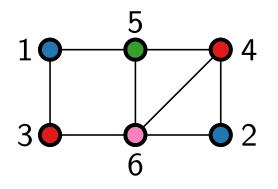


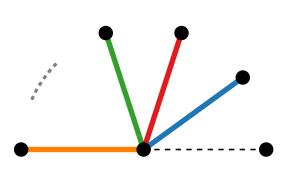
Advanced Algorithms

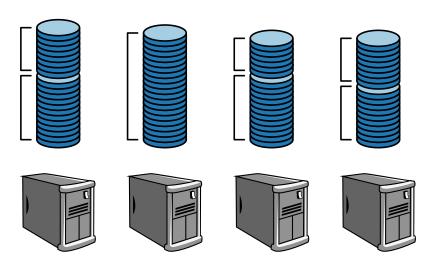
Approximation Algorithms

Coloring and Scheduling Problems

Alexander Wolff · WS22







Dealing with NP-Hard Optimization Problems

What should we do?

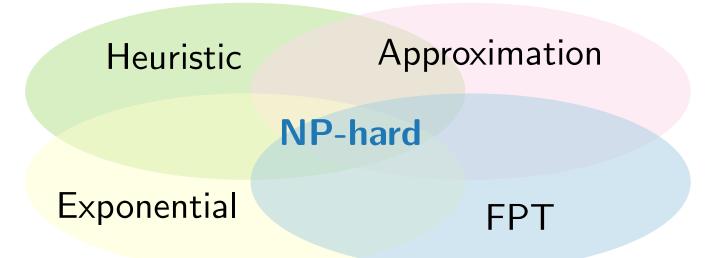
- Sacrifice optimality for speed
 - Heuristics
 - Approximation algorithms
- Optimal solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis parameterized algorithms

Heuristic Approximation
NP-hard
Exponential
FPT

Dealing with NP-Hard Optimization Problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics
 - Approximation algorithms
- Optimal solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis parameterized algorithms



this lecture

Problem.

- For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Problem.

- For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.

- Design approximation algorithms:
 - run in polynomial time and
 - compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Problem.

- For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.

- Design approximation algorithms:
 - run in polynomial time and
 - compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Overview.

- Approximation algorithms that compute solutions with/that are
 - additive guarantee, relative guarantee, "arbitrarily good".

Problem.

- For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.

- Design approximation algorithms:
 - run in polynomial time and
 - compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Overview.

- Approximation algorithms that compute solutions with/that are
 - additive guarantee, relative guarantee, "arbitrarily good".

PTAS (polynomial-time approximation

scheme)

Approximation with Additive Guarantee

Definition.

Let Π be an optimization problem, let \mathcal{A} be a polynomial-time algorithm for Π , let I be an instance of Π , and let $\mathsf{ALG}(I)$ be the value of the objective function of the solution that \mathcal{A} computes given I.

Then \mathcal{A} is called an approximation algorithm with additive guarantee δ (which can depend on I) if

$$|\mathsf{OPT}(I) - \mathsf{ALG}(I)| \le \delta$$

for every instance I of Π .

Approximation with Additive Guarantee

Definition.

Let Π be an optimization problem, let \mathcal{A} be a polynomial-time algorithm for Π , let I be an instance of Π , and let $\mathsf{ALG}(I)$ be the value of the objective function of the solution that \mathcal{A} computes given I.

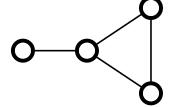
Then \mathcal{A} is called an approximation algorithm with additive guarantee δ (which can depend on I) if

$$|\mathsf{OPT}(I) - \mathsf{ALG}(I)| \le \delta$$

for every instance I of Π .

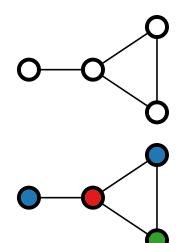
Most problems that we know do not admit an approximation algorithm with additive guarantee.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.



Input. A graph G = (V, E). Let Δ be the maximum degree of G.

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



Input. A graph G = (V, E). Let Δ be the maximum degree of G.

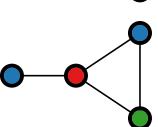
the ces

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

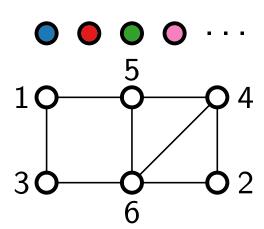
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

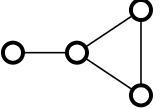
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



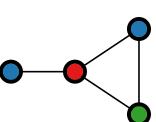
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.



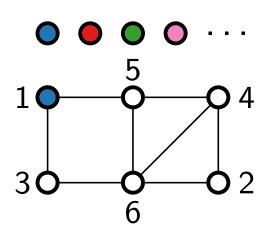
Input. A graph G = (V, E). Let Δ be the maximum degree of G.



Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



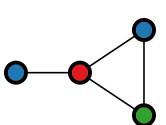
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.



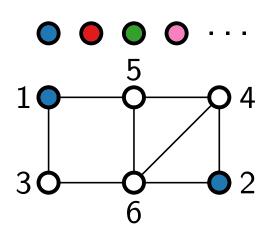
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

 \circ

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



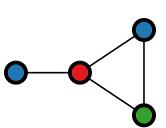
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.



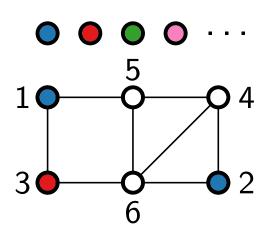
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

 \circ

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



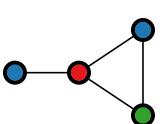
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.



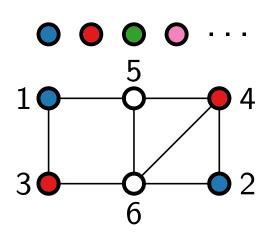
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

 \circ

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



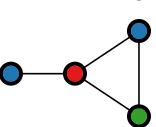
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.



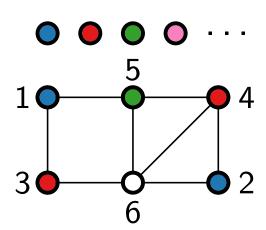
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

 \circ

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



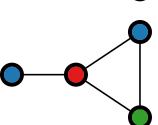
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.



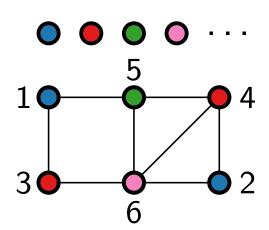
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

 \circ

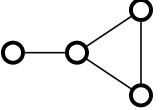
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



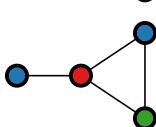
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.



Input. A graph G = (V, E). Let Δ be the maximum degree of G.



Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

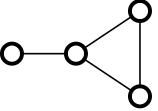
GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

5 1 3 4

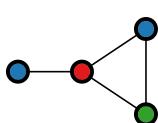
Theorem 1.

The algorithm GreedyVertexColoring computes a vertex coloring with at most colors in $\mathcal{O}(V+E)$ time. Hence, it has an additive approximation gurantee of .

Input. A graph G = (V, E). Let Δ be the maximum degree of G.



Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

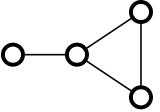
GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

5 1 3 4

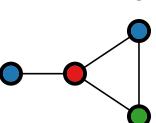
Theorem 1.

The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta+1$ colors in $\mathcal{O}(V+E)$ time. Hence, it has an additive approximation gurantee of .

Input. A graph G = (V, E). Let Δ be the maximum degree of G.



Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

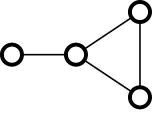
GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

5 1 3 4

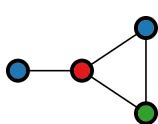
Theorem 1.

The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta+1$ colors in $\mathcal{O}(V+E)$ time. Hence, it has an additive approximation gurantee of $\Delta-1$.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.



Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.



- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

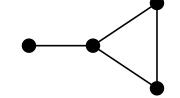
5 1 3 4 2

Theorem 1.

The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta+1$ colors in $\mathcal{O}(V+E)$ time. Hence, it has an additive approximation gurantee of $\Delta-1$.

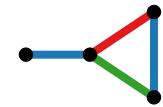
We can get $\Delta - 2$ if we return a 2-coloring whenever G is bipartite.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

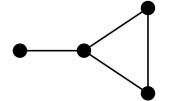


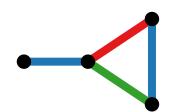
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

•—



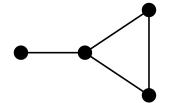
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

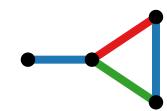




- Minimum Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.

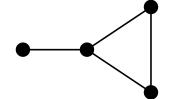
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

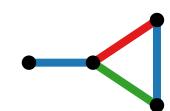




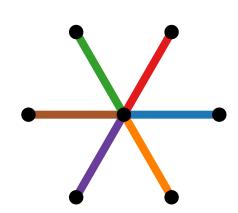
- Minimum Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$.
- $\chi'(G)$ is lowerbounded by

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

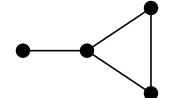


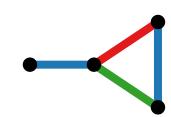


- Minimum Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$.
- $\chi'(G)$ is lowerbounded by Δ .

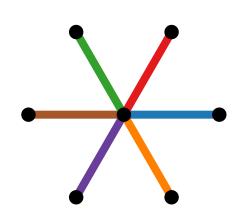


Input. A graph G = (V, E). Let Δ be the maximum degree of G.





- Minimum Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$.
- $\chi'(G)$ is lowerbounded by Δ .
- We show that $\chi'(G) \leq \Delta + 1$.



Vizing's Theorem.

For every graph G=(V,E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)

Vizing's Theorem.

For every graph G=(V,E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on m = |E|.

Base case m=1 is trivial.

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)

Vizing's Theorem.

For every graph G=(V,E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

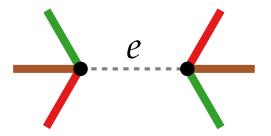
Proof by induction on m = |E|.

■ Base case m = 1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

■ By induction, G - e has a $(\Delta(G - e) + 1)$ -edge coloring.

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)



Vizing's Theorem.

For every graph G=(V,E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

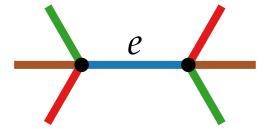
Proof by induction on m = |E|.

Base case m=1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

- By induction, G e has a $(\Delta(G e) + 1)$ -edge coloring.
- If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$.

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)



Vizing's Theorem.

For every graph G=(V,E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

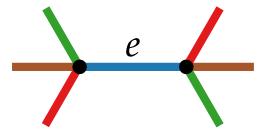
Proof by induction on m = |E|.

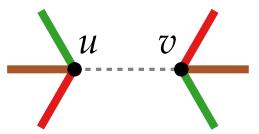
 \blacksquare Base case m=1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

- By induction, G e has a $(\Delta(G e) + 1)$ -edge coloring.
- If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$.
- If $\Delta(G) = \Delta(G e)$, change the coloring such that u and v miss the same color α .

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)





Vizing's Theorem.

For every graph G=(V,E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

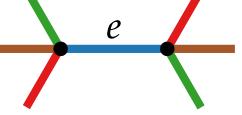
Proof by induction on m = |E|.

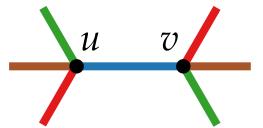
Base case m=1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

- By induction, G e has a $(\Delta(G e) + 1)$ -edge coloring.
- If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$.
- If $\Delta(G) = \Delta(G e)$, change the coloring such that u and v miss the same color α .
- Then color e with α .

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)





Minimum Edge Coloring – Recoloring

Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is **missing** a color.

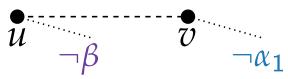
Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Lemma 2.

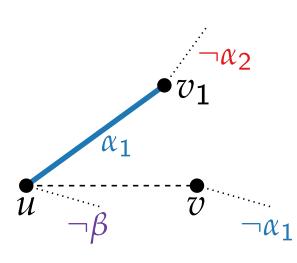
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

```
\begin{aligned} & \text{VizingRecoloring}(G, c, u, \alpha_1) \\ & i \leftarrow 1 \\ & \textbf{while} \ \exists w \in N(u) \colon c(uw) = \alpha_i \land w \not \in \{v_1, \dots, v_{i-1}\} \ \textbf{do} \\ & \begin{vmatrix} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ & i \leftarrow i+1 \end{aligned} \textbf{return} \ v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}
```



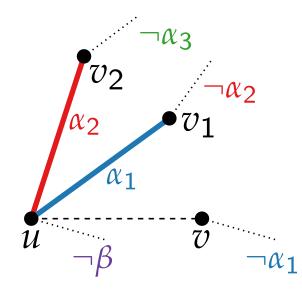
Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.



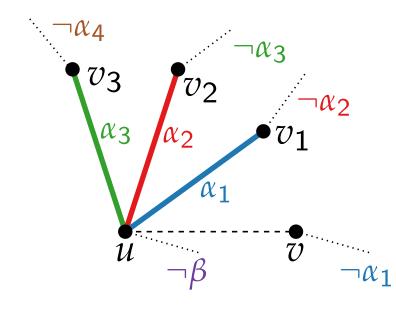
Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.



Lemma 2.

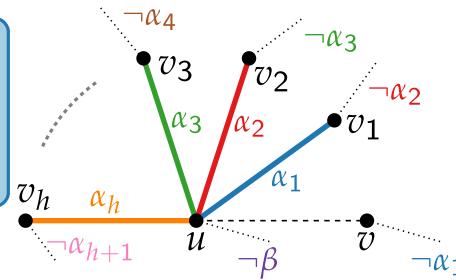
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.



Lemma 2.

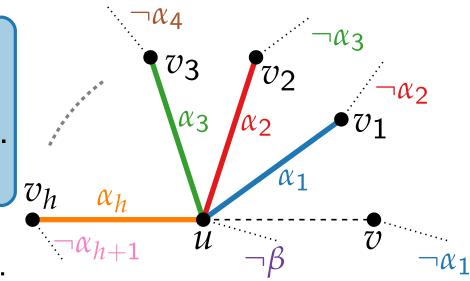
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

```
\begin{aligned} & i \leftarrow 1 \\ & \quad \text{while } \exists w \in N(u) \colon c(uw) = \alpha_i \land w \not \in \{v_1, \dots, v_{i-1}\} \text{ do} \\ & \quad \bigcup_{i \leftarrow w} v_i \leftarrow w \\ & \quad \alpha_{i+1} \leftarrow \text{min color missing at } w \\ & \quad i \leftarrow i+1 \end{aligned} return v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}
```



Lemma 2.

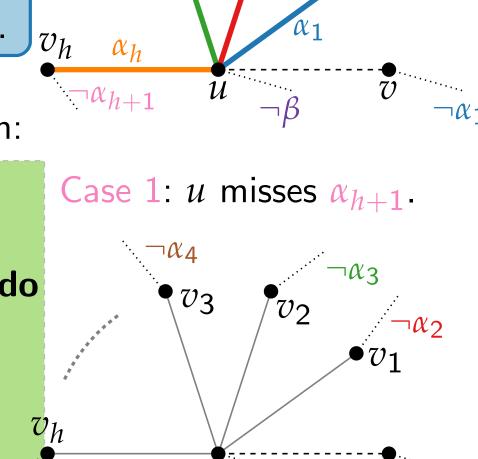
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

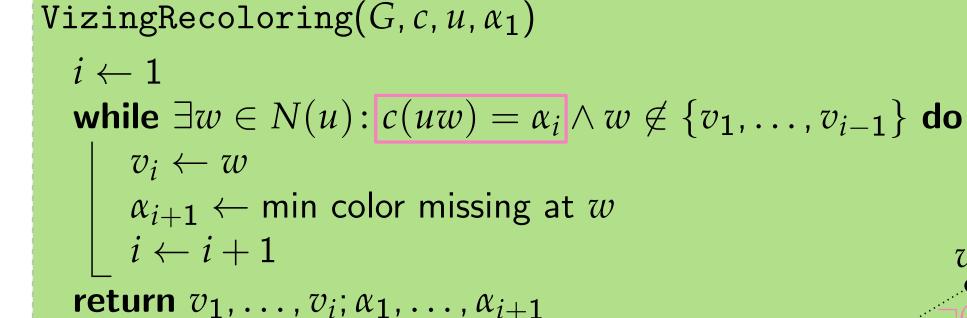


Case 1: u misses α_{h+1} .

Lemma 2.

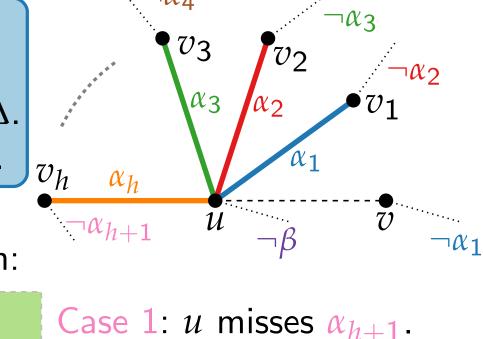
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

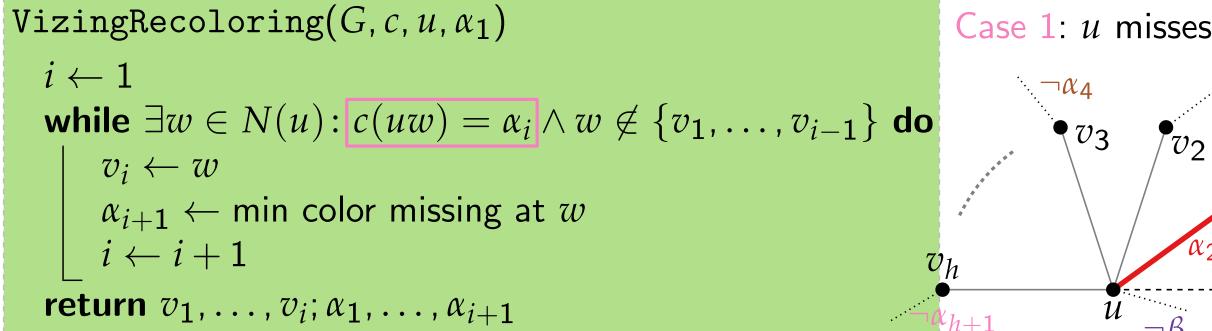




Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), $deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

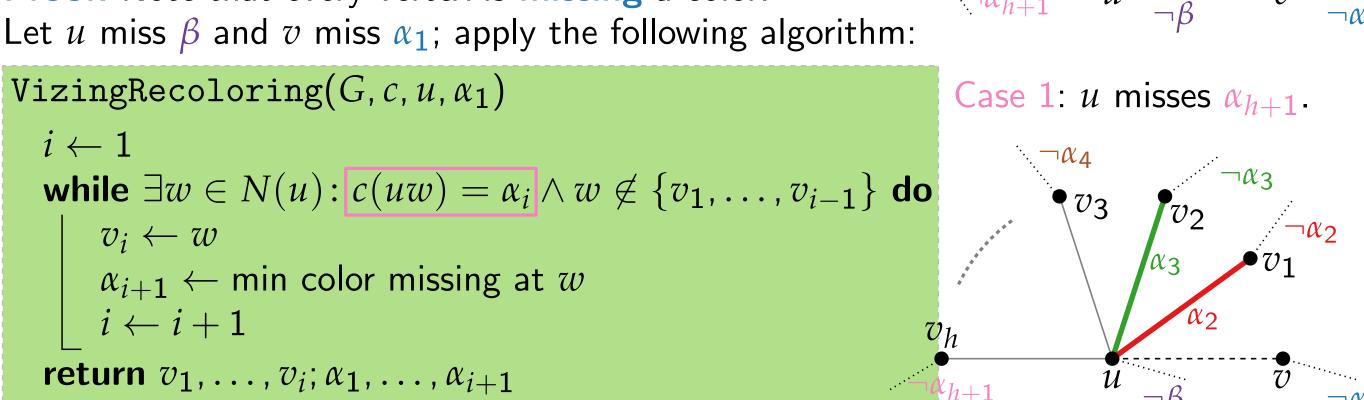




Lemma 2.

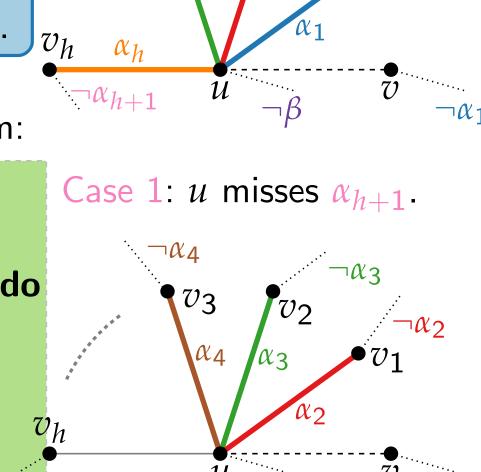
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), $deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

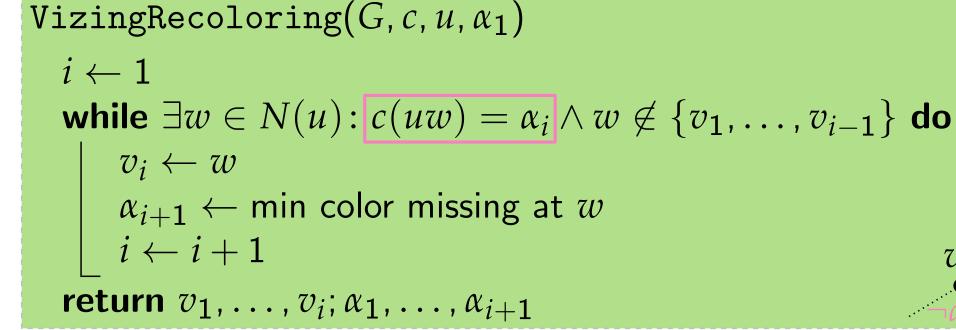
Proof. Note that every vertex is missing a color.



Lemma 2.

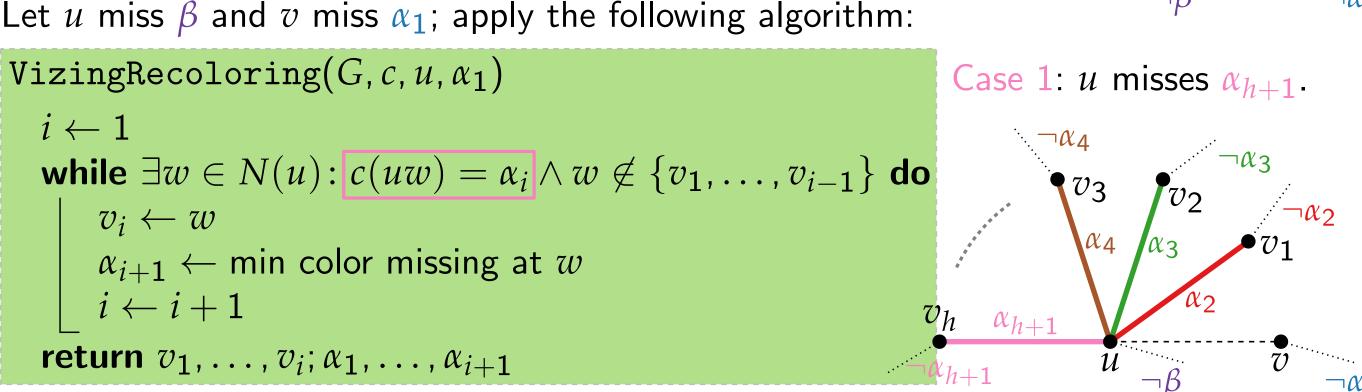
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.





Lemma 2.

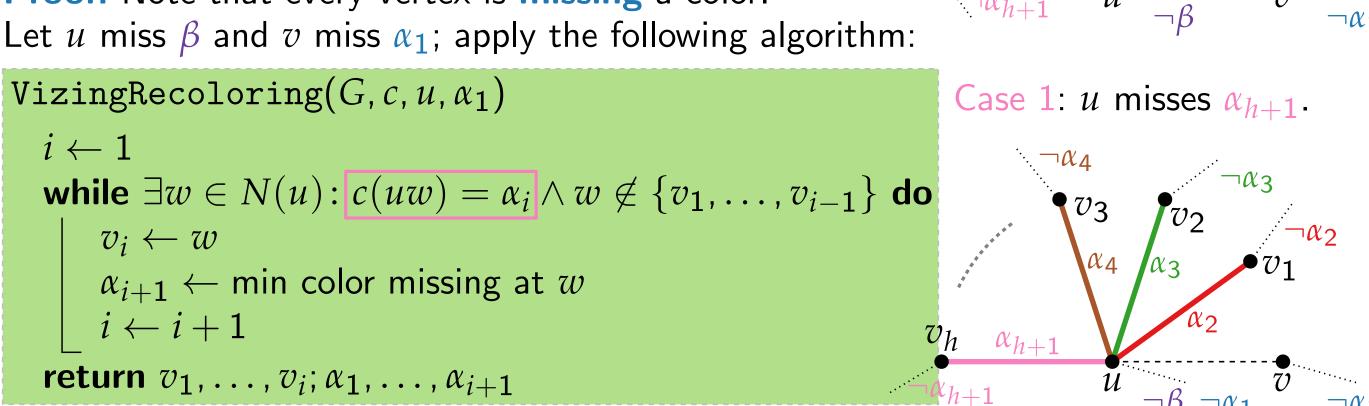
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.



Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), $deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

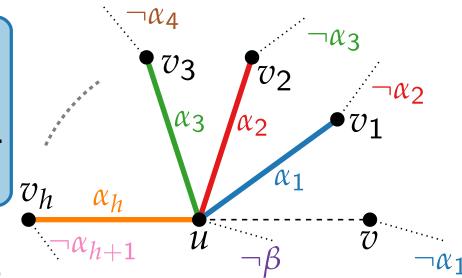
Proof. Note that every vertex is missing a color.



Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

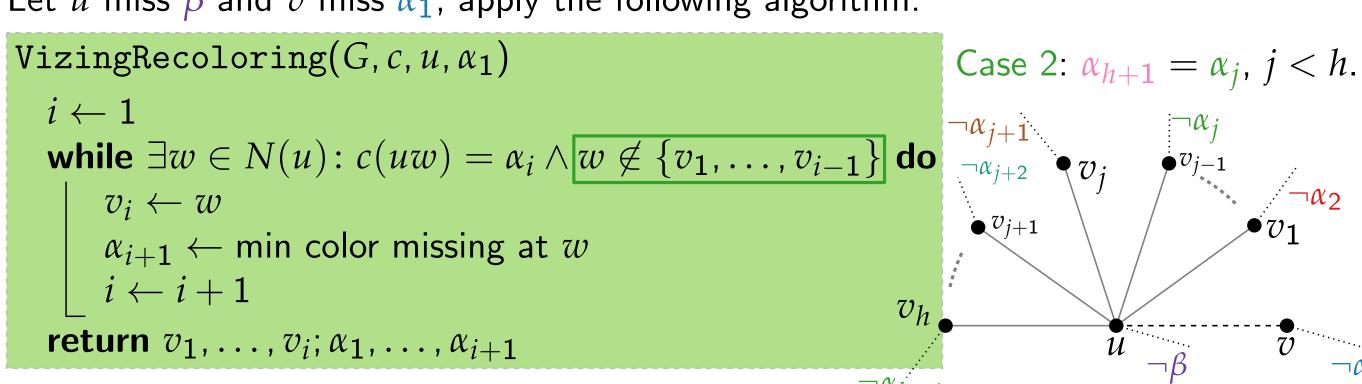
```
\begin{aligned} & i \leftarrow 1 \\ & \textbf{while} \ \exists w \in N(u) \colon c(uw) = \alpha_i \land w \not \in \{v_1, \dots, v_{i-1}\} \ \textbf{do} \\ & \begin{vmatrix} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ & i \leftarrow i+1 \end{aligned} \textbf{return } v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}
```



Case 2: $\alpha_{h+1} = \alpha_j$, j < h.

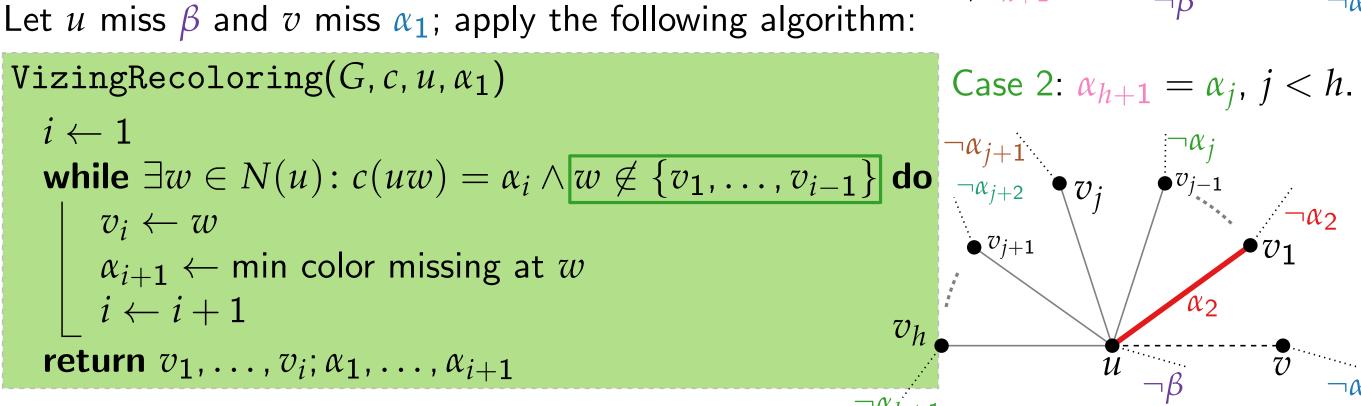
Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.



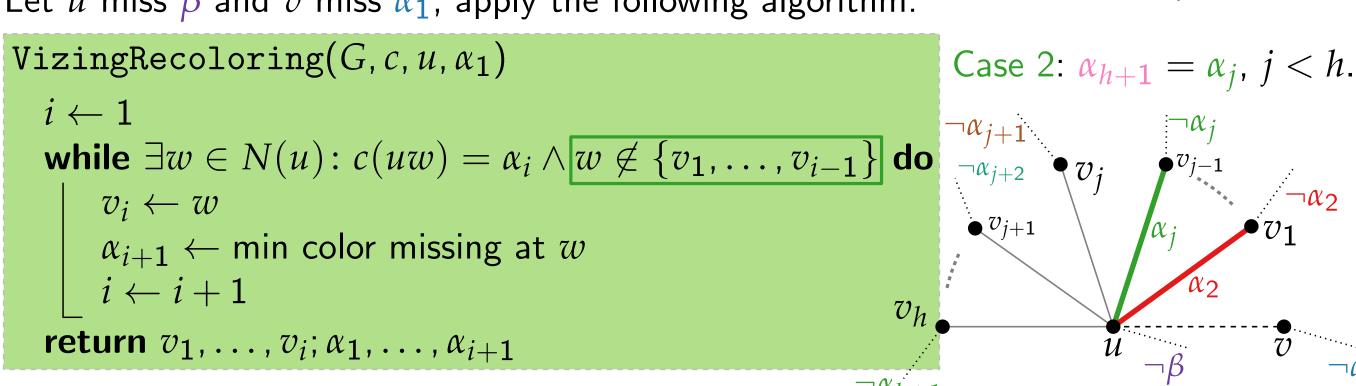
Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.



Lemma 2.

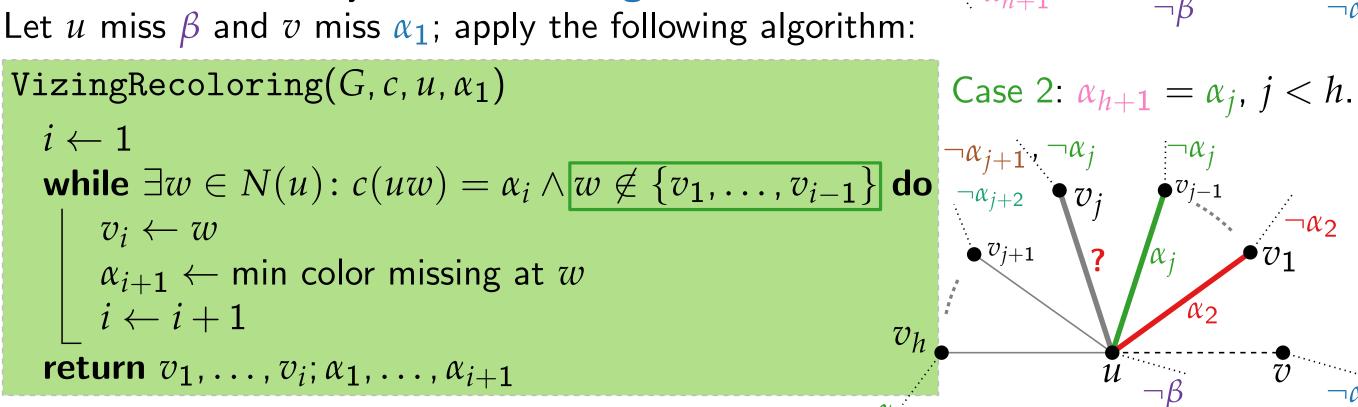
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.



Lemma 2.

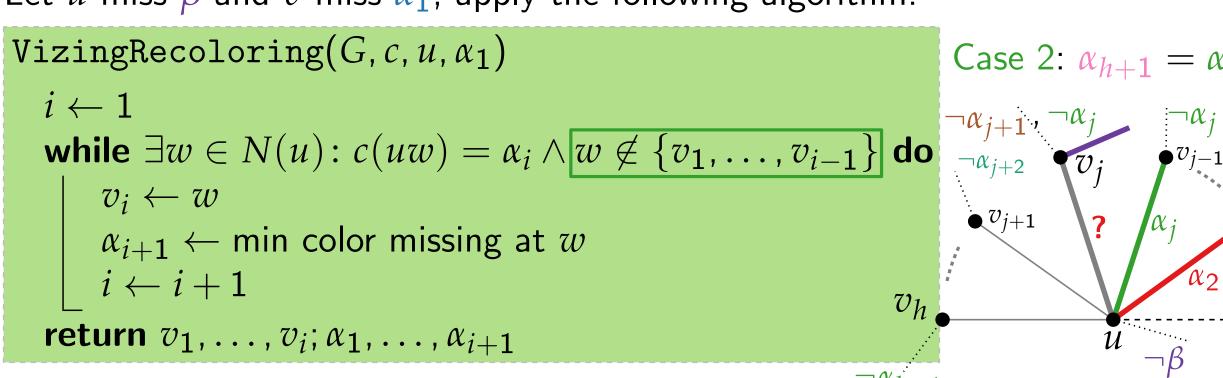
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), $deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

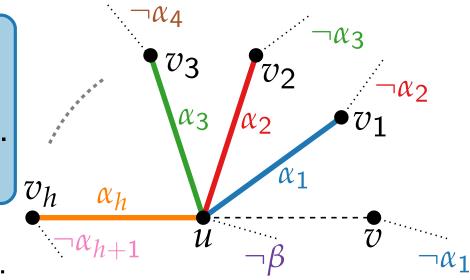
Proof. Note that every vertex is missing a color.



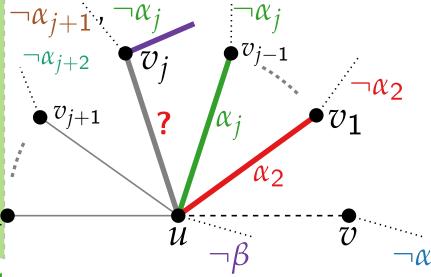
Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), $deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.



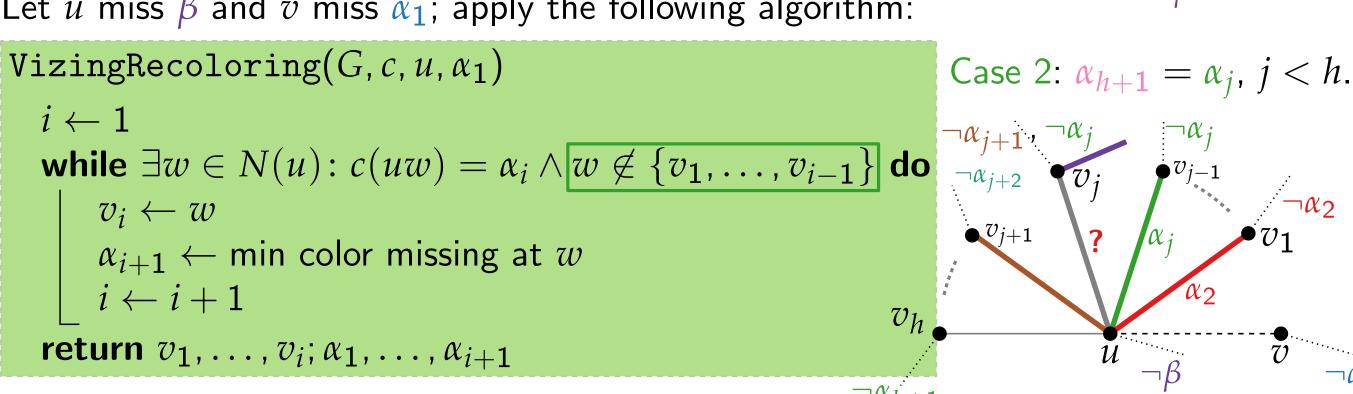


Case 2:
$$\alpha_{h+1} = \alpha_j, j < h$$
.



Lemma 2.

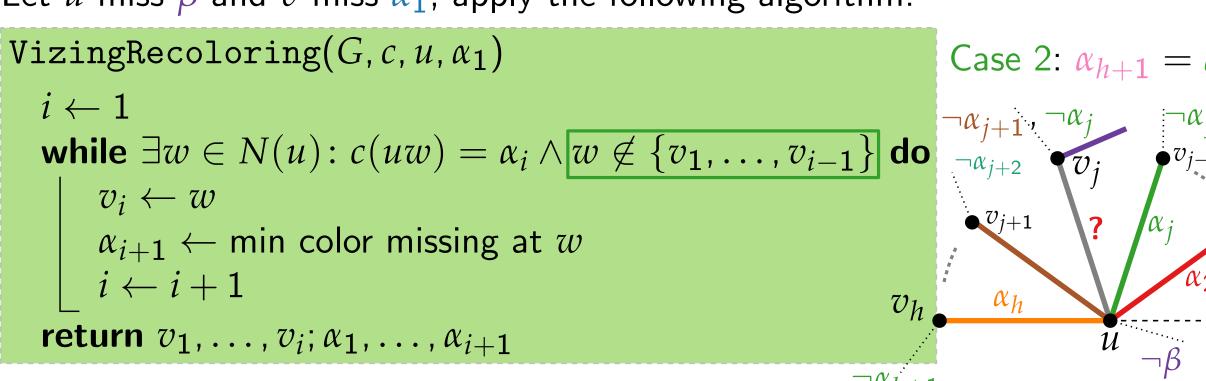
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

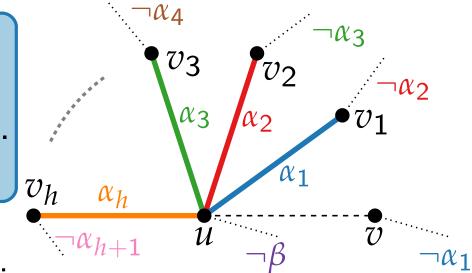


Lemma 2.

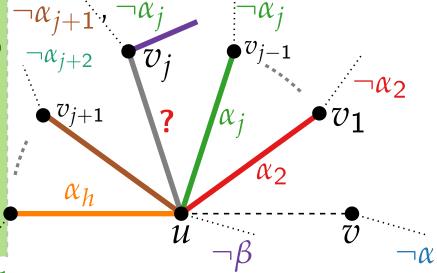
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), $deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color. Let u miss β and v miss α_1 ; apply the following algorithm:





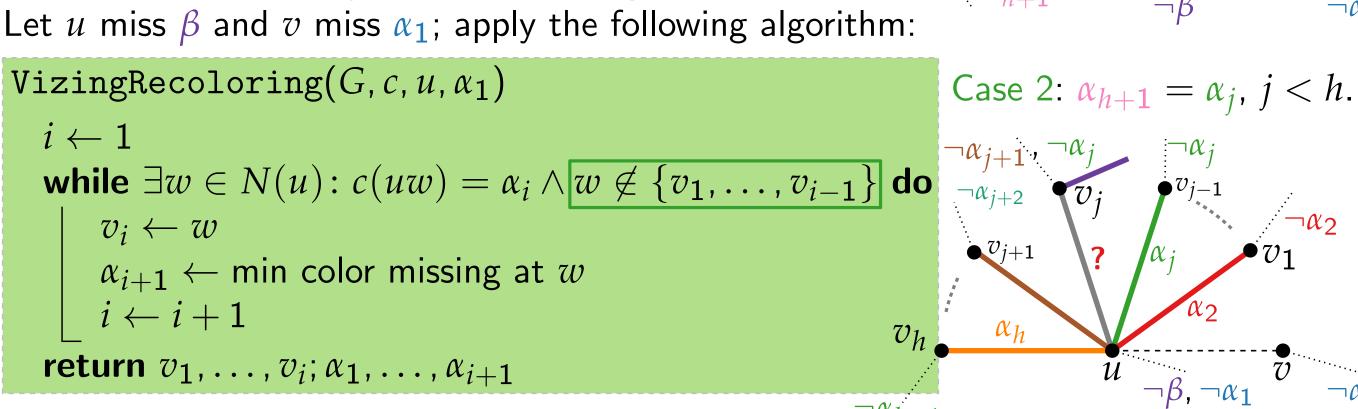
Case 2: $\alpha_{h+1} = \alpha_j$, j < h.



Lemma 2.

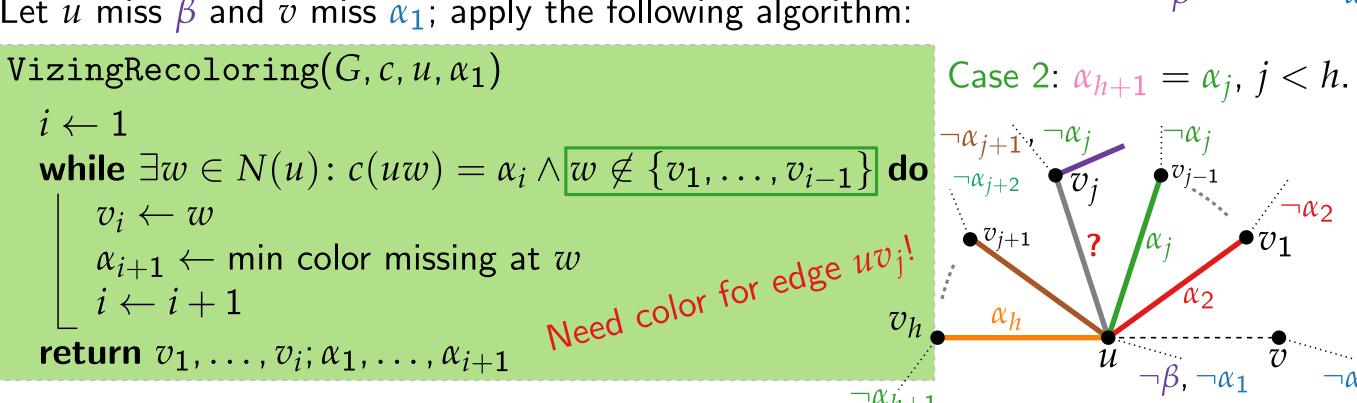
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), $deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

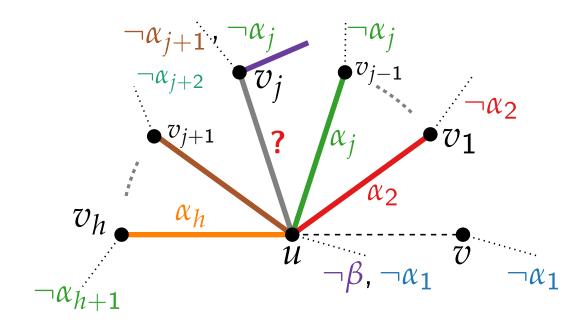
Proof. Note that every vertex is missing a color.



Lemma 2.

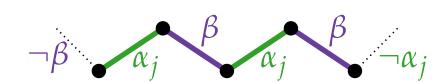
Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

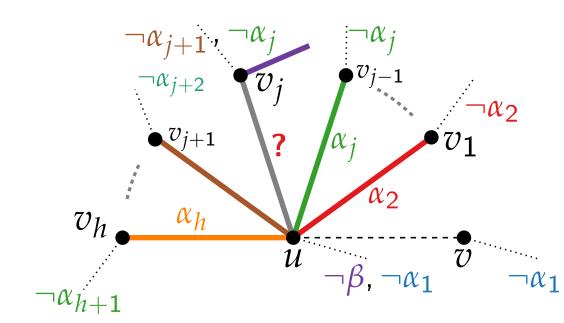




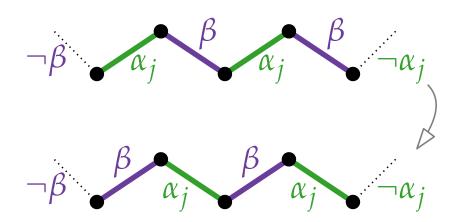
Proof continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .

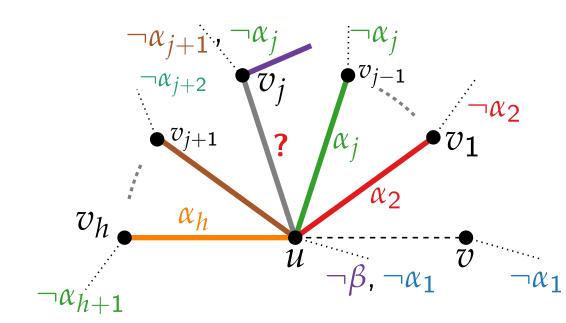
Consider subgraph G' of G induced by the edges of colors β and α_j .



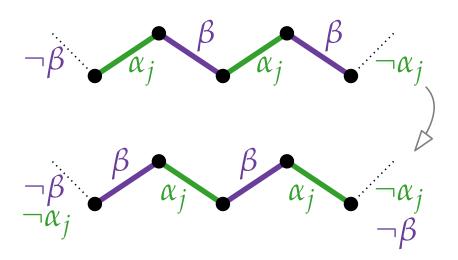


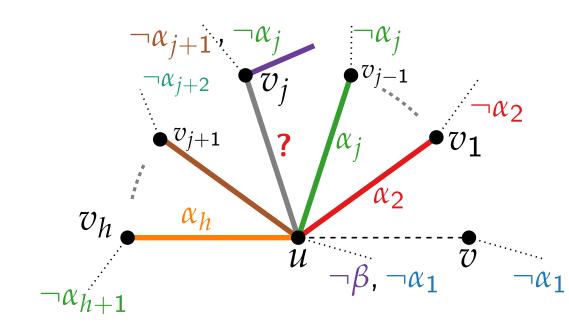
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.



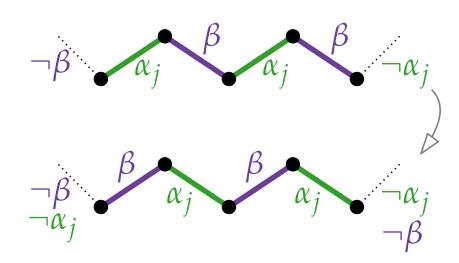


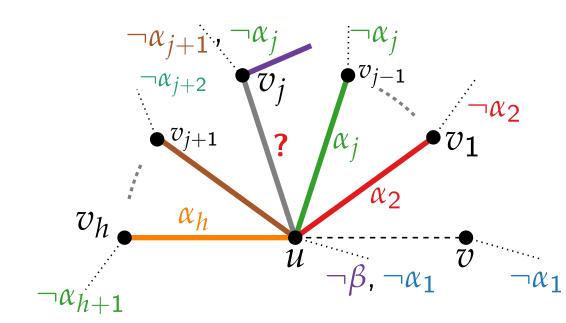
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.



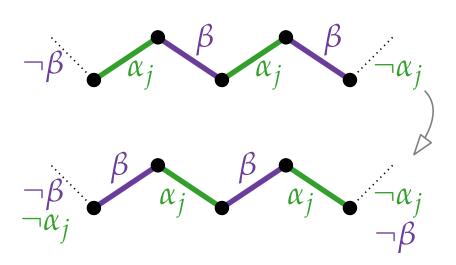


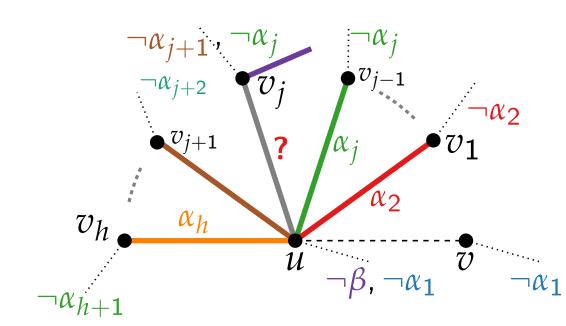
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'.
 - \Rightarrow They are not all in the same component of G'.



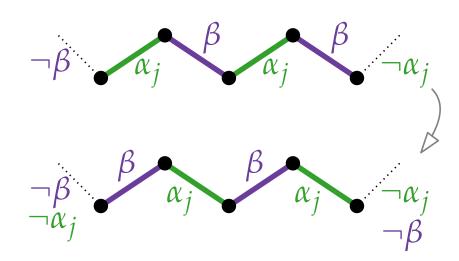


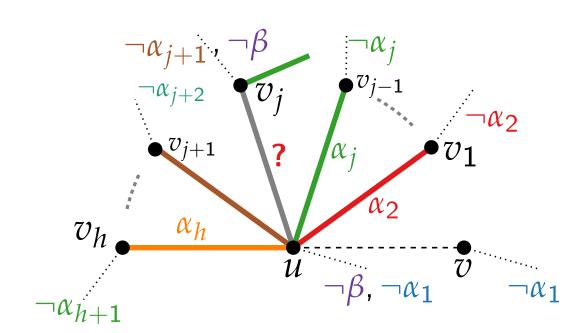
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.
- If u and v_j are not in the same component:
 - lacksquare recolor component ending at v_j ,



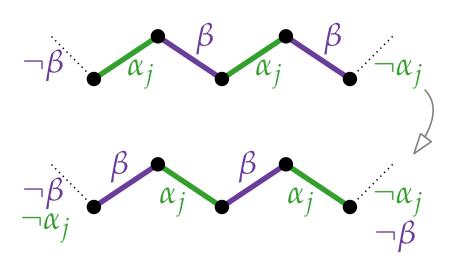


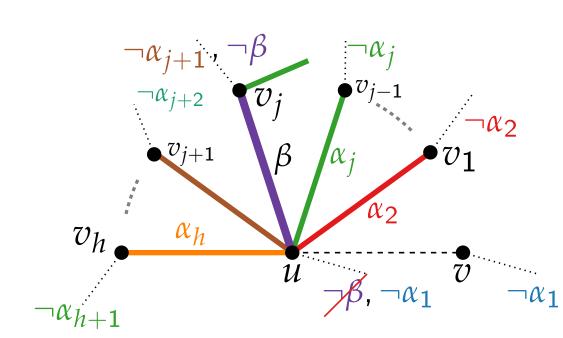
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.
- If u and v_j are not in the same component:
 - lacktriangleright recolor component ending at v_i ,
 - \mathbf{v}_{i} now misses β ;



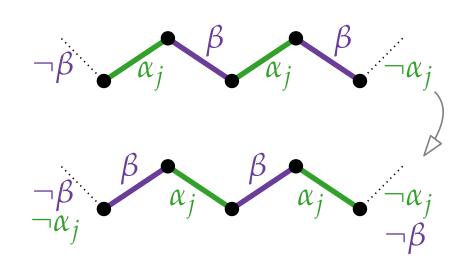


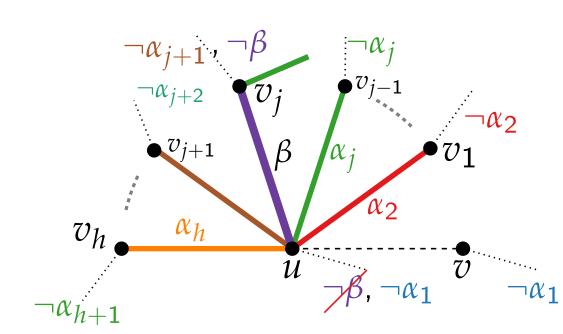
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.
- If u and v_j are not in the same component:
 - lacktriangleright recolor component ending at v_i ,
 - \mathbf{v}_j now misses β ;
 - lacksquare color uv_j with β .





- Consider subgraph G' of G induced by the edges of colors β and α_i .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.
- If u and v_j are not in the same component:
 - lacksquare recolor component ending at v_i ,
 - \mathbf{v}_j now misses β ;
 - lacksquare color uv_j with β .
- What if u and v_j are in the same component?





Minimum Edge Coloring – Algorithm

```
VizingEdgeColoring(graph G, coloring c \equiv 0)
 if E(G) \neq \emptyset then
      Let e = uv be an arbitrary edge of G.
      G_e \leftarrow G - e
     VizingEdgeColoring(G_e, c)
     if \Delta(G_e) < \Delta(G) then
         Color e with lowest free color.
      else
         Recolor G_e as in Lemma 2.
         Color e with color now missing at u and v.
```

Minimum Edge Coloring – Algorithm

VizingEdgeColoring(graph G, coloring $c \equiv 0$)

if $E(G) \neq \emptyset$ then

Let e = uv be an arbitrary edge of G.

$$G_e \leftarrow G - e$$

VizingEdgeColoring (G_e, c)

if
$$\Delta(G_e) < \Delta(G)$$
 then

Color *e* with lowest free color.

else

Recolor G_e as in Lemma 2.

Color e with color now missing at u and v.

Theorem 4.

VIZINGEDGECOLORING is an approximation algorithm with additive approximation guarantee $ALG(G) - OPT(G) \leq 1$.

Approximation with Relative Factor

An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!

Approximation with Relative Factor

An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!

Definition.

Let Π be a minimization problem, and let $\alpha \in \mathbb{Q}^+$. A factor- α approximation algorithm for Π is a polynomial-time algorithm \mathcal{A} that computes, for every instance I of Π , a solution of value $\mathsf{ALG}(I)$ such that

$$\frac{\mathsf{ALG}(I)}{\mathsf{OPT}(I)} \leq \alpha.$$

We call α the approximation factor of \mathcal{A} .

Approximation with Relative Factor

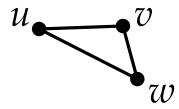
An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!

Let Π be a minimization problem, and let $\alpha \in \mathbb{Q}^+$. A factor- α approximation algorithm for Π is a polynomial-time algorithm \mathcal{A} that computes, for every instance I of Π , a solution of value ALG(I) such that

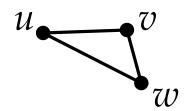
$$\frac{\mathsf{ALG}(I)}{\mathsf{OPT}(I)} \stackrel{\geq}{\leq} \alpha.$$

We call α the approximation factor of \mathcal{A} .

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

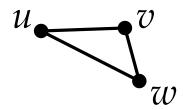


Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



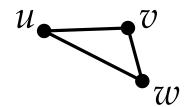
Output. A shortest Hamiltonian cycle in G.

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

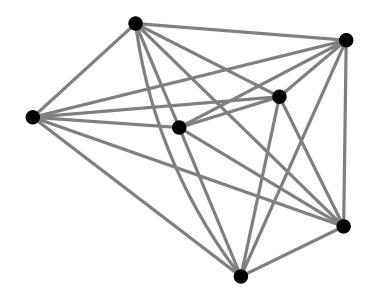


Output. A shortest Hamiltonian cycle in *G*. Algorithm.

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

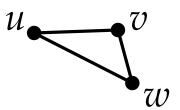


Output. A shortest Hamiltonian cycle in G.



Input.

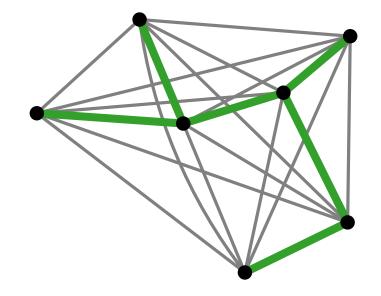
Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



Output. A shortest Hamiltonian cycle in G.

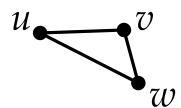
Algorithm.

Compute MST.



Input.

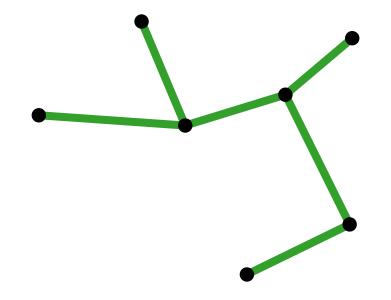
Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



Output. A shortest Hamiltonian cycle in G.

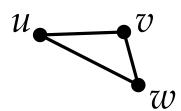
Algorithm.

Compute MST.



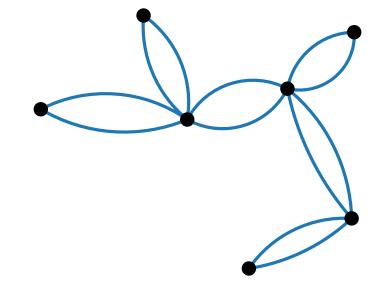
Input.

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



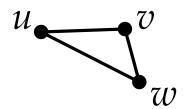
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.



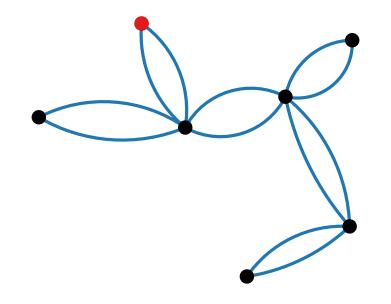
Input.

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



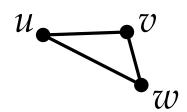
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,



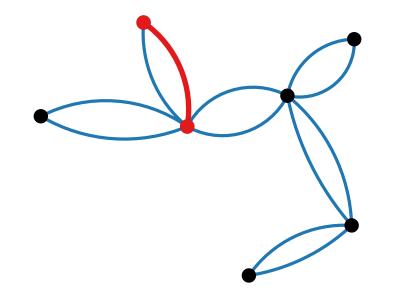
Input.

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



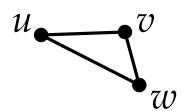
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,



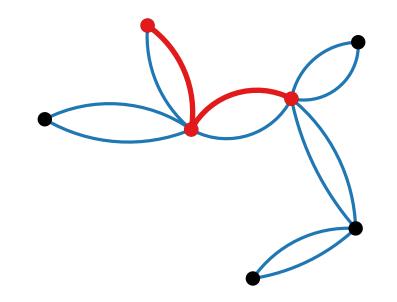
Input.

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



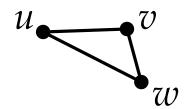
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,



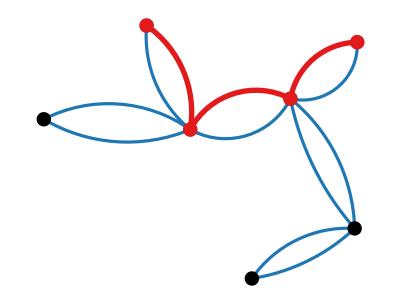
Input.

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



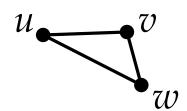
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,



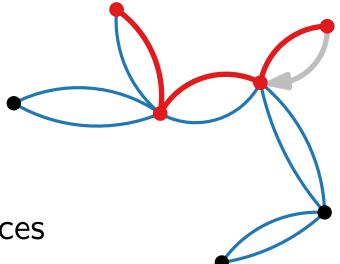
Input.

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



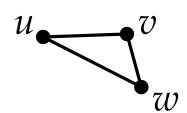
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices



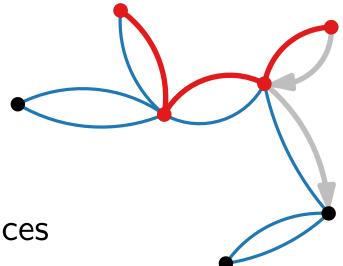
Input. Complete graph G=(V,E) and a distance function $d\colon E\to\mathbb{R}_{\geq 0}$ that satisfies the triangle inequality,

i.e.,
$$\forall u, v, \overline{w} \in V : d(u, w) \leq d(u, v) + d(v, w)$$
.



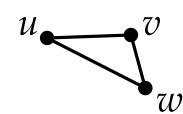
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices



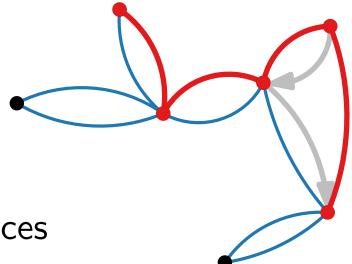
Input. Complete graph G=(V,E) and a distance function $d\colon E\to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality,

i.e.,
$$\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$$
.



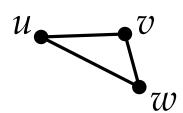
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



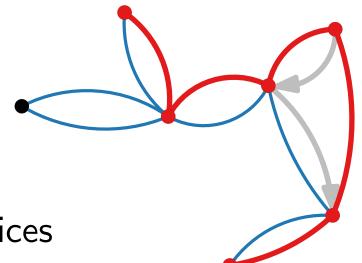
Input. Complete graph G=(V,E) and a distance function $d\colon E\to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality,

i.e.,
$$\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$$
.



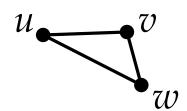
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



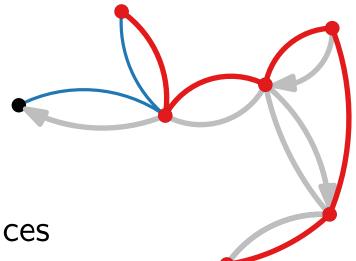
Input.

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



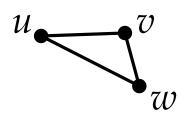
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



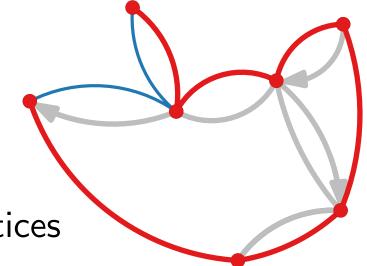
Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{>0}$ that satisfies the triangle inequality,

i.e., $\forall u, v, \overline{w} \in V : d(u, w) \leq d(u, v) + d(v, w)$.



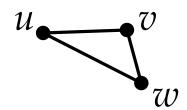
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



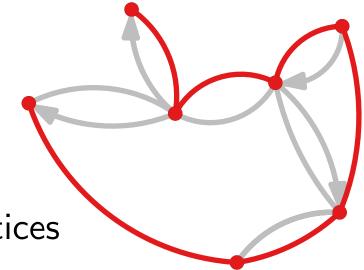
Input.

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



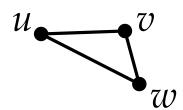
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



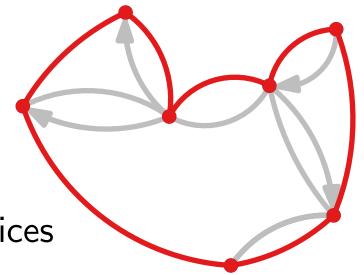
Input.

Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



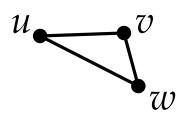
Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{>0}$ that satisfies the triangle inequality,

i.e., $\forall u, v, \overline{w} \in V : d(u, w) \leq d(u, v) + d(v, w)$.



Output. A shortest Hamiltonian cycle in G.

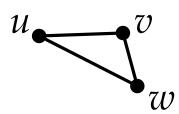
Algorithm.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.

The MST edge doubling algorithm is a 2-approximation algorithm for metric TSP.

Input. Complete graph G=(V,E) and a distance function $d\colon E\to\mathbb{R}_{\geq 0}$ that satisfies the triangle inequality,

i.e.,
$$\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$$
.



Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.

Theorem 5.

The MST edge doubling algorithm is a 2-approximation algorithm for metric TSP.

Proof.

$$ALG \le d(cycle) = 2d(MST) \le 2OPT.$$

```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i,j) \in T \times (V \setminus T) minimizing d(i,j).

Let k be vertex after i in T.

Add j between i and k.
```

```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i,j) \in T \times (V \setminus T) minimizing d(i,j).

Let k be vertex after i in T.

Add j between i and k.
```

```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```

```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i,j) \in T \times (V \setminus T) minimizing d(i,j).

Let k be vertex after i in T.

Add j between i and k.
```

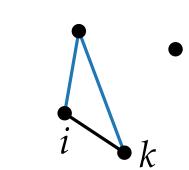
```
NearestAdditionAlgorithm(G = (V, E), d)
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

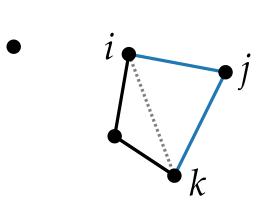
Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i,j) \in T \times (V \setminus T) minimizing d(i,j).
Let k be vertex after i in T.
Add j between i and k.
```



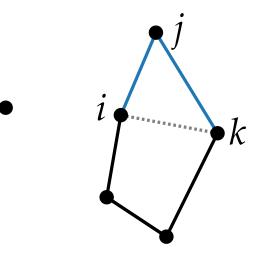
```
NearestAdditionAlgorithm(G = (V, E), d)
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

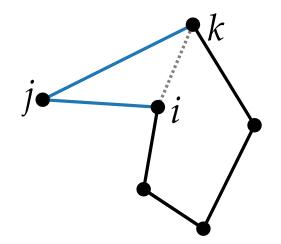
Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.
```



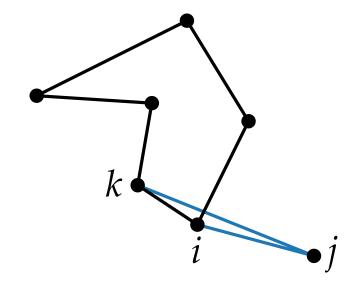
```
NearestAdditionAlgorithm(G = (V, E), d)
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i,j) \in T \times (V \setminus T) minimizing d(i,j).

Let k be vertex after i in T.

Add j between i and k.
```



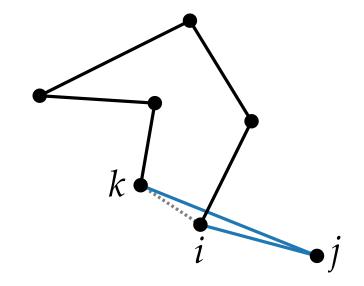
```
NearestAdditionAlgorithm(G = (V, E), d)
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



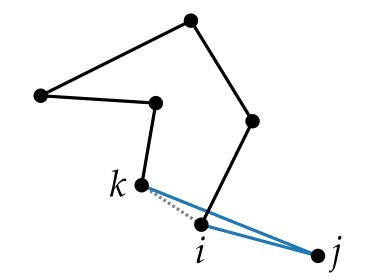
```
NearestAdditionAlgorithm(G = (V, E), d)
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



Theorem 6.

NearestAdditionAlgorithm is a 2-approximation algorithm for metric TSP.

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

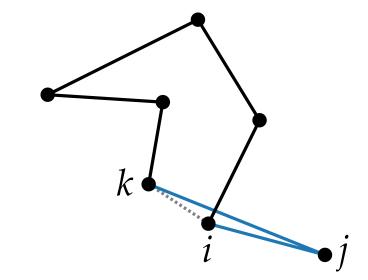
Set tour T to go from i to k to i (clockwise).

while $T \subsetneq V$ do

Find pair $(i, j) \in T \times (V \setminus T)$ minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.



Theorem 6.

NearestAdditionAlgorithm is a 2-approximation algorithm for metric TSP.

Proof.

- Exercise.
- Hints: MST and Prim's algorithm.

Approximation Schemes

■ In some cases, we can get arbitrarily good approximations.

In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon > 0$), a value $\mathsf{ALG}(I)$ such that:

- $\mathsf{ALG}(I) \leq (1+\varepsilon) \cdot \mathsf{OPT}(I)$, and
- lacksquare the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$.

In some cases, we can get arbitrarily good approximations.

Let Π be a minimization problem. An algorithm $\mathcal A$ is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance Iof Π and a real $\varepsilon > 0$), a value ALG(I) such that:

$$\geq (1-arepsilon)$$

- \blacksquare ALG $(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}(I)$, and
- \blacksquare the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$.

In some cases, we can get arbitrarily good approximations.

Definition. maximization

Let Π be a minimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon > 0$), a value $\mathsf{ALG}(I)$ such that:

$$\geq (1-\varepsilon)$$

- ALG $(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}(I)$, and
- the runtime of A is polynomial in |I| for every $\varepsilon > 0$.

 ${\cal A}$ is called a fully polynomial-time approximation scheme (FPTAS) if it runs in time polynomial in |I| and $1/\varepsilon$.

In some cases, we can get arbitrarily good approximations.

maximization

Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance Iof Π and a real $\varepsilon > 0$), a value ALG(I) such that:

$$\geq (1-\varepsilon)$$

- $\geq (1 \varepsilon)$ ALG $(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}(I)$, and
- \blacksquare the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$.

 \mathcal{A} is called a fully polynomial-time approximation scheme **(FPTAS)** if it runs in time polynomial in |I| and $1/\varepsilon$.

In some cases, we can get arbitrarily good approximations.

maximization

Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance Iof Π and a real $\varepsilon > 0$), a value ALG(I) such that:

$$\geq (1-\varepsilon)$$

- $\geq (1 \varepsilon)$ ALG $(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}(I)$, and
- \blacksquare the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$.

 \mathcal{A} is called a fully polynomial-time approximation scheme **(FPTAS)** if it runs in time polynomial in |I| and $1/\varepsilon$.

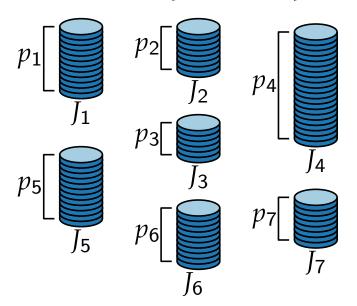
$$\bigcirc \mathcal{O}\left(n^2 + n^{\frac{1}{\varepsilon}}\right) \Rightarrow \mathsf{PTAS} \; \mathsf{but} \; \mathsf{not} \; \mathsf{FPTAS}$$

$$\bigcirc \mathcal{O}\left(n^2 \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow \mathsf{PTAS} \mathsf{\ but\ not\ FPTAS}$$

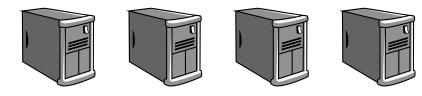
$$\mathcal{O}\left(n^4\cdot\left(\frac{1}{\varepsilon}\right)^2\right) \Rightarrow \mathsf{FPTAS}$$

Input.

n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .



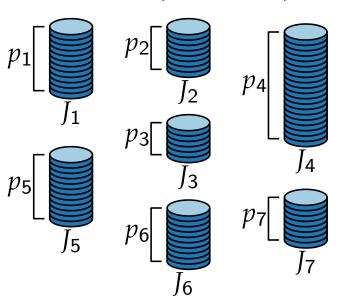
 \blacksquare m identical machines (m < n)



Input.

n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .

 \blacksquare m identical machines (m < n)



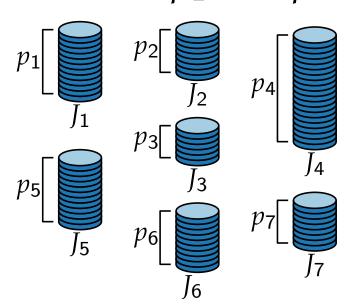
Output.

Assignment of jobs to machines such that the time when all jobs have been processed is minimum.

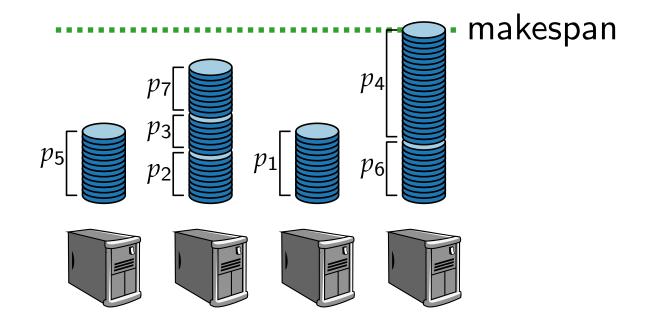
This is called the makespan of the assignment.

Input.

n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .



 \blacksquare m identical machines (m < n)

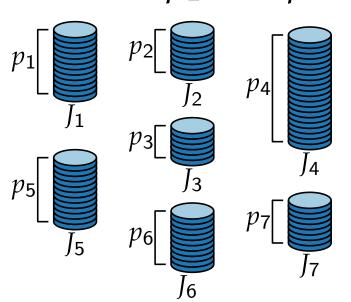


Output. Assignment of jobs to machines such that the time when all jobs have been processed is minimum.

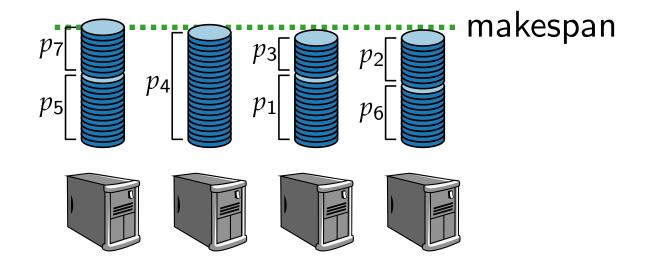
This is called the makespan of the assignment.

Input.

■ n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .



 \blacksquare m identical machines (m < n)

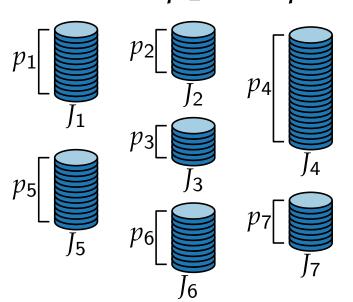


Output. Assignment of jobs to machines such that the time when all jobs have been processed is minimum.

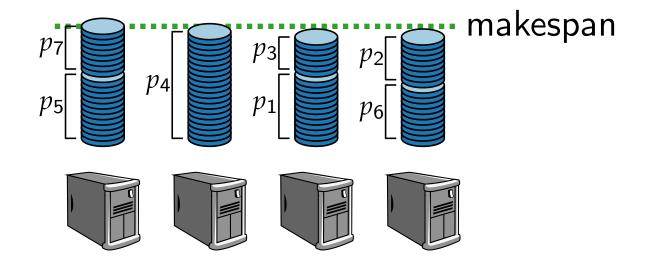
This is called the makespan of the assignment.

Input.

n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .



 \blacksquare m identical machines (m < n)



Output. Assignment of jobs to machines such that the time when all jobs have been processed is minimum.

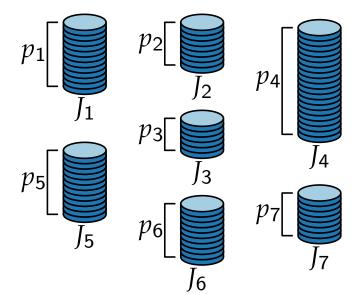
This is called the makespan of the assignment.

Multiprocessor scheduling is NP-hard.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines.

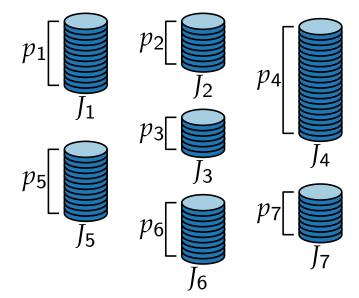
Put the next job on the first free machine.

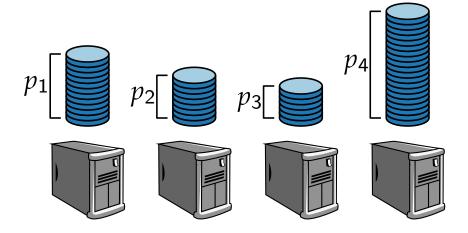


LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines.

Put the next job on the first free machine.

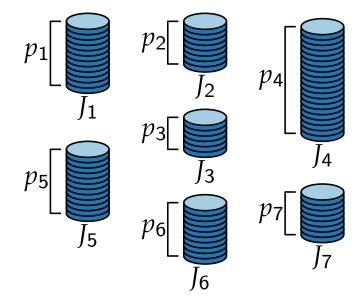


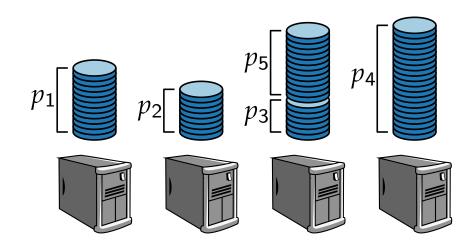


LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines.

Put the next job on the first free machine.

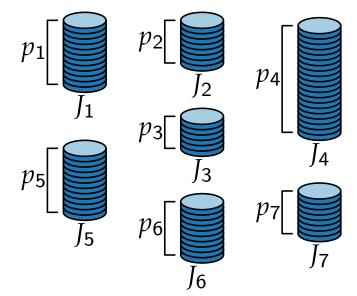


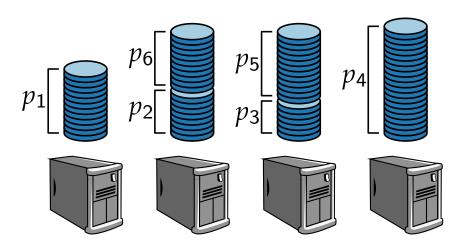


LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines.

Put the next job on the first free machine.

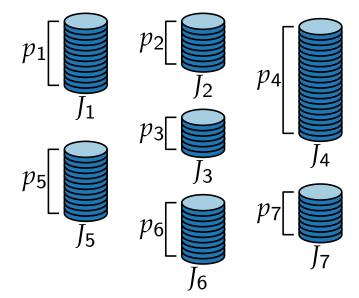


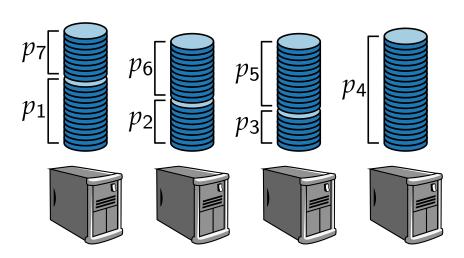


LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines.

Put the next job on the first free machine.



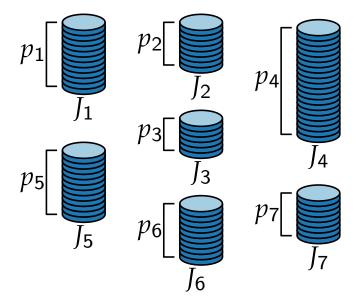


LISTSCHEDULING (J_1, \ldots, J_n, m)

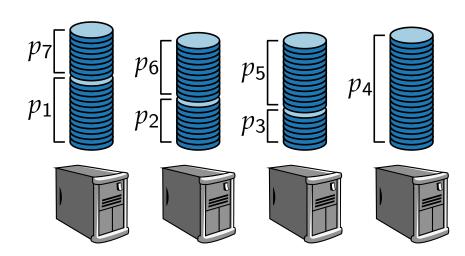
Put the first m jobs on the m machines.

Put the next job on the first free machine.

Example.



■ LISTSCHEDULING runs in

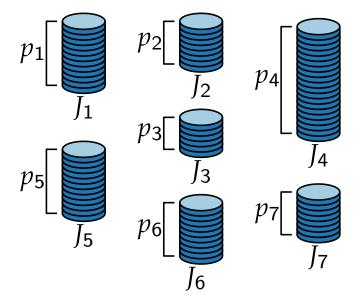


LISTSCHEDULING (J_1, \ldots, J_n, m)

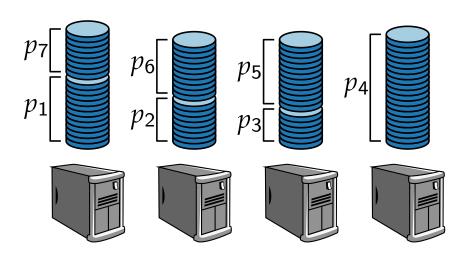
Put the first m jobs on the m machines.

Put the next job on the first free machine.

Example.



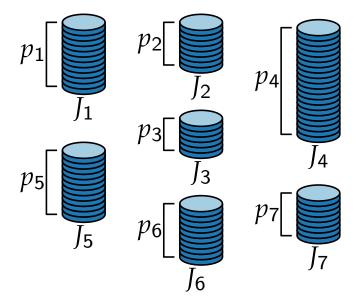
LISTSCHEDULING runs in $\mathcal{O}(n)$ time.



LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

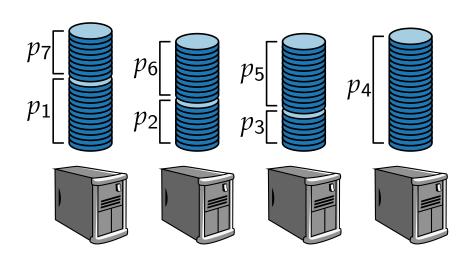
Example.



LISTSCHEDULING runs in $\mathcal{O}(n)$ time.

Theorem 7.

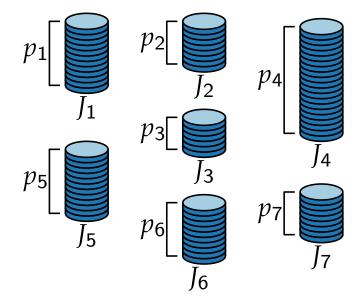
LISTSCHEDULING is a factorapproximation algorithm.



LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

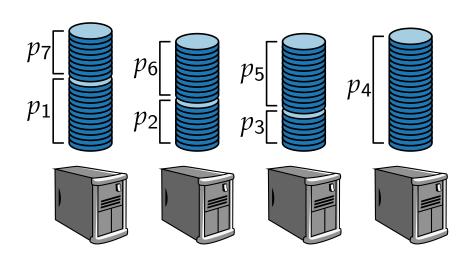
Example.



LISTSCHEDULING runs in $\mathcal{O}(n)$ time.

Theorem 7.

LISTSCHEDULING is a factor- $\left(2-\frac{1}{m}\right)$ approximation algorithm.

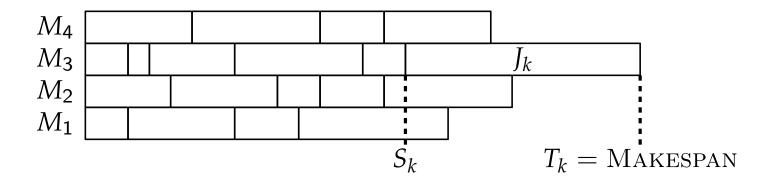


LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine. Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.



LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

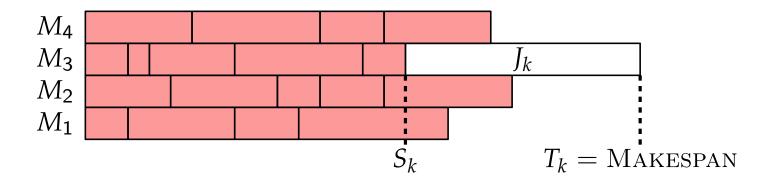
Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

$$S_k \le \frac{1}{m} \sum_{i \ne k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines



LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

Theorem 7.

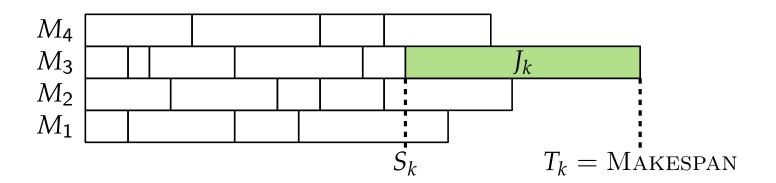
LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

- \blacksquare For the optimal makespan T_{OPT} , we have:
- $T_{\mathsf{OPT}} \geq p_k$



LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

Theorem 7.

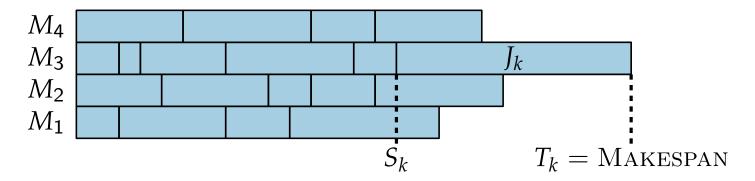
LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

$$S_k \le \frac{1}{m} \sum_{i \ne k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

- For the optimal makespan T_{OPT} , we have:
- $T_{\text{OPT}} \ge p_k$ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$ weight of all jobs i=1 evenly distributed



LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

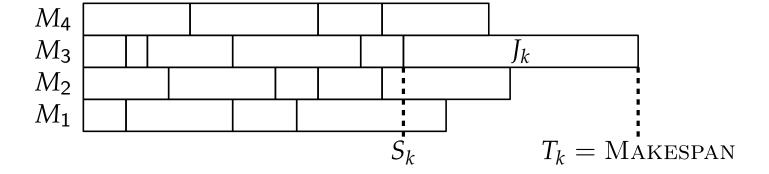
$$S_k \le \frac{1}{m} \sum_{i \ne k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

For the optimal makespan T_{OPT} , we have:

$$T_{\mathsf{OPT}} \geq p_k$$

■
$$T_{\text{OPT}} \ge p_k$$

■ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^n p_i$ weight of all jobs evenly distributed



$$T_k = S_k + p_k$$

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

$$S_k \le \frac{1}{m} \sum_{i \ne k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

- \blacksquare For the optimal makespan T_{OPT} , we have:
- $T_{\text{OPT}} \ge p_k$ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$ weight of all jobs i=1 evenly distributed

M_4 M_3 M_2 M_1 $T_k = \text{Makespan}$

$$T_k = |S_k| + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine. Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

 $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$ weight of all jobs but J_k evenly distributed on m machines

For the optimal makespan T_{OPT} , we have:

$$T_{\mathsf{OPT}} \geq p_k$$

i=1 evenly distributed

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^n p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

$$M_4$$
 M_3 M_2 M_1 M_2 M_3 M_4 M_5 M_6 M_6 M_6 M_7 M_8 M_8 M_8 M_8 M_9 M_9

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

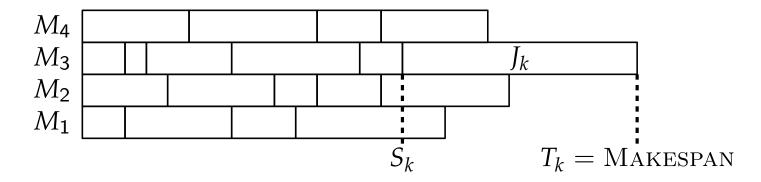
$$S_k \le \frac{1}{m} \sum_{i \ne k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

For the optimal makespan T_{OPT} , we have:

$$T_{\mathsf{OPT}} \geq p_k$$

■
$$T_{\text{OPT}} \ge p_k$$

■ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$ weight of all jobs evenly distributed



$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{n} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

For the optimal makespan T_{OPT} , we have:

$$T_{\mathsf{OPT}} \geq p_k$$

■
$$T_{\text{OPT}} \ge p_k$$

■ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^n p_i$ weight of all jobs evenly distributed

$$M_4$$
 M_3 M_2 M_1 M_2 M_3 M_4 M_5 M_6 M_6 M_6 M_6 M_7 M_8 M_8 M_8 M_9 M_9

$$T_{k} = S_{k} + p_{k}$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{n} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$

$$\leq T_{\mathsf{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\mathsf{OPT}}$$

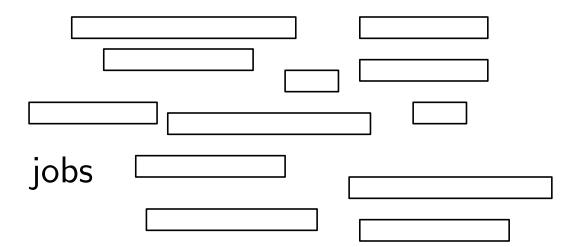
$$= \left(2 - \frac{1}{m}\right) \cdot T_{\mathsf{OPT}}$$

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

```
\mathcal{A}_{\ell}(J_1,\ldots,J_n,\,m)
Sort jobs in descending order of runtime.
Schedule the \ell longest jobs J_1,\ldots,J_{\ell} optimally.
Use ListScheduling for the remaining jobs J_{\ell+1},\ldots,J_n.
```

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

```
\mathcal{A}_{\ell}(J_1,\ldots,J_n,\,m)
Sort jobs in descending order of runtime.
Schedule the \ell longest jobs J_1,\ldots,J_{\ell} optimally.
Use LISTSCHEDULING for the remaining jobs J_{\ell+1},\ldots,J_n.
```

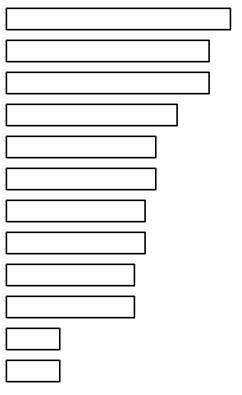



For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

```
\mathcal{A}_{\ell}(J_1,\ldots,J_n,\,m)
Sort jobs in descending order of runtime.
Schedule the \ell longest jobs J_1,\ldots,J_{\ell} optimally.
Use ListScheduling for the remaining jobs J_{\ell+1},\ldots,J_n.
```

Example.

$$\ell = 6$$

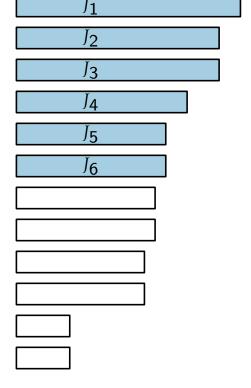


For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

```
\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)
Sort jobs in descending order of runtime.
Schedule the \ell longest jobs J_1,\ldots,J_{\ell} optimally.
Use ListScheduling for the remaining jobs J_{\ell+1},\ldots,J_n.
```

Example.

$$\ell = 6$$



M_4 M_3 M_2 M_1	J_1]	
M_3	J ₂	J_{5}	
M_2	J ₃		
M_1	J ₄	J ₆	

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

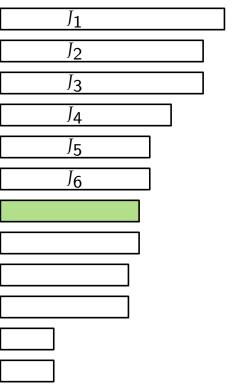
Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$$\ell = 6$$



$M_4 \ M_3 \ M_2 \ M_1$	J_1		
M_3	J_2	J_{5}	
M_2	J ₃		
M_1	J ₄	J ₆	

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

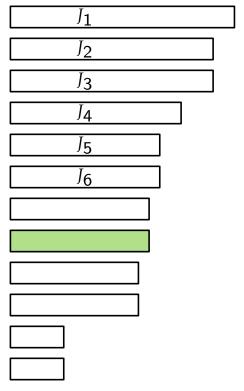
Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$$\ell = 6$$



M_4 M_3 M_2	J_1		
M_3	J_2	J ₅	
M_2	J ₃		
M_1	J ₄	J ₆	

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

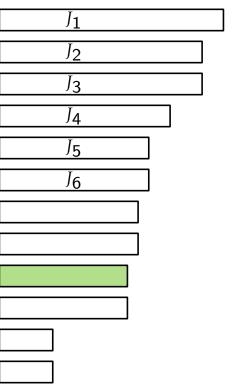
Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$$\ell = 6$$



M_{4}	J_1		
M_3	J ₂	J ₅	
M_2	J ₃		
$M_1 \mid$	J ₄	J ₆	

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

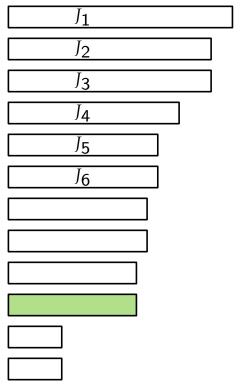
Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$$\ell = 6$$



M_{4}	J_1		
$M_{ m 4}$	J ₂	J_5	
M_2	J ₃		
M_1	J ₄	J_{6}	

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

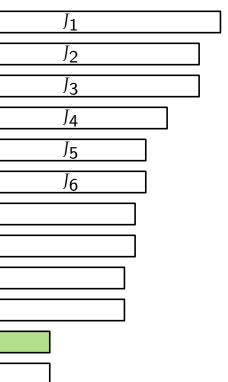
Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$$\ell = 6$$



M_{4}	J_1		
M_3	J ₂	J_5	
M_2	J ₃		
M_1	J ₄	J ₆	

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

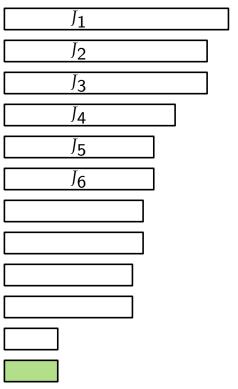
Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$$\ell = 6$$



M_{4}	J_1		
M_3	J ₂	J_5	
M_2	J ₃		
M_1	J ₄	J ₆	

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$$\ell = 6$$

<i>J</i> <u>1</u>
J_2
J ₃
J ₄
J ₅
J ₅

M_{4}	J_1		
M_3	J ₂	J_5	
M_2	J ₃		
M_1	J ₄	J ₆	

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$
Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally.

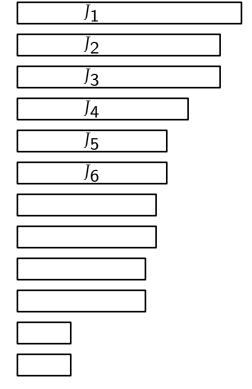
Use ListScheduling for the remaining jobs $J_{\ell+1},\ldots,J_n$. $\mathcal{O}(n\log m)$

$$\mathcal{O}(n \log n)$$
 $\mathcal{O}(m^{\ell})$
 $\mathcal{O}(n \log m)$

Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell})$ $\mathcal{O}(m^{\ell} + n \log n)$

Example.

$$\ell = 6$$



M_4	J_1			
M_3	J ₂	J ₅	_	
M_2	J ₃			
$M_1 \mid$	J_4	J ₆		

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$
Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally.

Use ListScheduling for the remaining jobs $J_{\ell+1},\ldots,J_n$.

 $\mathcal{O}(n\log n)$

$$\mathcal{O}(n \log n)$$
 $\mathcal{O}(m^{\ell})$
 $\mathcal{O}(n \log m)$

Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell})$ $\mathcal{O}(m^{\ell} + n \log n)$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + |\frac{\ell}{m}|}$ -approximation algorithm.

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$
Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1,\ldots,J_ℓ optimally.

Use ListScheduling for the remaining jobs $J_{\ell+1},\ldots,J_n$.

 $\mathcal{O}(n\log n)$

$$\mathcal{O}(n\log n)$$
 $\mathcal{O}(m^{\ell})$
 $\mathcal{O}(n\log m)$

Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell})$ $\mathcal{O}(m^{\ell} + n \log n)$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + |\frac{\ell}{m}|}$ -approximation algorithm.

■ For $\varepsilon > 0$, choose ℓ such that $\mathcal{A}_{\varepsilon} = \mathcal{A}_{\ell(\varepsilon)}$ is a $(1 + \varepsilon)$ -approximation algorithm.

Corollary 9.

For a constant number of machines, $\{A_{\varepsilon} \mid \varepsilon > 0\}$ is a PTAS.

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$
Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally.

Use ListScheduling for the remaining jobs $J_{\ell+1},\ldots,J_n$.

 $\mathcal{O}(n\log n)$

$$\mathcal{O}(n\log n)$$
 $\mathcal{O}(m^{\ell})$
 $\mathcal{O}(n\log m)$

Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell})$ $\mathcal{O}(m^{\ell} + n \log n)$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + |\frac{\ell}{m}|}$ -approximation algorithm.

- For $\varepsilon > 0$, choose ℓ such that $\mathcal{A}_{\varepsilon} = \mathcal{A}_{\ell(\varepsilon)}$ is a $(1+\varepsilon)$ -approximation algorithm.
- \blacksquare $\{A_{\varepsilon} \mid \varepsilon > 0\}$ is not an FPTAS since the running time is not polynomial in $\frac{1}{\varepsilon}$.

Corollary 9.

For a constant number of machines, $\{A_{\varepsilon} \mid \varepsilon > 0\}$ is a PTAS.

Theorem 8.

For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

```
\mathcal{A}_{\ell}(J_1,\ldots,J_n,\,m)
Sort jobs in descending order of runtime.
Schedule the \ell longest jobs J_1,\ldots,J_{\ell} optimally.
Use LISTSCHEDULING for the remaining jobs J_{\ell+1},\ldots,J_n.
```

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

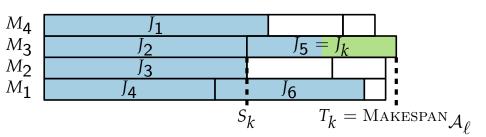
Theorem 8.

For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

```
\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)
Sort jobs in descending order of runtime.
Schedule the \ell longest jobs J_1,\ldots,J_{\ell} optimally.
Use ListScheduling for the remaining jobs J_{\ell+1},\ldots,J_n.
```

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .



Theorem 8.

For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

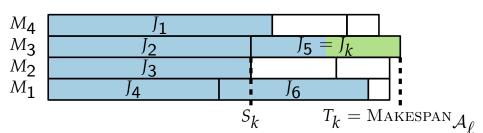
$$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1},\ldots,J_n$.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .

- Solution is optimal for J_1, \ldots, J_k
- \blacksquare Hence, solution is optimal for J_1, \ldots, J_n



Theorem 8.

For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n,\ m)$$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally.

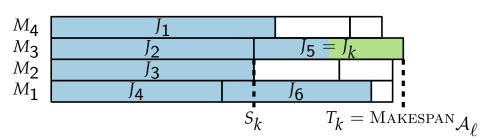
Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .

- Solution is optimal for J_1, \ldots, J_k
- \blacksquare Hence, solution is optimal for J_1, \ldots, J_n

Case 2. J_k is not one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .



Theorem 8.

For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n,\ m)$$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

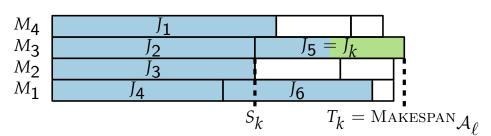
Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

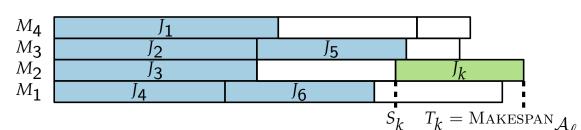
Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .

- Solution is optimal for J_1, \ldots, J_k
- \blacksquare Hence, solution is optimal for J_1, \ldots, J_n

Case 2. J_k is not one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .

- Similar analysis to ListScheduling
- Use that there are $\ell+1$ jobs that are at least as long as J_k (including J_k).





Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+rac{1-rac{1}{m}}{1+\left|rac{\ell}{m}
ight|}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$\blacksquare$$
 $T_{\mathsf{OPT}} \geq p_k$

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$$T_k = S_k + p_k$$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+rac{1-rac{1}{m}}{1+\left|rac{\ell}{m}\right|}$ -approximation algorithm.

$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\mathsf{OPT}} \geq p_k$$

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+rac{1-rac{1}{m}}{1+\left|rac{\ell}{m}\right|}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$\blacksquare$$
 $T_{\mathsf{OPT}} \geq p_k$

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^m p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

Theorem 8.

For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\mathsf{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$$

$$T_{\mathsf{OPT}} \geq p_k$$

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.

Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\mathsf{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$$

$$T_{\mathsf{OPT}} \geq p_k$$

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$$T_{k} = S_{k} + p_{k}$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$

can we do better?

better?

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

Consider only $J_1, \ldots, J_{\ell}, J_k$:

$$T_{\mathsf{OPT}} \geq p_k$$
.

$$M_4$$
 M_3
 M_3
 M_2
 M_3
 M_4
 M_5
 M_5
 M_6
 M_7
 M_8
 M_8
 M_9
 M_9

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^m p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$
can we do

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

Consider only $J_1, \ldots, J_{\ell}, J_k$:

$$T_{\mathsf{OPT}} \geq p_k \cdot \left(1 + \left| \frac{\ell}{m} \right| \right)$$

$$M_4$$
 J_1 M_3 J_2 J_5 M_2 J_3 J_k M_1 J_4 J_6 S_k $T_k = \text{Makespan}_{\mathcal{A}_{\ell}}$

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$$T_{k} = S_{k} + p_{k}$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$

can we do better?

better?

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+rac{1-rac{1}{m}}{1+\left|rac{\ell}{m}
ight|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

 $T_k = S_k + p_k$

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\mathsf{OPT}} \geq p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor\right)$$
 one machine has this many jobs*

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$
can we do

$$M_4$$
 J_1 M_3 J_2 J_5 M_2 J_3 J_4 J_6 S_k $T_k = \text{Makespan}_{\mathcal{A}_\ell}$

better?

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\mathsf{OPT}} \geq p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor \right)$$
 one machine has this many jobs*

- lacksquare on average, each machine has more than $rac{\ell}{m}$ of the $\ell+1$ jobs
- at least one machine achieves the average

$$M_4$$
 J_1 M_3 J_2 J_5 M_2 M_3 J_4 J_6 S_k $T_k = \text{Makespan}_{\mathcal{A}_{\ell}}$

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$
can we do

can we do

better?

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\mathsf{OPT}} \geq p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right
floor
ight) egin{array}{c} \mathsf{one} \ \mathsf{machine} \ \mathsf{has} \ \mathsf{this} \ \mathsf{many} \ \mathsf{jobs}^\star \ \mathsf{each} \ \mathsf{has} \ \mathsf{length} \geq p_k \end{array}$$

- lacksquare on average, each machine has more than $rac{\ell}{m}$ of the $\ell+1$ jobs
- at least one machine achieves the average

$$M_4$$
 J_1 M_3 J_2 J_5 M_2 M_3 J_4 J_6 S_k $T_k = \text{Makespan}_{\mathcal{A}_{\ell}}$

$$T_{k} = S_{k} + p_{k}$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$

$$\leq T_{OPT} + \left(1 - \frac{1}{m}\right) \cdot T_{OPT}$$

can we do

better?

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\mathsf{OPT}} \geq p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor \right) \ ext{one machine has this many jobs}^\star \ ext{ each has length} \geq p_k$$

- lacksquare on average, each machine has more than $rac{\ell}{m}$ of the $\ell+1$ jobs
- at least one machine achieves the average

$$M_4$$
 M_3
 M_2
 M_2
 M_3
 M_4
 M_5
 M_6
 M_7
 M_8
 M_8
 M_9
 M_9

$$T_{k} = S_{k} + p_{k}$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+rac{1-rac{1}{m}}{1+\left|rac{\ell}{m}\right|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.

Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\mathrm{OPT}} \geq p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right
floor
ight)$$
 one machine has this many jobs* each has length $\geq p_k$

- lacksquare on average, each machine has more than $rac{\ell}{m}$ of the $\ell+1$ jobs
- at least one machine achieves the average

$$M_4$$
 J_1 M_3 J_2 J_5 M_2 J_3 J_4 J_6 S_k $T_k = \text{Makespan}_{\mathcal{A}_{\ell}}$

$$T_{k} = S_{k} + p_{k}$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$

$$\leq T_{\text{OPT}} + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|} \cdot T_{\text{OPT}}$$

Discussion

- Only "easy" NP-hard problems admit FPTAS (PTAS).
- Some problems cannot be approximated very well (e.g., Maximum Clique).
- Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.

Discussion

- Only "easy" NP-hard problems admit FPTAS (PTAS).
- Some problems cannot be approximated very well (e.g., Maximum Clique).
- Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.
- Approximation algorithms exist also for non-NP-hard problems
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
- One important technique is LP-relaxation (next lecture).

Discussion

- Only "easy" NP-hard problems admit FPTAS (PTAS).
- Some problems cannot be approximated very well (e.g., Maximum Clique).
- Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.
- Approximation algorithms exist also for non-NP-hard problems
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
- One important technique is LP-relaxation (next lecture).
- Minimum Vertex Coloring on planar graphs can be approximated with an additive approximation guarantee of 2.
- Christofides' approximation algorithm for Metric TSP has approximation factor 1.5.

Approximation

Literature

Main references

- [Jansen & Margraf, 2008: Ch3] "Approximative Algorithmen und Nichtapproximierbarkeit"
- [Williamson & Shmoys, 2011: Ch3] "The Design of Approximation Algorithms"

Another book recommendation:

■ [Vazirani, 2013] "Approximation Algorithms"

