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Formal View on NP-Hardness

But what does NP-hard/-complete actually mean?
B NP-hard = non-deterministic polynomial-time hard

B A decision problem H is NP-hard when it is “at least as hard as the hardest
problems in NP".

B or: There is a polynomial-time many-one reduction from an NP-hard problem L
to H.

m If P = NP, then NP-hard problems cannot be solved in polynomial time.
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Misconceptions about NP-Hardness

Common misconceptions [Mann "17]
B If similar problems are NP-hard, then the problem at hand is also NP-hard.

B Problems that are hard to solve in practice by an engineer are NP-hard.

B NP-hard problems cannot be solved optimally.
B NP-hard problems cannot be solved more efficiently than by exhaustive search.

B For solving NP-hard problems, the only practical possibility is the use of heu-
ristics.
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Dealing with NP-Hard Problems

What should we do?

B Sacrifice optimality for speed
m Heuristics (Simulated Annealing,
Tabu-Search)
m Approximation Algorithms Heuristic Approximation

' ides-Algorith
(Christofides-Algorithm) NP-hard

m Optimal Solutions
m Exact exponential-time algorithms

m Fine-grained analysis —
parameterized algorithms
this lecture

Exponential EPT
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efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Exponential runningtime . ..should we just
B ...can be ‘fast” for medium-sized instances:

B “hidden” constants in polynomial-time

algorithms:
21003 > 27 for n < 100

Bt > 1.2" for n < 100

m TSP solvable exactly for n < 2000 and
specialized instances with n < 85900
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Motivation

Exponential runningtime ... maybe we need ?

M Suppose an algorithm uses a" steps & can solve for a fixed amount of time ¢
Instances up to size ny.

B Improving hardware by a constant factor ¢ only adds a constant (relative to c)
to np:

ny n /
a0 =c-a?’ ~ ng=log,c+ ng

B Reducing the base of the runtime to b < a results in a multiplicative increase:

/
b0 =a" ~» ng=ng-logya

- 10
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Motivation

Exponential runningtime ... but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

m TSP: Bellman-Held-Karp algorithm has running time

O(2"n?) compared to an O(n! - n)-time brute-force search.

i
m MIS: algorithm by Tarjan & Trojanowski runs in O*(2"/3)

time compared to a trivial O(n2")-time approach.

O* hides polynomial
factors in n (see next slide)

B COLORING: Lawler gave an O(n(1+ v/3)") algorithm com-
pared to O (n"*T1)-time brute-force.

B SAT: No better algorithm than trivial brute-force search
known.
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O*-Notation

O(1.4" -n) C O(1.5" -n) C O(2")

B base of exponential part dominates ~» negligible polynomial factors

f(n) € O*(g(n)) < 3 polynomial p(n) with f(n) € O(g(n)p(n))

B typical result

Approach Runtime in O-Notation (O*-Notation
Brute-Force  O(2") O*(2")
Algorithm A O(1.5" - n) O*(1.5")
Algorithm B O(1.4" - n?) O*(1.4")
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Traveling Salesperson Problem (TSP)

Input.  Distinct cities {v1, 02, ..., v, } with distances d(c;, ¢;) € Q>o;
directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimal total length that

visits all the cities and returns to the starting point;
i.e. a Hamiltonian cycle (U (1), .-+, Ur(n), V(1)) of G
of minimum weight

Z A(V (i) Vn(it1)) T A (On(n)s On(1))

Wueaha\:]gn* am Main

Brute-force.
B Try all permutations and pick the one with smallest

AUSTRIA *| Welght
Feem | m Runtime: @(n! - n) = n - 29(nlogn)
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TSP — Dynamic Programming

Bellman-Held-Karp Algorithm
Idea.

B Reuse optimal substructures with dynamic programming.
B Select a starting vertex s € V.

B Foreach SCV —sanduv €S, let:

OPT|S, v] = length of a shortest s-v-path
that visits precisely the vertices of SU {s}.

S
B Use OPT|[S — v, u| to compute OPT|S, v].

Richard E. Bellman
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TSP — Dynamic Programming

Details.

B The base case S = {v} is easy: OPT[{v}, v] = d(s,0).

B When |S| > 2, compute O
OPT|S, v] = min{OPT

PT(S, v] recursively:

S —o,u|l+d(u,0) | ueS—v}

B After computing OPT|[S, v] for each S C V — s and each
v € V — s, the optimal solution is easily obtained as follows:

OPT= min{OPT|V —5s,0|} +d(v,5) |[v eV —5s}

10 -
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Pseudocode.
Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V —s do
| OPT[{v},v] =c(s,v)
for j<—2ton—1do
foreach S C V — s with |S| = j do
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Pseudocode. Analysis.
Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
| OPT[{v},v] =c(s,v)

for j<~2ton—1do }(9(2”)
foreach S C V — s with |S| =/ do
foreach v € S do +O(n)

L OPTIS, v] < min{ OPTI[S — v, u]
+c(u,v) |lueS—uv}

return min{ OPT[V —s,0] +c(v,s) |v e V —s}

B A shortest tour can be produced by back-
tracking the DP table (as usual).
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Pseudocode.
Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do

| OPT[{v},v] =c(s,v)

for j<~2ton—1do }(9(2”)
foreach S C V — s with |S| =/ do
foreach v € S do +O(n)

L OPTIS, v] < min{ OPTI[S — v, u]
+c(u,v) |luesS—uo}

return min{ OPT[V —s,0] +c(v,s) |v e V —s}

B A shortest tour can be produced by back-
tracking the DP table (as usual).

Analysis.
B innermost loop executes

O(2" - n) iterations
B each takes O(n) time
B total of O(2"n?) = O*(2")

B Space usage in ©(2" - n)

11 -
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TSP — Dynamic Programming

Pseudocode. Analysis.
Algorithm Bellmann-Held-Karp(G, ¢) B innermost loop executes
foreach v € V — s do O(2n . Tl) Iiterations
| OPT[{v},v] =c(s,v) B each takes O(n) time
for j < 2ton—1do }(’)(2”) B total of O(2"n2) = O*(2")
foreach S C V — s with |S| =/ do _ ,
foreach v € S do \O(n) ™ Space usage in @(2" - n)
L OPTI[S, v] <= min{ OPTIS —Sv, u] B Or actually better? What table
L o) |2 ES =0 values do we need to store?

return min{ OPT[V —s,0] +c(v,s) |v e V —s}

B A shortest tour can be produced by back-
tracking the DP table (as usual).
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TSP — Discussion

B DP algorithm that runs in O*(2") time and O(2" - n) space

nlogn)

B Brute-force runs in 29 time

= Sacrifice space for speedup
B Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . ..

B Metric TSP can easily be 2-approximated. (Do you remember how?)

B Eucledian TSP is considered in the course Approxiomation Algorithms.

B In practice, one successful approach is to start with a greedily computed Hamiltonian
cycle and then use 2-OPT and 3-OPT swaps to improve it.

12 -
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Maximum Independent Set (MIS)

Input.  Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U C V, such
that no pair of vertices in U are adjacent in G.

Naive MIS branching.
B Take a vertex v or don't take it.

Algorithm NaiveMIS(G)
Brute-force. if V = @ then
B Try all subets of V. | return 0

B Runtime: O(2" - n)

v < arbitrary vertex in V(G)
return max{1+ NaiveMIS(G — N(v) — {v}),
NaiveMIS(G — {v})}
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MIS — Smarter Branching

Lemma.

Let U be a maximum independent set in G. Then
for each v € V:

lL.veU=NwNU=0

2. v¢U=|N(v)nU| >1

Thus, N[v] := N(v) U{v} contains some y € U
and no other vertex of N|y| is in U.
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Thus, N[v] := N(v) U{v} contains some y € U
and no other vertex of N|y| is in U.

Smarter MIS branching.

B For some vertex v, branch on vertices in N|v|.

Algorithm MIS(G)

if V =0 then
L return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — N|y]) | y € N|v]}
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B Correctness follows from
Lemma.

B We prove a runtime of
O*(3"/3) = O*(1.4423").



MIS — Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

/G\

G — N|v1] G — NZ)Q
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o l :

%, %,
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B Let B(n) be the maximum num-

G
ber of leaves of a search tree for a / \

raph with 7 vertices.
Brap G — N U]_ G — N 7)2
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What vertices are always in a MIS? <
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What vertices can we savely assume are in a MIS?

Advanced case analysis in [Fomin, Kratsch Ch 2.3] leading to a
O*(1.2786")-time algorithm.

B Exercise: Edge-branching for MIS
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