Julius-Maximilians-
UNIVERSITAT
WURZBURG

Advanced Algorithms
Exact Algorithms for NP-hard Problems

TRAVELING SALESMAN PROBLEM and MAXIMAL INDEPENDENT SET

Diana Sieper - WS22

B
A
| |
T .

Examples of NP-hard Problems

Many important (practical) problems are NP-hard, for example ...

Examples of NP-hard Problems

Many important (practical) problems are NP-hard, for example ...

E se=

|
M3 |

My |

TSP MIS Bin Packing Scheduling

Examples of NP-hard Problems

Many important (practical) problems are NP-hard, for example ...

TSP

(x1 V xo V —IX4)/\
(—lx2 V x3V —lX4)/\
(x3 V x7V —xg)A

SAT Graph Drawing

I\/l I S . .
(303 (383 (RER L2 {2
(343 (363 (3i843 £3
(343 (343 e Ye (3
£
(343 Gam aoo o &
1e’ Vel=ite Yo e 34 &3
36 8 O B4 363 &3
£343 24 3 s¥ets 34 &3
B8 0 8 O BRLEY R &
i e 3
X 3% B% i 3
38 92086 ® O O g &3
£ € 3 3
! {2 Lala {2
(303 f{atais IO & (i &
3L Lo ¥ 3 B4 3
v £ (& £
Gl (aials & GG &
e 3
(3 & ’@‘ (3
5 G &
'

My |
My |

Scheduling

Formal View on NP-Hardness

But what does NP-hard/-complete actually mean?

Formal View on NP-Hardness

But what does NP-hard/-complete actually mean?
B NP-hard = non-deterministic polynomial-time hard

Formal View on NP-Hardness

But what does NP-hard/-complete actually mean?
B NP-hard = non-deterministic polynomial-time hard

B A decision problem H is NP-hard when it is “at least as hard as the hardest
problems in NP".

Formal View on NP-Hardness

But what does NP-hard/-complete actually mean?
B NP-hard = non-deterministic polynomial-time hard

B A decision problem H is NP-hard when it is “at least as hard as the hardest
problems in NP".

B or: There is a polynomial-time many-one reduction from an NP-hard problem L
to H.

Formal View on NP-Hardness

But what does NP-hard/-complete actually mean?
B NP-hard = non-deterministic polynomial-time hard

B A decision problem H is NP-hard when it is “at least as hard as the hardest
problems in NP".

B or: There is a polynomial-time many-one reduction from an NP-hard problem L
to H.

m If P = NP, then NP-hard problems cannot be solved in polynomial time.

Misconceptions about NP-Hardness

Common misconceptions [Mann "17]
B If similar problems are NP-hard, then the problem at hand is also NP-hard.

Misconceptions about NP-Hardness

Common misconceptions [Mann "17]
B If similar problems are NP-hard, then the problem at hand is also NP-hard.

B Problems that are hard to solve in practice by an engineer are NP-hard.

Misconceptions about NP-Hardness

Common misconceptions [Mann "17]
B If similar problems are NP-hard, then the problem at hand is also NP-hard.

B Problems that are hard to solve in practice by an engineer are NP-hard.

B NP-hard problems cannot be solved optimally.

Misconceptions about NP-Hardness

Common misconceptions [Mann "17]
B If similar problems are NP-hard, then the problem at hand is also NP-hard.

B Problems that are hard to solve in practice by an engineer are NP-hard.

B NP-hard problems cannot be solved optimally.

B NP-hard problems cannot be solved more efficiently than by exhaustive search.

Misconceptions about NP-Hardness

Common misconceptions [Mann "17]
B If similar problems are NP-hard, then the problem at hand is also NP-hard.

B Problems that are hard to solve in practice by an engineer are NP-hard.

B NP-hard problems cannot be solved optimally.
B NP-hard problems cannot be solved more efficiently than by exhaustive search.

B For solving NP-hard problems, the only practical possibility is the use of heu-
ristics.

Dealing with NP-Hard Problems

What should we do?

Dealing with NP-Hard Problems

What should we do?

B Sacrifice optimality for speed
m Heuristics (Simulated Annealing,
Tabu-Search)
m Approximation Algorithms Heuristic Approximation

Christofides-Algorith
(ristorides-Algori m) NP-hard

Dealing with NP-Hard Problems

What should we do?

B Sacrifice optimality for speed
m Heuristics (Simulated Annealing,
Tabu-Search)
m Approximation Algorithms Heuristic Approximation

' ides-Algorith
(Christofides-Algorithm) NP-hard

m Optimal Solutions
m Exact exponential-time algorithms
m Fine-grained analysis —
parameterized algorithms

Exponential EPT

Dealing with NP-Hard Problems

What should we do?

B Sacrifice optimality for speed
m Heuristics (Simulated Annealing,
Tabu-Search)
m Approximation Algorithms Heuristic Approximation

' ides-Algorith
(Christofides-Algorithm) NP-hard

m Optimal Solutions
m Exact exponential-time algorithms

m Fine-grained analysis —
parameterized algorithms
this lecture

Exponential EPT

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Exponential runningtime . ..should we just

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Exponential runningtime . ..should we just

B ...can be “fast” for medium-sized instances:

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Exponential runningtime . ..should we just
B ...can be ‘fast” for medium-sized instances:

B “hidden” constants in polynomial-time
algorithms:

21004 > 27 for 1 < 100

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Exponential runningtime . ..should we just
B ...can be ‘fast” for medium-sized instances:

B “hidden” constants in polynomial-time
algorithms:

21004 > 27 for 1 < 100

Bt > 1.2" for n < 100

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Exponential runningtime . ..should we just
B ...can be ‘fast” for medium-sized instances:

B “hidden” constants in polynomial-time

algorithms:
21003 > 27 for n < 100

Bt > 1.2" for n < 100

m TSP solvable exactly for n < 2000 and
specialized instances with n < 85900

Motivation

Exponential runningtime ... maybe we need

Motivation

Exponential runningtime ... maybe we need ?

M Suppose an algorithm uses a" steps & can solve for a fixed amount of time ¢
Instances up to size ny.

Motivation

Exponential runningtime ... maybe we need ?

M Suppose an algorithm uses a" steps & can solve for a fixed amount of time ¢
Instances up to size ny.

B Improving hardware by a constant factor ¢ only adds a constant (relative to c)
to np:

ny n /
a0 =c-a?’ ~ ng=log,c+ ng

Motivation

Exponential runningtime ... maybe we need ?

M Suppose an algorithm uses a" steps & can solve for a fixed amount of time ¢
Instances up to size ny.

B Improving hardware by a constant factor ¢ only adds a constant (relative to c)
to np:

ny n /
a0 =c-a?’ ~ ng=log,c+ ng

B Reducing the base of the runtime to b < a results in a multiplicative increase:

/
b0 =a" ~» ng=ng-logya

- 10

Motivation

Exponential runningtime ... but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

- 11

Motivation
Exponential runningtime ... but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

m TSP: Bellman-Held-Karp algorithm has running time
O(2"n?) compared to an O(n! - n)-time brute-force search.

- 12

Motivation

Exponential runningtime ... but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

m TSP: Bellman-Held-Karp algorithm has running time

O(2"n?) compared to an O(n! - n)-time brute-force search. O* hides polynomial

~ factors in n (see next slide)

m MIS: algorithm by Tarjan & Trojanowski runs in O*(2"/3)
time compared to a trivial O(n2")-time approach.

Motivation

Exponential runningtime ... but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

m TSP: Bellman-Held-Karp algorithm has running time

O(2"n?) compared to an O(n! - n)-time brute-force search.

—
m MIS: algorithm by Tarjan & Trojanowski runs in O*(2"/3)

time compared to a trivial O(n2")-time approach.

O* hides polynomial
factors in n (see next slide)

B COLORING: Lawler gave an O(n(1+ v/3)") algorithm com-
pared to O (n"*T1)-time brute-force.

Motivation

Exponential runningtime ... but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

m TSP: Bellman-Held-Karp algorithm has running time

O(2"n?) compared to an O(n! - n)-time brute-force search.

i
m MIS: algorithm by Tarjan & Trojanowski runs in O*(2"/3)

time compared to a trivial O(n2")-time approach.

O* hides polynomial
factors in n (see next slide)

B COLORING: Lawler gave an O(n(1+ v/3)") algorithm com-
pared to O (n"*T1)-time brute-force.

B SAT: No better algorithm than trivial brute-force search
known.

O*-Notation

O(1.4" -n) C O(1.5" -n) C O(2")

O*-Notation

O(1.4" -n) C O(1.5" -n) C O(2")

B base of exponential part dominates ~» negligible polynomial factors

O*-Notation

O(1.4" -n) C O(1.5" -n) C O(2")

B base of exponential part dominates ~» negligible polynomial factors

f(n) € O*(g(n)) < 3 polynomial p(n) with f(n) € O(g(n)p(n))

O*-Notation

O(1.4" -n) C O(1.5" -n) C O(2")

B base of exponential part dominates ~» negligible polynomial factors

f(n) € O*(g(n)) < 3 polynomial p(n) with f(n) € O(g(n)p(n))

B typical result

Approach Runtime in O-Notation (O*-Notation
Brute-Force O(2") O*(2")
Algorithm A O(1.5" - n) O*(1.5")
Algorithm B O(1.4" - n?) O*(1.4")

Traveling Salesperson Problem (TSP)

Input. Distinct cities {v1, 0>, ..., vy } with distances d(c;, ¢;) € Q>o;
directed, complete graph G with edge weights d

Traveling Salesperson Problem (TSP)
Input. Distinct cities {v1, 02, ..., v, } with distances d(c;, ¢;) € Q>o;
directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimal total length that
visits all the cities and returns to the starting point;

Frankfurt
am Main

AUSTRIA

0 50 100 km
0 50 100mi

Traveling Salesperson Problem (TSP)

Input. Distinct cities {v1, 02, ..., v, } with distances d(c;, ¢;) € Q>o;
directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimal total length that

visits all the cities and returns to the starting point;
i.e. a Hamiltonian cycle (v (1), -+, Ur(n), V(1)) of G
of minimum weight

Z A(V (i) On(it1)) T A(On(n) On(1))

Wueshan:kn* am Main

Traveling Salesperson Problem (TSP)

Input. Distinct cities {v1, 02, ..., v, } with distances d(c;, ¢;) € Q>o;
directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimal total length that

visits all the cities and returns to the starting point;
i.e. a Hamiltonian cycle (U (1), .-+, Ur(n), V(1)) of G
of minimum weight

Z A(V (i) Vn(it1)) T A (On(n)s On(1))

Wueaha\:]gn* am Main

Brute-force.
B Try all permutations and pick the one with smallest

AUSTRIA *| Welght
Feem | m Runtime: @(n! - n) = n - 29(nlogn)

TSP — Dynamic Programming

Bellman-Held-Karp Algorithm
Idea.

B Reuse optimal substructures with dynamic programming.

Richard E. Bellman

TSP — Dynamic Programming

Bellman-Held-Karp Algorithm
Idea.

B Reuse optimal substructures with dynamic programming.
B Select a starting vertex s € V.

ne

Richard E. Bellman

TSP — Dynamic Programming

Bellman-Held-Karp Algorithm
Idea.

B Reuse optimal substructures with dynamic programming.
B Select a starting vertex s € V.

B Foreach SCV —sanduv €S, let:

OPT|S, v] = length of a shortest s-v-path
that visits precisely the vertices of SU {s}.

Richard E. Bellman

TSP — Dynamic Programming

Bellman-Held-Karp Algorithm
Idea.

B Reuse optimal substructures with dynamic programming.
B Select a starting vertex s € V.

B Foreach SCV —sanduv €S, let:

OPT|S, v] = length of a shortest s-v-path
that visits precisely the vertices of SU {s}.

S
B Use OPT|[S — v, u| to compute OPT|S, v].

Richard E. Bellman

TSP — Dynamic Programming

Details.
B The base case S = {v} is easy: OPT[{v},v| =

10 -

TSP — Dynamic Programming

Details.
B The base case S = {v} is easy: OPT[{v}, v] = d(s,0).

TSP — Dynamic Programming

Details.
B The base case S = {v} is easy: OPT[{v}, v] = d(s,0).
B When |S| > 2, compute OPT|S, v] recursively:

OPT|S, 0] =

10 -

TSP — Dynamic Programming

Details.

B The base case S = {v} is easy: OPT[{v}, v] = d(s,0).

B When |S| > 2, compute O
OPT|S, v] = min{OPT

PT(S, v] recursively:

S —o,u|l+d(u,0) | ueS—v}

TSP — Dynamic Programming

Details.

B The base case S = {v} is easy: OPT[{v}, v] = d(s,0).

B When |S| > 2, compute O
OPT|S, v] = min{OPT

PT(S, v] recursively:

S —o,u|l+d(u,0) | ueS—v}

B After computing OPT|[S, v] for each S C V — s and each
v € V — s, the optimal solution is easily obtained as follows:

OPT=

10 -

TSP — Dynamic Programming

Details.

B The base case S = {v} is easy: OPT[{v}, v] = d(s,0).

B When |S| > 2, compute O
OPT|S, v] = min{OPT

PT(S, v] recursively:

S —o,u|l+d(u,0) | ueS—v}

B After computing OPT|[S, v] for each S C V — s and each
v € V — s, the optimal solution is easily obtained as follows:

OPT= min{OPT|V —5s,0|} +d(v,5) |[v eV —5s}

10 -

TSP — Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V —s do
| OPT[{v},v] =c(s,v)
for j<—2ton—1do
foreach S C V — s with |S| = j do
foreach v € S do
OPT|[S,v] «+ min{ OPT[S — v, u]
L +c(u,v) |lueS—o}

return min{ OPT[V —5,0] +c(v,s) |v e V —s}

11 -

TSP — Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V —s do
| OPT[{v},v] =c(s,v)
for j<—2ton—1do
foreach S C V — s with |S| = j do
foreach v € S do
OPT|[S,v] «+ min{ OPT[S — v, u]
L +c(u,v) |lueS—o}

return min{ OPT[V —5,0] +c(v,s) |v e V —s}

B A shortest tour can be produced by back-
tracking the DP table (as usual).

11 -

TSP — Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V —s do
| OPT[{v},v] =c(s,v)
for j<—2ton—1do
foreach S C V — s with |S| = j do
foreach v € S do
OPT|[S,v] «+ min{ OPT[S — v, u]
L +c(u,v) |lueS—o}

return min{ OPT[V —5,0] +c(v,s) |v e V —s}

B A shortest tour can be produced by back-
tracking the DP table (as usual).

Analysis.

11 -

TSP — Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V —s do
| OPT[{v},v] =c(s,v)
forj<—2ton—1do
foreach S C V — s with |S| = j do
foreach v € S do +O(n)
OPT|S,v] «+ min{ OPT|S — v, u]
L +c(u,v) |lueS—uo}

return min{ OPT[V —5,0] +c(v,s) |v e V —s}

B A shortest tour can be produced by back-
tracking the DP table (as usual).

Analysis.

11 -

11 -

TSP — Dynamic Programming

Pseudocode. Analysis.
Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
| OPT[{v},v] =c(s,v)

for j<~2ton—1do }(9(2”)
foreach S C V — s with |S| =/ do
foreach v € S do +O(n)

L OPTIS, v] < min{ OPTI[S — v, u]
+c(u,v) |lueS—uv}

return min{ OPT[V —s,0] +c(v,s) |v e V —s}

B A shortest tour can be produced by back-
tracking the DP table (as usual).

11 -

TSP — Dynamic Programming

Pseudocode. Analysis.
Algorithm Bellmann-Held-Karp(G, ¢) B innermost loop executes
foreach v € V — s do O(Qn ' 7”1) iterations

| OPT[{v},v] =c(s,v) B each takes O(n) time
}(’)(2”) B total of O(2"n?) = O*(2")

for j<~2ton—1do

foreach S C V — s with |S| =/ do

foreach v € S do +O(n)
OPT|S,v] «+ min{ OPT|S — v, u]

L +c(u,v) |lueS—uv}

return min{ OPT[V —s,0] +c(v,s) |v e V —s}

B A shortest tour can be produced by back-
tracking the DP table (as usual).

TSP — Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do

| OPT[{v},v] =c(s,v)

for j<~2ton—1do }(9(2”)
foreach S C V — s with |S| =/ do
foreach v € S do +O(n)

L OPTIS, v] < min{ OPTI[S — v, u]
+c(u,v) |luesS—uo}

return min{ OPT[V —s,0] +c(v,s) |v e V —s}

B A shortest tour can be produced by back-
tracking the DP table (as usual).

Analysis.
B innermost loop executes

O(2" - n) iterations
B each takes O(n) time
B total of O(2"n?) = O*(2")

B Space usage in ©(2" - n)

11 -

11-8

TSP — Dynamic Programming

Pseudocode. Analysis.
Algorithm Bellmann-Held-Karp(G, ¢) B innermost loop executes
foreach v € V — s do O(2n . Tl) Iiterations
| OPT[{v},v] =c(s,v) B each takes O(n) time
for j < 2ton—1do }(’)(2”) B total of O(2"n2) = O*(2")
foreach S C V — s with |S| =/ do _ ,
foreach v € S do \O(n) ™ Space usage in @(2" - n)
L OPTI[S, v] <= min{ OPTIS —Sv, u] B Or actually better? What table
L o) |2 ES =0 values do we need to store?

return min{ OPT[V —s,0] +c(v,s) |v e V —s}

B A shortest tour can be produced by back-
tracking the DP table (as usual).

TSP — Discussion

B DP algorithm that runs in O*(2") time and O(2" - n) space

nlogn)

B Brute-force runs in 29 time

= Sacrifice space for speedup

12 -

TSP — Discussion

B DP algorithm that runs in O*(2") time and O(2" - n) space

B Brute-force runs in 20(11981) time
= Sacrifice space for speedup

B Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . ..

12 -

TSP — Discussion

B DP algorithm that runs in O*(2") time and O(2" - n) space

B Brute-force runs in 20(11981) time
= Sacrifice space for speedup

B Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . ..

B Metric TSP can easily be 2-approximated. (Do you remember how?)

B Eucledian TSP is considered in the course Approxiomation Algorithms.

12 -

TSP — Discussion

B DP algorithm that runs in O*(2") time and O(2" - n) space

nlogn)

B Brute-force runs in 29 time

= Sacrifice space for speedup
B Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . ..

B Metric TSP can easily be 2-approximated. (Do you remember how?)

B Eucledian TSP is considered in the course Approxiomation Algorithms.

B In practice, one successful approach is to start with a greedily computed Hamiltonian
cycle and then use 2-OPT and 3-OPT swaps to improve it.

12 -

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

13 -

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U C V, such
that no pair of vertices in U are adjacent in G.

13 -

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U C V, such
that no pair of vertices in U are adjacent in G.

Brute-force.
B Try all subets of V.
B Runtime: O(2" - n)

13 -

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U C V, such
that no pair of vertices in U are adjacent in G.

Naive MIS branching.
B Take a vertex v or don't take it.

Brute-force.
B Try all subets of V.
B Runtime: O(2" - n)

13 -

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U C V, such
that no pair of vertices in U are adjacent in G.

Naive MIS branching.
B Take a vertex v or don't take it.

Algorithm NaiveMIS(G)
Brute-force. if V = @ then
B Try all subets of V. | return 0

B Runtime: O(2" - n)

v < arbitrary vertex in V(G)
return max{1+ NaiveMIS(G — N(v) — {v}),
NaiveMIS(G — {v})}

13 -

14 -1

14 - 2

14 -

14 - 10

14 - 11

14 - 12

14 - 13

fmm

3 1+ 7? 1 1+0
|

MIS — Smarter Branching

Lemma.

Let U be a maximum independent set in G. Then
for each v € V:

lL.veU=NwNU=0

2. v¢U=|N(v)nU| >1

Thus, N[v] := N(v) U{v} contains some y € U
and no other vertex of N|y| is in U.

15 -

MIS — Smarter Branching

Lemma.

Let U be a maximum independent set in G. Then
for each v € V:

l.L.velU=NONU=O

2. v¢U=|N(v)nU| >1

Thus, N[v] := N(v) U{v} contains some y € U
and no other vertex of N|y| is in U.

Smarter MIS branching.

B For some vertex v, branch on vertices in N|v|.

15 -

MIS — Smarter Branching

Lemma.

Let U be a maximum independent set in G. Then
for each v € V:

l.L.velU=NONU=O

2. v¢U=|N(v)nU| >1

Thus, N[v] := N(v) U{v} contains some y € U
and no other vertex of N|y| is in U.

Smarter MIS branching.

B For some vertex v, branch on vertices in N|v|.

Algorithm MIS(G)

if V =0 then
L return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — N|y]) | y € N|v]}

15 -

MIS — Smarter Branching

Lemma.

Let U be a maximum independent set in G. Then
for each v € V:

l.L.velU=NONU=O

2. v¢U=|N(v)nU| >1

Thus, N[v] := N(v) U{v} contains some y € U
and no other vertex of N|y| is in U.

Smarter MIS branching.

B For some vertex v, branch on vertices in N|v|.

Algorithm MIS(G)

if V =0 then
L return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — N|y]) | y € N|v]}

15 -

B Correctness follows from
Lemma.

B We prove a runtime of
O*(3"/3) = O*(1.4423").

MIS — Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

/G\

G — N|v1] G — NZ)Q

AN

o l :

%, %,

16 -

MIS — Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

B Let B(n) be the maximum num-

G
ber of leaves of a search tree for a / \

raph with 7 vertices.
Brap G — N U]_ G — N 7)2

J A

N -
N w0
-
-

16 -

MIS — Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

B Let B(n) be the maximum num-

G
ber of leaves of a search tree for a / \

raph with 7 vertices.
Brap G — N U]_ G — N 7)2

M Search-tree has height < n. / \ / \

N -
N w0
-
-

16 -

MIS — Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

B Let B(n) be the maximum num-

G
ber of leaves of a search tree for a / \

raph with 7 vertices.
Brap G — N U]_ G — N 7)2

M Search-tree has height < n.
~» The algorithm’s runtime is / \ / \

T(n) € O"(nB(n)) = O*(B(n)).

N -
N w0
-
-

16 -

MIS — Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

B Let B(n) be the maximum num-

G
ber of leaves of a search tree for a / \

raph with 7 vertices.
Brap G — N U]_ G — N 7)2

M Search-tree has height < n.
~» The algorithm’s runtime is / \ / \
T(n) € O"(nB(n)) = O*(B(n)).

B lLet's consider an example run.

N -
N w0
-
-

16 -

17 -1

17 -2

1+7

1
+2

I
C

17 -

17 -

17 -

17 - 10

17 - 11

17 - 12

17 - 13

17 - 14

17 - 15

17 - 16

17 - 17

17 - 18

17 - 19

17 - 20

17-21

17 - 22

17 - 23

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < Yyenp) B(n — (deg(y) +1))

where v is a minimum degree vertex of G, and we note that
B(n') < B(n) for any n’ < n.

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < ZyGN[v] B(Tl — (deg(y) + 1))

where v is a minimum degree vertex of G, and we note that
B(n') < B(n) for any n’ < n.

18 -

MIS — Runtime Analysis
For a worst-case n-vertex graph G (n > 1):

B(1) < Yyenpy) B(n — (deg(y) +1)) < (deg(v) +1) - B(n — (deg(v) +-1))

where v is a minimum degree vertex of G, and we note that
B(n') < B(n) for any n’ < n.

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Yyenjo) B(n — (deg(y) +1)) < (deg(v) +1) - B(n — (deg(v) +1))

where v is a minimum degree vertex of G, and we note that
B(n') < B(n) for any n’ < n.

We prove by induction that B(n) < 3"/3.

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Yyenjo) B(n — (deg(y) +1)) < (deg(v) +1) - B(n — (deg(v) +1))

where v is a minimum degree vertex of G, and we note that
B(n') < B(n) for any n’ < n.

We prove by induction that B(n) < 3"/3.
B Base case: B(0) =1 < 39/3

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Lyenp) B(n — (deg(y) +1)) < (deg(v) +1) - B(n — (deg(v) +1))
where v is a minimum degree vertex of G, and we note that
B(n') < B(n) for any n’ < n.
We prove by induction that B(n) < 3"/3.
B Base case: B(0) =1 < 39/3

B Hypothesis: for n > 1, set s = deg(v) + 1
In the above inequality

B(n) <s-B(n—s)

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Lyenp) B(n — (deg(y) +1)) < (deg(v) +1) - B(n — (deg(v) +1))
where v is a minimum degree vertex of G, and we note that
B(n') < B(n) for any n’ < n.
We prove by induction that B(n) < 3"/3.
B Base case: B(0) =1 < 39/3

B Hypothesis: for n > 1, set s = deg(v) + 1
In the above inequality

B(n) <s-B(n—s)<s- 3(n—s)/3

18 -

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Lyenp) B(n — (deg(y) +1)) < (deg(v) +1) - B(n — (deg(v) +1))
where v is a minimum degree vertex of G, and we note that
B(n') < B(n) for any n’ < n.
We prove by induction that B(n) < 3"/3.
B Base case: B(0) =1 < 39/3

B Hypothesis: for n > 1, set s = deg(v) + 1
In the above inequality

B(n) <s-B(n—s) <s-30179)/3 = _5..31/3

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Yyenp) B(n — (deg(y) +1)) < (deg(v) +1) - B(n — (deg(v) +1))
where v is a minimum degree vertex of G, and we note that
B(n') < B(n) for any n’ < n.
We prove by induction that B(n) < 3"/3.

B Base case: B(0) =1 < 39/3

B Hypothesis: for n > 1, set s = deg(v) + 1
In the above inequality

B(n) < S‘B(Tl—S) < 5,3(11—5)/3 — # .31”1/3 < 311/3

18 -

18- 10

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Yyenjo) B(n — (deg(y) +1)) < (deg(v) +1) - B(n — (deg(v) +1))

where v is a minimum degree vertex of G, and we note that
B(n') < B(n) for any n’ < n.

We prove by induction that B(n) < 3"/3.
B Base case: B(0) =1 < 39/3 Lo} —

7 ~.
B Hypothesis: forn > 1, set s = deg(v) 41 N _;’/ .
in the above inequality -/
B(n) <s-B(n—s) <s-30179)/3 = _£_.31/3 < 3n/3 ,f
5+ o=

18- 11

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(1) < Yyenpy) B(n — (deg(y) +1)) < (deg(v) +1) - B(n — (deg(v) +-1))

where v is a minimum degree vertex of G, and we note that
B(n') < B(n) for any n’ < n.

We prove by induction that B(n) < 3"/3.
B Base case: B(0) =1 < 39/3 Lo} —

| - ~
B Hypothesis: for n > 1, set s = deg(v) 11 N _,f’/ U
in the above inequality -/
B(n) <s-B(n—s)<s- 3(n=s)/3 — # .31/3 < 3n/3 | J,

B(n) € O*(¥/3") C O*(1.44225™) ; S 3573

MIS — Discussion

B Smarter branching leads to O*(1.44225")-time algorithm,

B compared to brute-force, which runs in O*(2") time.

19 -

MIS — Discussion

B Smarter branching leads to O*(1.44225")-time algorithm,

B compared to brute-force, which runs in O*(2") time.

B Algorithms for MIS known that run in O*(1.2202") time and
polynomial space,

B and in O*(1.2109") time and exponential space.

19 -

MIS — Discussion

Smarter branching leads to O*(1.44225™)-time algorithm,

compared to brute-force, which runs in O*(2") time.

Algorithms for MIS known that run in O*(1.2202") time and
polynomial space,

and in O*(1.2109") time and exponential space.

What vertices are always in a MIS? <
o

What vertices can we savely assume are in a MIS?

Advanced case analysis in [Fomin, Kratsch Ch 2.3] leading to a
O*(1.2786")-time algorithm.

19 -

MIS — Discussion

B Smarter branching leads to O*(1.44225")-time algorithm,

compared to brute-force, which runs in O*(2") time.

Algorithms for MIS known that run in O*(1.2202") time and
polynomial space,

and in O*(1.2109") time and exponential space.

What vertices are always in a MIS? <
o

What vertices can we savely assume are in a MIS?

Advanced case analysis in [Fomin, Kratsch Ch 2.3] leading to a
O*(1.2786")-time algorithm.

B Exercise: Edge-branching for MIS

19 -

| iterature

Main source:
B [Fomin, Kratsch Ch1] “Exact Exponential Algorithms”
Referenced papers:

ADMYV '15] Classic Nintendo Games are (Computationally) Hard

Mann '17] The Top Eight Misconceptions about NP-Hardness

	Title page
	NP-hardness
	Examples
	Formal view
	Misconceptions
	Dealing with NP-Hard Problems

	Motivation for exact algorithms
	Give up? Better Hardware?
	O*-notation

	Traveling Salesperson Problem (TSP)
	Definition & Brute-force
	Dynamic programming idea
	Dynamic programming details
	DP pseudocode & analysis
	Discussion

	Maximum Independent Set (MIS)
	Definition & Brute-force
	Naive branching example
	Smarter branching
	Branching analysis
	Smarter branching example
	Smater branching analysis
	Discussion

	Literature

