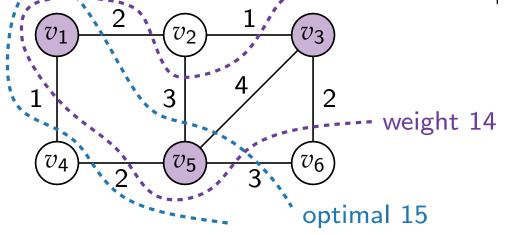
$$x^i = (x_1^i, x_2^i) \in \mathbb{R}^2$$

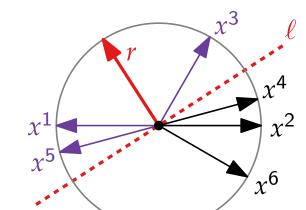
Weight matrix c_{ij}

	1	2	3	4	5	6
1		2		1		
2	2		1		3	
1 2 3 4 5 6		1			4	2
4	1				2	
5		3	4	2		3
6			2		3	

3. Step: Solve QP²

Variable	χ^1	x^2	x^3	x^4	χ^5	χ^6	
Angle	0	180	120	165	345	210	_





4. Step: Guess r

5. Step: Derive *S*

transform

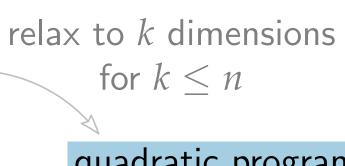
$$G = (V, E), c$$

approximation for MaxCut on *G*

1-dimensional quadratic program

- \blacksquare So far, k=2.
- lacksquare QPⁿ can be solved in polynomial time.

integer
1-dimensional
solution



quadratic program QP^k

solve

real-valued solution for QP^k

randomized rounding

$$QP^n(G, c)$$

$$\begin{array}{lll} \mathbf{QP^2}(G,c) & \mathbf{QP^n}(G,c) \\ \mathbf{maximize} & \frac{1}{2} \sum\limits_{j=1}^n \sum\limits_{i=1}^{j-1} c_{ij} (1-x^i \cdot x^j) & \mathbf{maximize} & \frac{1}{2} \sum\limits_{j=1}^n \sum\limits_{i=1}^{j-1} c_{ij} (1-x^i \cdot x^j) \\ \mathbf{subject to} & x^i \cdot x^i & = 1 \\ & x^i = (x_1^i, x_2^i) & \in \mathbb{R}^2 & x^i \cdot x^i & = 1 \\ \end{array}$$

- A matrix M is called **positive semidefinite** if for any vector $v \in \mathbb{R}^n$: $v^\intercal \cdot M \cdot v > 0$
- $M = (m_{ij}) = (x^i \cdot x^j)$ is positive semidefinite.
- $ightharpoonup \operatorname{QP}^n(G,c)$ becomes problem $\operatorname{SemiDefiniteCut}(G,c)$.
 - Can be approximated in time polynomial in (G, c) and $1/\varepsilon$ with additive guarantee ε .

Discussion

- If the *Unique Games Conjecture* is true, then the approximation ratio of ≈ 0.8785 achieved by SemiDefiniteCut (and RandomizedMaxCut) is best possible.
- Otherwise, no approximation ratio better than $\frac{16}{17} \approx 0.941$ is possible. In particular no polynomial-time approximation scheme (PTAS) exists.
- On planar graphs, the MaxCut problem can be solved optimally in polynomial time.
- Semidefinite programming is a powerful tool to develop approximation algorithms
- Whole book on this topic:
 - [Gärtner, Matoušek] "Approximation Algorithms and Semidefinite Progamming"
- Using randomness is another tool to design approximation algorithms.
- See future lectures.

Literature

Original paper:

■ [GW '95] "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming"

Source:

- [Vazirani Ch26] "Approximation Algorithms" Whole book on this topic:
- [Gärtner, Matoušek] "Approximation Algorithms and Semidefinite Progamming"

