
1

Advanced Algorithms

Push–Relabel Algorithm
Maximum Flow Problem

Alexander Wolff · WS 2022

ts

a

b

t

c

d

/12

/9

/14

/7/4

/20

/13

s
/16

/4

0 0

12

11

7
11

19

12

4

2 - 1

Flow Networks

a

b

t

c

d

s

2 - 2

Flow Networks

A flow network G = (V, E) is a digraph (short for “directed graph”) with
� unique source s and sink t,
� no antiparallel edges, and
� a capacity c(u, v) ≥ 0 for every (u, v) ∈ E.

a

b

t

c

d

s

2 - 3

Flow Networks

A flow network G = (V, E) is a digraph (short for “directed graph”) with
� unique source s and sink t,
� no antiparallel edges, and
� a capacity c(u, v) ≥ 0 for every (u, v) ∈ E.

a

b

t

c

d

s

2 - 4

Flow Networks

A flow network G = (V, E) is a digraph (short for “directed graph”) with
� unique source s and sink t,
� no antiparallel edges, and
� a capacity c(u, v) ≥ 0 for every (u, v) ∈ E.

a

b

t

c

d

s

2 - 5

Flow Networks

A flow network G = (V, E) is a digraph (short for “directed graph”) with
� unique source s and sink t,
� no antiparallel edges, and
� a capacity c(u, v) ≥ 0 for every (u, v) ∈ E.

a

b

t

c

d

s

/12

/9

/14

/7/4

/20

/13

/16

/4

3 - 1

Flow

An s–t flow in G is a real-valued function f : V ×V → R that satisfies
� flow conservation,

∑
v∈V

f (v, u) = ∑
v∈V

f (u, v) for all u ∈ V \ {s, t}, and

� capacity constraint, 0 ≤ f (u, v) ≤ c(u, v).

a

b

t

c

d

/12

/9

/14

/7/4

/20

/13

s 1
8

4

12

11

7

15
/16

11

/4
4

3 - 2

Flow

An s–t flow in G is a real-valued function f : V ×V → R that satisfies
� flow conservation,

∑
v∈V

f (v, u) = ∑
v∈V

f (u, v) for all u ∈ V \ {s, t}, and

� capacity constraint, 0 ≤ f (u, v) ≤ c(u, v).

a

b

t

c

d

/12

/9

/14

/7/4

/20

/13

s 1
8

4

12

11

7

15
/16

11

/4
4

3 - 3

Flow

An s–t flow in G is a real-valued function f : V ×V → R that satisfies
� flow conservation,

∑
v∈V

f (v, u) = ∑
v∈V

f (u, v) for all u ∈ V \ {s, t}, and

� capacity constraint, 0 ≤ f (u, v) ≤ c(u, v).

a

b

t

c

d

/12

/9

/14

/7/4

/20

/13

s 1
8

4

12

11

7

15
/16

11

/4
4

3 - 4

Flow

An s–t flow in G is a real-valued function f : V ×V → R that satisfies
� flow conservation,

∑
v∈V

f (v, u) = ∑
v∈V

f (u, v) for all u ∈ V \ {s, t}, and

� capacity constraint, 0 ≤ f (u, v) ≤ c(u, v).

a

b

t

c

d

/12

/9

/14

/7/4

/20

/13

s 1
8

4

12

11

7

15
/16

11

/4
4

The value | f | of an s–t flow f is defined as

| f | = ∑
v∈V

f (s, v)− ∑
v∈V

f (v, s).

3 - 5

Flow

An s–t flow in G is a real-valued function f : V ×V → R that satisfies
� flow conservation,

∑
v∈V

f (v, u) = ∑
v∈V

f (u, v) for all u ∈ V \ {s, t}, and

� capacity constraint, 0 ≤ f (u, v) ≤ c(u, v).

a

b

t

c

d

/12

/9

/14

/7/4

/20

/13

s 1
8

4

12

11

7

15
/16

11

/4
4

The value | f | of an s–t flow f is defined as

| f | = ∑
v∈V

f (s, v)− ∑
v∈V

f (v, s).

| f | = 19

3 - 6

Flow

An s–t flow in G is a real-valued function f : V ×V → R that satisfies
� flow conservation,

∑
v∈V

f (v, u) = ∑
v∈V

f (u, v) for all u ∈ V \ {s, t}, and

� capacity constraint, 0 ≤ f (u, v) ≤ c(u, v).

a

b

t

c

d

/12

/9

/14

/7/4

/20

/13

s 1
8

4

12

11

7

15
/16

11

/4
4

The value | f | of an s–t flow f is defined as

| f | = ∑
v∈V

f (s, v)− ∑
v∈V

f (v, s).

| f | = 19

Maximum flow problem.
Given a flow network G
with source s and sink t,
find an s–t flow of
maximum value.

3 - 7

Flow

An s–t flow in G is a real-valued function f : V ×V → R that satisfies
� flow conservation,

∑
v∈V

f (v, u) = ∑
v∈V

f (u, v) for all u ∈ V \ {s, t}, and

� capacity constraint, 0 ≤ f (u, v) ≤ c(u, v).

a

b

t

c

d

/12

/9

/14

/7/4

/20

/13

s
/16

/4

The value | f | of an s–t flow f is defined as

| f | = ∑
v∈V

f (s, v)− ∑
v∈V

f (v, s).

0 0

12

11

7

| f | = 23

11

19

12

4

Maximum flow problem.
Given a flow network G
with source s and sink t,
find an s–t flow of
maximum value.

4 - 1

By How Much May Flow Change?

a b

c

/52

4 - 2

By How Much May Flow Change?

Given G and f , the residual capacity c f for a pair u, v ∈ V is

a b

c f (u, v) =

c(u, v)− f (u, v) if (u, v) ∈ E
f (v, u) if (v, u) ∈ E
0 otherwise.

c

c f (a, b) = 3

c f (b, a) = 2

c f (a, c) = 0

/52

4 - 3

By How Much May Flow Change?

Given G and f , the residual capacity c f for a pair u, v ∈ V is

a b

c f (u, v) =

c(u, v)− f (u, v) if (u, v) ∈ E
f (v, u) if (v, u) ∈ E
0 otherwise.

c

c f (a, b) = 3

c f (b, a) = 2

c f (a, c) = 0

/52 a b

c

/3

/2

5 - 1

Residual Networks & Augmenting Paths

The residual network G f = (V, E f) for a flow network G with s–t flow f has

� E f = {(u, v) ∈ V ×V | c f (u, v) > 0}.

5 - 2

Residual Networks & Augmenting Paths

The residual network G f = (V, E f) for a flow network G with s–t flow f has

� E f = {(u, v) ∈ V ×V | c f (u, v) > 0}.

a

b

t

c

d

s

flow/capacity c f (u, v) =

c(u, v)− f (u, v) if (u, v) ∈ E
f (v, u) if (v, u) ∈ E
0 otherwise.

/12

/9

/14

/7/4

/20

/13

1
8

4

12

11

7

15
/16

11

/4
4

5 - 3

Residual Networks & Augmenting Paths

The residual network G f = (V, E f) for a flow network G with s–t flow f has

� E f = {(u, v) ∈ V ×V | c f (u, v) > 0}.

a

b

t

c

d

s

a

b

t

c

d

s

flow/capacity c f (u, v) =

c(u, v)− f (u, v) if (u, v) ∈ E
f (v, u) if (v, u) ∈ E
0 otherwise.

/12

/9

/14

/7/4

/20

/13

1
8

4

12

11

7

15
/16

11

/4
4

5 - 4

Residual Networks & Augmenting Paths

The residual network G f = (V, E f) for a flow network G with s–t flow f has

� E f = {(u, v) ∈ V ×V | c f (u, v) > 0}.

a

b

t

c

d

s

a

b

t

c

d

s

non-satured edges

/5
/3

/3

/5 /5

flow/capacity

/c f

/5

c f (u, v) =

c(u, v)− f (u, v) if (u, v) ∈ E
f (v, u) if (v, u) ∈ E
0 otherwise.

/12

/9

/14

/7/4

/20

/13

1
8

4

12

11

7

15
/16

11

/4
4

5 - 5

Residual Networks & Augmenting Paths

reverse edges

The residual network G f = (V, E f) for a flow network G with s–t flow f has

� E f = {(u, v) ∈ V ×V | c f (u, v) > 0}.

/7

/11

/12

/4

/11

/1

/8 /4

/15a

b

t

c

d

s

a

b

t

c

d

s

non-satured edges

/5
/3

/3

/5 /5

flow/capacity

/c f

/5

c f (u, v) =

c(u, v)− f (u, v) if (u, v) ∈ E
f (v, u) if (v, u) ∈ E
0 otherwise.

/12

/9

/14

/7/4

/20

/13

1
8

4

12

11

7

15
/16

11

/4
4

5 - 6

Residual Networks & Augmenting Paths

reverse edges

The residual network G f = (V, E f) for a flow network G with s–t flow f has

� E f = {(u, v) ∈ V ×V | c f (u, v) > 0}.

/7

/11

/12

/4

/11

/1

/8 /4

/15a

b

t

c

d

s

a

b

t

c

d

s

non-satured edges

/5
/3

/3

/5 /5

flow/capacity

/c f

/5

c f (u, v) =

c(u, v)− f (u, v) if (u, v) ∈ E
f (v, u) if (v, u) ∈ E
0 otherwise.

/12

/9

/14

/7/4

/20

/13

1
8

4

12

11

7

15
/16

11

/4
4

An augmenting path is an st-path in G f .

5 - 7

Residual Networks & Augmenting Paths

reverse edges

The residual network G f = (V, E f) for a flow network G with s–t flow f has

� E f = {(u, v) ∈ V ×V | c f (u, v) > 0}.

/7

/11

/12

/4

/11

/1

/8 /4

/15a

b

t

c

d

s

a

b

t

c

d

s

non-satured edges

/5
/3

/3

/5 /5

flow/capacity

/c f

/5

c f (u, v) =

c(u, v)− f (u, v) if (u, v) ∈ E
f (v, u) if (v, u) ∈ E
0 otherwise.

/12

/9

/14

/7/4

/20

/13

1

12

11

7

/16
11

/4
4

An augmenting path is an st-path in G f . ⇒ use to increase f

12
0

19

6 - 1

The Algorithms of Ford–Fulkerson and Edmonds–Karp

FordFulkerson(G = (V, E), c, s, t)
foreach uv ∈ E do

fuv ← 0

while G f contains augmenting path p do
∆← minuv∈p c f (uv)
foreach uv ∈ p do

if uv ∈ E then
fuv ← fuv + ∆

else
fvu ← fvu − ∆

return f

}
initialising zero flow

} return max flow

} residual capacity of paugmentation along p

6 - 2

The Algorithms of Ford–Fulkerson and Edmonds–Karp

FordFulkerson(G = (V, E), c, s, t)
foreach uv ∈ E do

fuv ← 0

while G f contains augmenting path p do
∆← minuv∈p c f (uv)
foreach uv ∈ p do

if uv ∈ E then
fuv ← fuv + ∆

else
fvu ← fvu − ∆

return f

}
initialising zero flow

} return max flow

} residual capacity of paugmentation along p

EdmondsKarp

shortest

6 - 3

The Algorithms of Ford–Fulkerson and Edmonds–Karp

FordFulkerson(G = (V, E), c, s, t)
foreach uv ∈ E do

fuv ← 0

while G f contains augmenting path p do
∆← minuv∈p c f (uv)
foreach uv ∈ p do

if uv ∈ E then
fuv ← fuv + ∆

else
fvu ← fvu − ∆

return f

}
initialising zero flow

} return max flow

} residual capacity of paugmentation along p

EdmondsKarp

shortest

� Ford–Fulkerson runs in O(|E| · | f ?|) and Edmonds–Karp in O(|V| · |E|2) time.

7 - 1

The Max-Flow Min-Cut Theorem

a

b

t

c

d

s

/14

/7/4

/20

/13

1
8

4

11

7

15
/16

11

/4
4

/9

12/12

7 - 2

The Max-Flow Min-Cut Theorem

a

b

t

c

d

/12

/9

/14

/7/4

/20

/13

s
/16

/4

0 0

12

11

7

| f | = 23

11

19

12

4

7 - 3

The Max-Flow Min-Cut Theorem

a

b

t

c

d

/12

/9

/14

/7/4

/20

/13

s
/16

/4

0 0

12

11

7

| f | = 23

11

19

12

4

Theorem.
For an s–t flow f in a flow network G,
the following conditions are equivalent:
� f is a maximum s–t flow in G.
� G f contains no augmenting paths.

� | f | = c(S, T), which is the capacity of
some s–t cut (S, T) of G.

8 - 1

The Push–Relabel Idea

8 - 2

The Push–Relabel Idea

8 - 3

The Push–Relabel Idea

8 - 4

The Push–Relabel Idea

8 - 5

The Push–Relabel Idea

8 - 6

The Push–Relabel Idea

8 - 7

The Push–Relabel Idea

t
s

8 - 8

The Push–Relabel Idea

t
s

a

b

c

d
/40

/20

/60/50/50

/90

/70

/80

8 - 9

The Push–Relabel Idea

t
s

a

b

c

d
/4

/2

/6/50/50

/9

/7

/8

9

8
0

0

0

0

8 - 10

The Push–Relabel Idea

t
s

a

b

c

d
/4

/2

/6/50/50

/9

/7

/8

9

0

0

0

0

8
0

0

0

0

8 - 11

The Push–Relabel Idea

t
s

a

b

c

d
/4

/2

/6/50/50

/9

/7

/8

9

8

0

0
0

0

8
0

0

0

0

8 - 12

The Push–Relabel Idea

t
s

a

b

c

d
/4

/2

/6/50/50

/9

/7

/88

7

0
0

9

0

8 - 13

The Push–Relabel Idea

t
s

a

b

c

d
/4

/2

/6/50/50

/9

/7

/88

7

0

0
0

9

8 - 14

The Push–Relabel Idea

t
s

a

b

c

d
/4

/2

/6/50/50

/9

/7

/88

7

4

0

00

9

8 - 15

The Push–Relabel Idea

t
s

a

b

c

d
/4

/2

/6/50/50

/9

/7

/88

7

4

0

2

9

8 - 16

The Push–Relabel Idea

t
s

a

b

c

d
/4

/2

/6/50/50

/9

/7

/88

7

0

2
2

9

8 - 17

The Push–Relabel Idea

t
s

a

b

c

d
/4

/2

/6/50/50

/9

/7

/88

7

2
2

6

9

8 - 18

The Push–Relabel Idea

2 t
s

a

b

c

d
/4

/2

/6/50/50

/9

/7

/88

7

6

7

2

9 - 1

Preflow, Excess Flow, and Height

A preflow in G is a real-value function f : V ×V → R that
satisfies the capacity constraint and, for each u ∈ V \ {s},
� ∑

v∈V
f (v, u)− ∑

v∈V
f (u, v) ≥ 0. u /12

/42

10
/16

11

9 - 2

Preflow, Excess Flow, and Height

A preflow in G is a real-value function f : V ×V → R that
satisfies the capacity constraint and, for each u ∈ V \ {s},
� ∑

v∈V
f (v, u)− ∑

v∈V
f (u, v) ≥ 0. u /12

/42

10
/16

11

The excess flow of a vertex u is
� e(u) = ∑

v∈V
f (v, u)− ∑

v∈V
f (u, v). e(u) = 3

9 - 3

Preflow, Excess Flow, and Height

A preflow in G is a real-value function f : V ×V → R that
satisfies the capacity constraint and, for each u ∈ V \ {s},
� ∑

v∈V
f (v, u)− ∑

v∈V
f (u, v) ≥ 0. u /12

/42

10
/16

11

The excess flow of a vertex u is
� e(u) = ∑

v∈V
f (v, u)− ∑

v∈V
f (u, v). e(u) = 3

A vertex u is called overflowing, when e(u) > 0.

9 - 4

Preflow, Excess Flow, and Height

A preflow in G is a real-value function f : V ×V → R that
satisfies the capacity constraint and, for each u ∈ V \ {s},
� ∑

v∈V
f (v, u)− ∑

v∈V
f (u, v) ≥ 0. u /12

/42

10
/16

11

The excess flow of a vertex u is
� e(u) = ∑

v∈V
f (v, u)− ∑

v∈V
f (u, v). e(u) = 3

For a flow network G with preflow f , a height function is a
function h : V →N such that
� h(s) = |V|,
� h(t) = 0, and
� h(u) ≤ h(v) + 1 for every residual edge (u, v) ∈ E f .

A vertex u is called overflowing, when e(u) > 0.

10 - 1

The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

10 - 2

The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

u
/62

/2
e(u) = 5

h(u) = 4

e(v) = 1

h(v) = 3

Example.

v

10 - 3

The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

u
/62

/2
e(u) = 5

h(u) = 4

e(v) = 1

h(v) = 3

∆ = 4

Example.

Push(u, v)

v

10 - 4

The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

u
/62

/2
e(u) = 5

h(u) = 4

e(v) = 1

h(v) = 3

∆ = 4

Example.

Push(u, v)

v

10 - 5

The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

u
/62

/2
u

/6
v

e(u) = 5

h(u) = 4

e(v) = 1

h(v) = 3

∆ = 4

Example.

Push(u, v)

v

10 - 6

The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

u
/62

/2
u

/6
v

e(u) = 5

h(u) = 4

e(v) = 1

h(v) = 3

∆ = 4

Example.

Push(u, v)

v

10 - 7

The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

u
/62

/2
u

/66
v

/6
e(u) = 5

h(u) = 4

e(v) = 1

h(v) = 3

∆ = 4

Example.

Push(u, v)

v

10 - 8

The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

u
/62

/2
u

/66
v

/6
e(u) = 5

h(u) = 4

e(v) = 1

h(v) = 3

∆ = 4

Example.

Push(u, v)

Example.

v

10 - 9

The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

u
/62

/2
u

/66
v

/6
e(u) = 5

h(u) = 4

e(v) = 1

h(v) = 3

∆ = 4

e(u) = 1 e(v) = 5

Example.

Push(u, v)

h(u) = 4 h(v) = 3

Example.

v

11 - 1

The Relabel Operation

Relabel(u)

Condition: u is overflowing and h(u) ≤ h(v) for every v ∈ V with (u, v) ∈ E f
Effect: Increase the height of u
h(u)← 1 + min{h(v) : v ∈ V with (u, v) ∈ E f }

11 - 2

The Relabel Operation

Relabel(u)

Condition: u is overflowing and h(u) ≤ h(v) for every v ∈ V with (u, v) ∈ E f
Effect: Increase the height of u
h(u)← 1 + min{h(v) : v ∈ V with (u, v) ∈ E f }

u

e(u) = 5
h(u) = 4

Example.

v

x

y

z

/13
13

/55
/73

/31
h(v) = 1 h(z) = 6

h(x) = 9
h(y) = 5

11 - 3

The Relabel Operation

Relabel(u)

Condition: u is overflowing and h(u) ≤ h(v) for every v ∈ V with (u, v) ∈ E f
Effect: Increase the height of u
h(u)← 1 + min{h(v) : v ∈ V with (u, v) ∈ E f }

u

e(u) = 5
h(u) = 4

Example.

v

x

y

z

/13
13

/55
/73

/31
h(v) = 1 h(z) = 6

h(x) = 9
h(y) = 5

Relabel(u)

11 - 4

The Relabel Operation

Relabel(u)

Condition: u is overflowing and h(u) ≤ h(v) for every v ∈ V with (u, v) ∈ E f
Effect: Increase the height of u
h(u)← 1 + min{h(v) : v ∈ V with (u, v) ∈ E f }

u

e(u) = 5
h(u) = 4

Example.

v

x

y

z

/13
13

/55
/73

/31
h(v) = 1 h(z) = 6

h(x) = 9
h(y) = 5

Relabel(u)
u

e(u) = 5

v

x

y

z

/13
13

/55
/73

/31
h(v) = 1 h(z) = 6

h(x) = 9
h(y) = 5

11 - 5

The Relabel Operation

Relabel(u)

Condition: u is overflowing and h(u) ≤ h(v) for every v ∈ V with (u, v) ∈ E f
Effect: Increase the height of u
h(u)← 1 + min{h(v) : v ∈ V with (u, v) ∈ E f }

u

e(u) = 5
h(u) = 4

Example.

v

x

y

z

/13
13

/55
/73

/31
h(v) = 1 h(z) = 6

h(x) = 9
h(y) = 5

Relabel(u)
u

e(u) = 5
h(u) = 6

v

x

y

z

/13
13

/55
/73

/31
h(v) = 1 h(z) = 6

h(x) = 9
h(y) = 5

12 - 1

The Push-Relabel Algorithm

Push-Relabel(G)

InitPreflow(G, s)
while ∃ applicable Push or Relabel operation x do

apply x

12 - 2

The Push-Relabel Algorithm

Push-Relabel(G)

InitPreflow(G, s)
while ∃ applicable Push or Relabel operation x do

apply x

InitPreflow(G, s)

foreach v ∈ V do h(v)← 0; e(v)← 0
h(s)← |V|
foreach (u, v) ∈ E do f (u, v)← 0
foreach v such that (s, v) ∈ E do

f (s, v)← c(s, v)
e(v)← c(s, v)

12 - 3

The Push-Relabel Algorithm

Push-Relabel(G)

InitPreflow(G, s)
while ∃ applicable Push or Relabel operation x do

apply x

InitPreflow(G, s)

foreach v ∈ V do h(v)← 0; e(v)← 0
h(s)← |V|
foreach (u, v) ∈ E do f (u, v)← 0
foreach v such that (s, v) ∈ E do

f (s, v)← c(s, v)
e(v)← c(s, v)

� initializes heights
� pushes max flow over every edge

that leaves s

13 - 1

Correctness

Part 1.
If the algorithm terminates, the preflow is a maximum flow.

� If an overflowing vertex exists, the algorithm can continue.

� The algorithm maintains f as a preflow and h as a height function.

� The sink t is not reachable from source s in G f .

13 - 2

Correctness

Part 1.
If the algorithm terminates, the preflow is a maximum flow.

� If an overflowing vertex exists, the algorithm can continue.

� The algorithm maintains f as a preflow and h as a height function.

� The sink t is not reachable from source s in G f .

Part 2.
The algorithm terminates and the heights stay finite.

� Find upper bound on heights.

� Find upper bound for the number of calls to Relabel.

� Find upper bound for the number of calls to Push.

14 - 1

Continuation

Lemma 1.
If a vertex u is overflowing, either a push or
a relabel operation applies to u.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

14 - 2

Continuation

Lemma 1.
If a vertex u is overflowing, either a push or
a relabel operation applies to u.

Proof.
Assuming h(u) is valid, we have
� h(u) ≤ h(v) + 1 for all v with (u, v) ∈ E f .

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

14 - 3

Continuation

Lemma 1.
If a vertex u is overflowing, either a push or
a relabel operation applies to u.

Proof.
Assuming h(u) is valid, we have
� h(u) ≤ h(v) + 1 for all v with (u, v) ∈ E f .

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

If no push operation is valid for (u, v) ∈ E f , then

� h(u) ≤ h(v) for all v with (u, v) ∈ E f .

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

14 - 4

Continuation

Lemma 1.
If a vertex u is overflowing, either a push or
a relabel operation applies to u.

Proof.
Assuming h(u) is valid, we have
� h(u) ≤ h(v) + 1 for all v with (u, v) ∈ E f .

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

If no push operation is valid for (u, v) ∈ E f , then

� h(u) ≤ h(v) for all v with (u, v) ∈ E f .

Therefore, Relabel(u) is applicable.

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

15 - 1

Maintaining the Preflow

Lemma 2.
The push-relabel algorithm maintains a
preflow f .

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

15 - 2

Maintaining the Preflow

Lemma 2.
The push-relabel algorithm maintains a
preflow f .

Proof.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

� InitPreflow initialises a preflow f . X

� Relabel(u) doesn’t affect f . X

� Push(u, v) maintains f as a preflow. X

16 - 1

Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

16 - 2

Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

16 - 3

Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

16 - 4

Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:

� If (v, u) is added to E f , then

h(v) = h(u)− 1 < h(u) + 1.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

16 - 5

Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:

� If (v, u) is added to E f , then

h(v) = h(u)− 1 < h(u) + 1.

� If (u, v) is removed from E f , then X.

X

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

16 - 6

Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:

� Under Relabel(u), h remains a height function:

� If (v, u) is added to E f , then

h(v) = h(u)− 1 < h(u) + 1.

� If (u, v) is removed from E f , then X.

� (u, v) ∈ E f , then h(u) ≤ h(v) + 1

� (w, u) ∈ E f , then h(w) < h(u) + 1

X

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

16 - 7

Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:

� Under Relabel(u), h remains a height function:

� If (v, u) is added to E f , then

h(v) = h(u)− 1 < h(u) + 1.

� If (u, v) is removed from E f , then X.

� (u, v) ∈ E f , then h(u) ≤ h(v) + 1

� (w, u) ∈ E f , then h(w) < h(u) + 1

X

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

X

17 - 1

Reachability of the Sink

Lemma 4.
During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

17 - 2

Reachability of the Sink

Lemma 4.
During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Proof.
Suppose there is a path s = v0, v1, . . . , vk = t in G f .
Then

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

17 - 3

Reachability of the Sink

Lemma 4.
During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Proof.
Suppose there is a path s = v0, v1, . . . , vk = t in G f .
Then

� (vi, vi+1) ∈ E f for 0 ≤ i ≤ k− 1, and

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

17 - 4

Reachability of the Sink

Lemma 4.
During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Proof.
Suppose there is a path s = v0, v1, . . . , vk = t in G f .
Then

� (vi, vi+1) ∈ E f for 0 ≤ i ≤ k− 1, and

� h(vi) ≤ h(vi+1) + 1 for 0 ≤ i ≤ k− 1.

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

17 - 5

Reachability of the Sink

Lemma 4.
During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Proof.
Suppose there is a path s = v0, v1, . . . , vk = t in G f .
Then

� (vi, vi+1) ∈ E f for 0 ≤ i ≤ k− 1, and

� h(vi) ≤ h(vi+1) + 1 for 0 ≤ i ≤ k− 1.

⇒ h(s) ≤ h(t) + k = k

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

17 - 6

Reachability of the Sink

Lemma 4.
During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Proof.
Suppose there is a path s = v0, v1, . . . , vk = t in G f .
Then

� (vi, vi+1) ∈ E f for 0 ≤ i ≤ k− 1, and

� h(vi) ≤ h(vi+1) + 1 for 0 ≤ i ≤ k− 1.

⇒ h(s) ≤ h(t) + k = k

But since k < |V|, it follows that h(s) < |V|. 7

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

18 - 1

Correctness of the Algorithm (Part I)

Theorem 5.
When the push–relabel algorithm terminates,
the computed preflow f is a maximum flow.

18 - 2

Correctness of the Algorithm (Part I)

Theorem 5.
When the push–relabel algorithm terminates,
the computed preflow f is a maximum flow.

Proof.
� By Lemma 1, the algorithm stops

when there is no overflowing vertex.

� By Lemma 2, f is a preflow.

18 - 3

Correctness of the Algorithm (Part I)

Theorem 5.
When the push–relabel algorithm terminates,
the computed preflow f is a maximum flow.

Proof.
� By Lemma 1, the algorithm stops

when there is no overflowing vertex.

� By Lemma 2, f is a preflow.

⇒ f is a flow.

18 - 4

Correctness of the Algorithm (Part I)

Theorem 5.
When the push–relabel algorithm terminates,
the computed preflow f is a maximum flow.

Proof.
� By Lemma 1, the algorithm stops

when there is no overflowing vertex.

� By Lemma 2, f is a preflow.

⇒ f is a flow.

� By Lemma 3, h is a height function.

� So by Lemma 4, there is no s–t path in G f .

18 - 5

Correctness of the Algorithm (Part I)

Theorem 5.
When the push–relabel algorithm terminates,
the computed preflow f is a maximum flow.

Proof.
� By Lemma 1, the algorithm stops

when there is no overflowing vertex.

� By Lemma 2, f is a preflow.

⇒ f is a flow.

� By Lemma 3, h is a height function.

� So by Lemma 4, there is no s–t path in G f .

⇒ By the Max-Flow Min-Cut Theorem,
the flow f is a maximum flow.

19 - 1

Correctness

Part 1.
If the algorithm terminates, the preflow is maximum flow.

� If an overflowing vertex exists, the algorithm can continue.

� The algorithm maintains f as a preflow and h as a height function.

� Sink t is not reachable from source s in G f .

X

19 - 2

Correctness

Part 1.
If the algorithm terminates, the preflow is maximum flow.

� If an overflowing vertex exists, the algorithm can continue.

� The algorithm maintains f as a preflow and h as a height function.

� Sink t is not reachable from source s in G f .

Part 2.
The algorithm terminates and the heights stay finite.

� Find upper bound on heights.

� Find upper bound for the number of calls to Relabel.

� Find upper bound for the number of calls to Push.

X

20 - 1

Reachability of the Source in the Residual Graph

Lemma 6.
For every overflowing vertex v,
there is a path from v to s in G f .

20 - 2

Reachability of the Source in the Residual Graph

Lemma 6.
For every overflowing vertex v,
there is a path from v to s in G f .

Proof.
� Sv ← set of vertices reachable from v in G f .

� Suppose that s 6∈ Sv.

� Since f is a preflow and s 6∈ Sv, we have ∑
w∈Sv

e(w) ≥ 0.

� Since v ∈ Sv, we even have ∑
w∈Sv

e(w) > 0.

� There is an edge (u, w) with u 6∈ Sv, w ∈ Sv and f (u, w) > 0.

� But then c f (w, u) > 0, meaning u is reachable from v. 7

v

s Sv

e(v) > 0

20 - 3

Reachability of the Source in the Residual Graph

Lemma 6.
For every overflowing vertex v,
there is a path from v to s in G f .

Proof.
� Sv ← set of vertices reachable from v in G f .

� Suppose that s 6∈ Sv.

� Since f is a preflow and s 6∈ Sv, we have ∑
w∈Sv

e(w) ≥ 0.

� Since v ∈ Sv, we even have ∑
w∈Sv

e(w) > 0.

� There is an edge (u, w) with u 6∈ Sv, w ∈ Sv and f (u, w) > 0.

� But then c f (w, u) > 0, meaning u is reachable from v. 7

v

s Sv

e(v) > 0

20 - 4

Reachability of the Source in the Residual Graph

Lemma 6.
For every overflowing vertex v,
there is a path from v to s in G f .

Proof.
� Sv ← set of vertices reachable from v in G f .

� Suppose that s 6∈ Sv.

� Since f is a preflow and s 6∈ Sv, we have ∑
w∈Sv

e(w) ≥ 0.

� Since v ∈ Sv, we even have ∑
w∈Sv

e(w) > 0.

� There is an edge (u, w) with u 6∈ Sv, w ∈ Sv and f (u, w) > 0.

� But then c f (w, u) > 0, meaning u is reachable from v. 7

v

s Sv

e(v) > 0

20 - 5

Reachability of the Source in the Residual Graph

Lemma 6.
For every overflowing vertex v,
there is a path from v to s in G f .

Proof.
� Sv ← set of vertices reachable from v in G f .

� Suppose that s 6∈ Sv.

� Since f is a preflow and s 6∈ Sv, we have ∑
w∈Sv

e(w) ≥ 0.

� Since v ∈ Sv, we even have ∑
w∈Sv

e(w) > 0.

� There is an edge (u, w) with u 6∈ Sv, w ∈ Sv and f (u, w) > 0.

� But then c f (w, u) > 0, meaning u is reachable from v. 7

v

s Sv

e(v) > 0

w
u

f (u, w) >
0

20 - 6

Reachability of the Source in the Residual Graph

Lemma 6.
For every overflowing vertex v,
there is a path from v to s in G f .

Proof.
� Sv ← set of vertices reachable from v in G f .

� Suppose that s 6∈ Sv.

� Since f is a preflow and s 6∈ Sv, we have ∑
w∈Sv

e(w) ≥ 0.

� Since v ∈ Sv, we even have ∑
w∈Sv

e(w) > 0.

� There is an edge (u, w) with u 6∈ Sv, w ∈ Sv and f (u, w) > 0.

� But then c f (w, u) > 0, meaning u is reachable from v. 7

v

s Sv

e(v) > 0

w
u

f (u, w) >
0

c f(w
, u) >

0

21 - 1

Upper Bounds on the Height and #Relabel Operations

Lemma 7.
During the push–relabel algorithm,
we have h(v) ≤ 2|V| − 1 for all v ∈ V.

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

21 - 2

Upper Bounds on the Height and #Relabel Operations

Lemma 7.
During the push–relabel algorithm,
we have h(v) ≤ 2|V| − 1 for all v ∈ V.

Proof.
� Statement holds after initialisation.

� Let v be an overflowing vertex that is relabeled.

� By Lemma 6, there is a path v = v0, v1, . . . , vk = s in G f .

� Then h(vi) ≤ h(vi+1) + 1 for 0 ≤ i ≤ k− 1.

� Since k ≤ |V| − 1, we have h(v) ≤ h(s) + k ≤ 2|V| − 1.

v

s Sv

e(v) > 0

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

21 - 3

Upper Bounds on the Height and #Relabel Operations

Lemma 7.
During the push–relabel algorithm,
we have h(v) ≤ 2|V| − 1 for all v ∈ V.

Proof.
� Statement holds after initialisation.

� Let v be an overflowing vertex that is relabeled.

� By Lemma 6, there is a path v = v0, v1, . . . , vk = s in G f .

� Then h(vi) ≤ h(vi+1) + 1 for 0 ≤ i ≤ k− 1.

� Since k ≤ |V| − 1, we have h(v) ≤ h(s) + k ≤ 2|V| − 1.

v

s Sv

e(v) > 0v1

v2

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

21 - 4

Upper Bounds on the Height and #Relabel Operations

Lemma 7.
During the push–relabel algorithm,
we have h(v) ≤ 2|V| − 1 for all v ∈ V.

Proof.
� Statement holds after initialisation.

� Let v be an overflowing vertex that is relabeled.

� By Lemma 6, there is a path v = v0, v1, . . . , vk = s in G f .

� Then h(vi) ≤ h(vi+1) + 1 for 0 ≤ i ≤ k− 1.

� Since k ≤ |V| − 1, we have h(v) ≤ h(s) + k ≤ 2|V| − 1.

v

s Sv

e(v) > 0v1

v2

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

21 - 5

Upper Bounds on the Height and #Relabel Operations

Lemma 7.
During the push–relabel algorithm,
we have h(v) ≤ 2|V| − 1 for all v ∈ V.

Proof.
� Statement holds after initialisation.

� Let v be an overflowing vertex that is relabeled.

� By Lemma 6, there is a path v = v0, v1, . . . , vk = s in G f .

� Then h(vi) ≤ h(vi+1) + 1 for 0 ≤ i ≤ k− 1.

� Since k ≤ |V| − 1, we have h(v) ≤ h(s) + k ≤ 2|V| − 1.

v

s Sv

e(v) > 0v1

v2

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

21 - 6

Upper Bounds on the Height and #Relabel Operations

Lemma 7.
During the push–relabel algorithm,
we have h(v) ≤ 2|V| − 1 for all v ∈ V.

Proof.
� Statement holds after initialisation.

� Let v be an overflowing vertex that is relabeled.

� By Lemma 6, there is a path v = v0, v1, . . . , vk = s in G f .

� Then h(vi) ≤ h(vi+1) + 1 for 0 ≤ i ≤ k− 1.

� Since k ≤ |V| − 1, we have h(v) ≤ h(s) + k ≤ 2|V| − 1.

v

s Sv

e(v) > 0v1

v2Corollary 8.
The push–relabel algorithm executes
at most 2|V|2 Relabel operations.

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

22 - 1

Saturating and Unsaturating Push Operations

� saturating if afterwards c f (u, v) = 0,

The operation Push(u, v) is

22 - 2

Saturating and Unsaturating Push Operations

u
/62

v

� saturating if afterwards c f (u, v) = 0,

The operation Push(u, v) is

22 - 3

Saturating and Unsaturating Push Operations

u
/62

∆ = 4

Push(u, v)
v

� saturating if afterwards c f (u, v) = 0,

The operation Push(u, v) is

22 - 4

Saturating and Unsaturating Push Operations

u
/62

∆ = 4

Push(u, v)
v u

/66
v

� saturating if afterwards c f (u, v) = 0,

The operation Push(u, v) is

22 - 5

Saturating and Unsaturating Push Operations

u
/62

∆ = 4

Push(u, v)
v u

/66
v

� saturating if afterwards c f (u, v) = 0,

� and unsaturating otherwise.

The operation Push(u, v) is

22 - 6

Saturating and Unsaturating Push Operations

u
/62

∆ = 4

Push(u, v)
v u

/66
v

u
/62

v

� saturating if afterwards c f (u, v) = 0,

� and unsaturating otherwise.

The operation Push(u, v) is

22 - 7

Saturating and Unsaturating Push Operations

u
/62

∆ = 4

Push(u, v)
v u

/66
v

u
/62

∆ = 2

Push(u, v)
v

� saturating if afterwards c f (u, v) = 0,

� and unsaturating otherwise.

The operation Push(u, v) is

22 - 8

Saturating and Unsaturating Push Operations

u
/62

∆ = 4

Push(u, v)
v u

/66
v

u
/62

∆ = 2

Push(u, v)
v u

/64
v

� saturating if afterwards c f (u, v) = 0,

� and unsaturating otherwise.

The operation Push(u, v) is

23 - 1

Upper Bound on the Number of Saturating Push Operations

Lemma 9.
The push–relabel algorithm executes
at most 2|V| · |E| saturating Push operations.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

23 - 2

Upper Bound on the Number of Saturating Push Operations

Lemma 9.
The push–relabel algorithm executes
at most 2|V| · |E| saturating Push operations.

Proof.
� Consider saturating Push(u, v)
� h(u) = h(v) + 1

� For another saturating Push(u, v), first Push(v, u) necessary
� h(v) = h(u) + 1 necessary

� After another saturating Push(u, v),
both h(u) and h(v) have increased by at least two.

� But by Lemma 6, h(u) ≤ 2|V| − 1 and h(v) ≤ 2|V| − 1.

� There are at most 2|V| − 1 saturated Push operations for edge (u, v).

Push(u, v)
. . .

Push(v, u)
. . .

Push(u, v)
. . .

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

23 - 3

Upper Bound on the Number of Saturating Push Operations

Lemma 9.
The push–relabel algorithm executes
at most 2|V| · |E| saturating Push operations.

Proof.
� Consider saturating Push(u, v)
� h(u) = h(v) + 1

� For another saturating Push(u, v), first Push(v, u) necessary
� h(v) = h(u) + 1 necessary

� After another saturating Push(u, v),
both h(u) and h(v) have increased by at least two.

� But by Lemma 6, h(u) ≤ 2|V| − 1 and h(v) ≤ 2|V| − 1.

� There are at most 2|V| − 1 saturated Push operations for edge (u, v).

Push(u, v)
. . .

Push(v, u)
. . .

Push(u, v)
. . .

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

23 - 4

Upper Bound on the Number of Saturating Push Operations

Lemma 9.
The push–relabel algorithm executes
at most 2|V| · |E| saturating Push operations.

Proof.
� Consider saturating Push(u, v)
� h(u) = h(v) + 1

� For another saturating Push(u, v), first Push(v, u) necessary
� h(v) = h(u) + 1 necessary

� After another saturating Push(u, v),
both h(u) and h(v) have increased by at least two.

� But by Lemma 6, h(u) ≤ 2|V| − 1 and h(v) ≤ 2|V| − 1.

� There are at most 2|V| − 1 saturated Push operations for edge (u, v).

Push(u, v)
. . .

Push(v, u)
. . .

Push(u, v)
. . .

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

23 - 5

Upper Bound on the Number of Saturating Push Operations

Lemma 9.
The push–relabel algorithm executes
at most 2|V| · |E| saturating Push operations.

Proof.
� Consider saturating Push(u, v)
� h(u) = h(v) + 1

� For another saturating Push(u, v), first Push(v, u) necessary
� h(v) = h(u) + 1 necessary

� After another saturating Push(u, v),
both h(u) and h(v) have increased by at least two.

� But by Lemma 6, h(u) ≤ 2|V| − 1 and h(v) ≤ 2|V| − 1.

� There are at most 2|V| − 1 saturated Push operations for edge (u, v).

Push(u, v)
. . .

Push(v, u)
. . .

Push(u, v)
. . .

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

23 - 6

Upper Bound on the Number of Saturating Push Operations

Lemma 9.
The push–relabel algorithm executes
at most 2|V| · |E| saturating Push operations.

Proof.
� Consider saturating Push(u, v)
� h(u) = h(v) + 1

� For another saturating Push(u, v), first Push(v, u) necessary
� h(v) = h(u) + 1 necessary

� After another saturating Push(u, v),
both h(u) and h(v) have increased by at least two.

� But by Lemma 6, h(u) ≤ 2|V| − 1 and h(v) ≤ 2|V| − 1.

� There are at most 2|V| − 1 saturated Push operations for edge (u, v).

Push(u, v)
. . .

Push(v, u)
. . .

Push(u, v)
. . .

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

24 - 1

Upper Bound on the Number of Unsaturating Push Ops

Lemma 10.
The push–relabel algorithm executes at
most 4|V|2 · |E| unsaturating Push ops.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

24 - 2

Upper Bound on the Number of Unsaturating Push Ops

Lemma 10.
The push–relabel algorithm executes at
most 4|V|2 · |E| unsaturating Push ops.

Proof.
� Consider H = ∑

v∈V\{s,t},
v overflowing

h(v).

� After initialization and at the end H = 0.

� A saturating Push increases H by at most 2|V| − 1.

� By Lemma 9, all saturating Push operations increase H by at most
(2|V| − 1) · 2|V| · |E|.

� By Lemma 7, all Relabel operations increase H by at most (2|V| − 1) · |V|.
� An unsaturating Push(u, v) decreases H by at least 1 since h(u)− h(v) ≥ 1.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

24 - 3

Upper Bound on the Number of Unsaturating Push Ops

Lemma 10.
The push–relabel algorithm executes at
most 4|V|2 · |E| unsaturating Push ops.

Proof.
� Consider H = ∑

v∈V\{s,t},
v overflowing

h(v).

� After initialization and at the end H = 0.

� A saturating Push increases H by at most 2|V| − 1.

� By Lemma 9, all saturating Push operations increase H by at most
(2|V| − 1) · 2|V| · |E|.

� By Lemma 7, all Relabel operations increase H by at most (2|V| − 1) · |V|.
� An unsaturating Push(u, v) decreases H by at least 1 since h(u)− h(v) ≥ 1.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

24 - 4

Upper Bound on the Number of Unsaturating Push Ops

Lemma 10.
The push–relabel algorithm executes at
most 4|V|2 · |E| unsaturating Push ops.

Proof.
� Consider H = ∑

v∈V\{s,t},
v overflowing

h(v).

� After initialization and at the end H = 0.

� A saturating Push increases H by at most 2|V| − 1.

� By Lemma 9, all saturating Push operations increase H by at most
(2|V| − 1) · 2|V| · |E|.

� By Lemma 7, all Relabel operations increase H by at most (2|V| − 1) · |V|.
� An unsaturating Push(u, v) decreases H by at least 1 since h(u)− h(v) ≥ 1.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

24 - 5

Upper Bound on the Number of Unsaturating Push Ops

Lemma 10.
The push–relabel algorithm executes at
most 4|V|2 · |E| unsaturating Push ops.

Proof.
� Consider H = ∑

v∈V\{s,t},
v overflowing

h(v).

� After initialization and at the end H = 0.

� A saturating Push increases H by at most 2|V| − 1.

� By Lemma 9, all saturating Push operations increase H by at most
(2|V| − 1) · 2|V| · |E|.

� By Lemma 7, all Relabel operations increase H by at most (2|V| − 1) · |V|.
� An unsaturating Push(u, v) decreases H by at least 1 since h(u)− h(v) ≥ 1.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

25

Termination of the Algorithm

Theorem 11.
The push–relabel algorithm terminates after
O(|V|2|E|) valid Push or Relabel ops.

Proof.
� Follows by Corollary 8 and Lemmas 9+10.

Theorem 5.
When the push–relabel algorithm terminates,
the computed preflow f is a maximum flow.

26

Implementation

The actual running time depends on the selection order of the overflowing vertices:

� FIFO implementation:
Pick overflowing vertex by first-in-first-out principle: O(|V|3) running time.

with dynamic trees: O(|V||E| log |V|
2

|E|)

� Highest label:

For Push select highest overflowing vertex: O(|V|2|E| 12)

� Excess scaling:
For Push(u, v) choose edge (u, v) such that u is overflowing, e(u) is sufficiently
high and e(v) sufficiently small : O(|E|+ |V|2 log C), where C = max

(u,v)∈E
c(u, v)

27

Discussion

� The push–relabel method offers an alternative framework to the Ford–Fulkerson
method to develop algorithms that solve the maximum flow problem.

� Push–relabel algorithms are regarded as benchmarks for maximum flow algorithms.

� In practice, heuristics are used to improve the performance of push–relabel algo-
rithms. Any ideas?

� The algorithm can be extended to solve the minimum-cost flow problem.

28

Literature

Main source:
� [CLRS Ch26] ← Cormen et al. “Introduction to Algorithms”

Original paper:
� [Goldberg, Tarjan ’88] A new approach to the maximum-flow problem

Links:
� Animations of the max-flow algorithms by Ford–Fulkerson and Edmonds–Karp:

https://visualgo.net/en/maxflow

https://visualgo.net/en/maxflow

	Title page
	Flow Networks
	Flow Networks
	Flow

	By How Much May Flow Change?
	By How Much May Flow Change?

	Residual Networks \& Augmenting Paths
	Residual Networks \& Augmenting Paths

	The Algorithms of Ford--Fulkerson and Edmonds--Karp
	The Algorithms of Ford--Fulkerson and Edmonds--Karp

	The Max-Flow Min-Cut Theorem
	The Max-Flow Min-Cut Theorem

	The Push--Relabel Idea
	Preflow, Excess Flow, and Height
	Preflow, Excess Flow, and Height

	The \textsc{Push} Operation
	The \textsc{Push} Operation

	The \textsc{Relabel} Operation
	The \textsc{Relabel} Operation

	The \textsc{Push-Relabel} Algorithm
	Push-relabel correctness
	Plan
	Continuation

	Maintaining the Preflow
	Maintaining the Preflow
	Maintaining the Height Function

	Reachability of the Sink
	Reachability of the Sink

	Correctness of the Algorithm (Part I)
	Correctness of the Algorithm (Part I)

	Reachability of the Source in the Residual Graph
	Reachability of the Source in the Residual Graph

	Upper Bounds on the Height and \#\,\textsc{Relabel} Operations
	Upper Bounds on the Height and \#\,\textsc{Relabel} Operations

	Saturating and Unsaturating \textsc{Push} Operations
	Saturating and Unsaturating \textsc{Push} Operations

	Upper Bound on the Number of Saturating \textsc{Push} Operations
	Upper Bound on the Number of Saturating \textsc{Push} Operations

	Upper Bound on the Number of Unsaturating \textsc{Push} Ops
	Upper Bound on the Number of Unsaturating \textsc{Push} Ops

	Termination of the Algorithm
	Termination of the Algorithm

	Push-relabel implementation
	Discussion
	Literature

