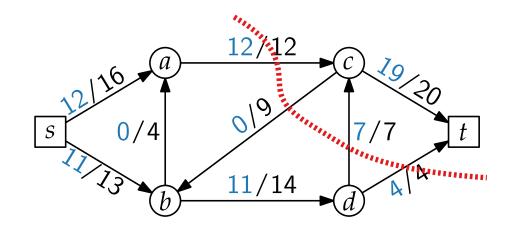
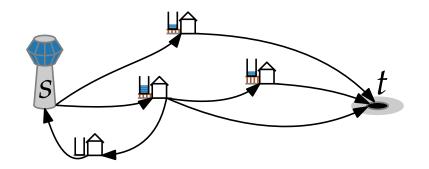
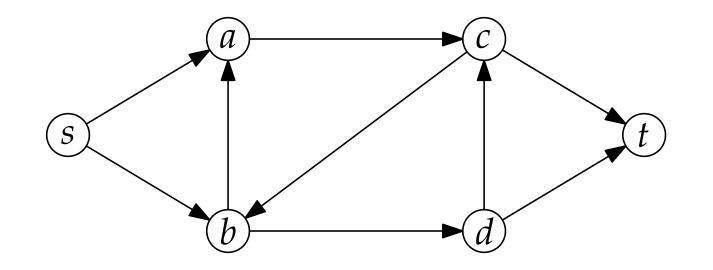


Advanced Algorithms Maximum Flow Problem Push–Relabel Algorithm

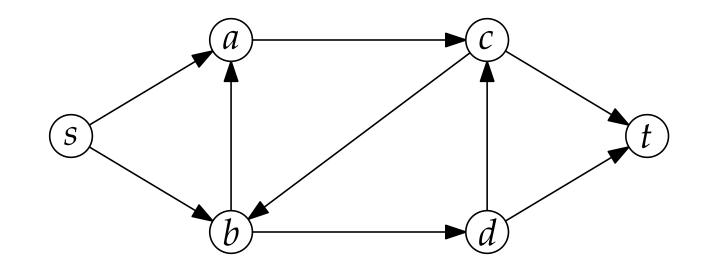
Alexander Wolff \cdot WS 2022



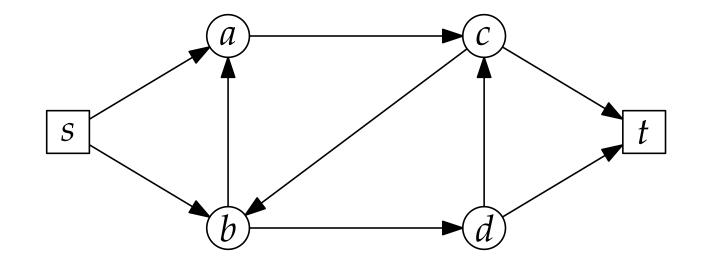




A flow network G = (V, E) is a digraph (short for "directed graph") with

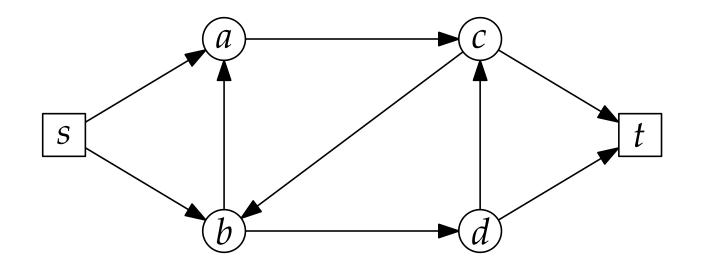


A flow network G = (V, E) is a digraph (short for "directed graph") with unique source s and sink t,



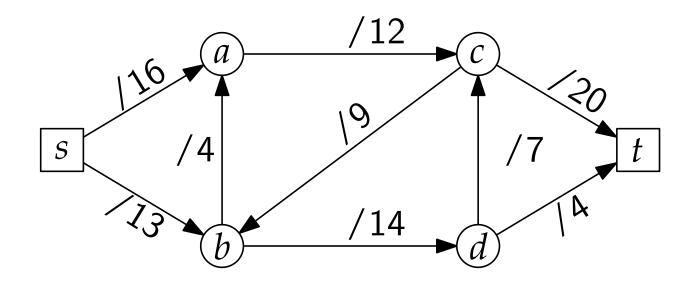
A flow network G = (V, E) is a digraph (short for "directed graph") with unique source s and sink t,

no antiparallel edges, and

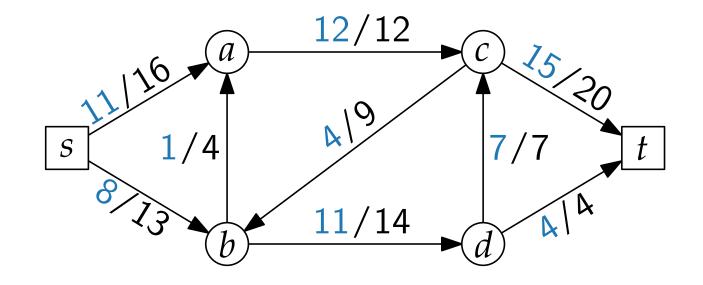


A flow network G = (V, E) is a digraph (short for "directed graph") with unique source s and sink t,

- no antiparallel edges, and
- a capacity $c(u, v) \ge 0$ for every $(u, v) \in E$.

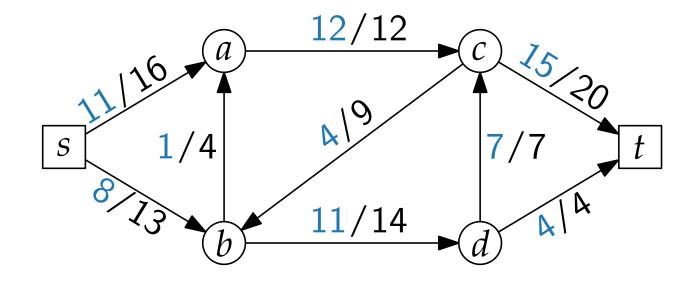


An *s*–*t* flow in *G* is a real-valued function $f: V \times V \rightarrow \mathbb{R}$ that satisfies



An *s*-*t* flow in *G* is a real-valued function $f: V \times V \rightarrow \mathbb{R}$ that satisfies **flow conservation**,

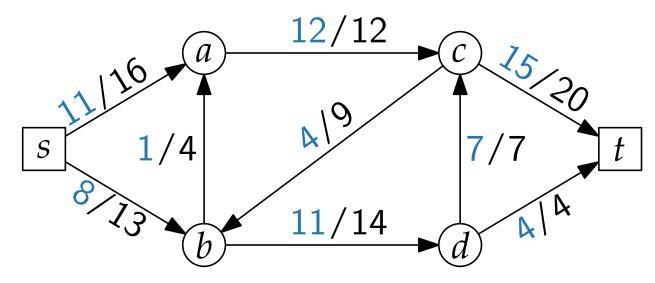
$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \text{ for all } u \in V \setminus \{s, t\}, \text{ and}$$



An *s*-*t* flow in *G* is a real-valued function $f: V \times V \rightarrow \mathbb{R}$ that satisfies **flow conservation**,

 $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \text{ for all } u \in V \setminus \{s, t\}, \text{ and}$

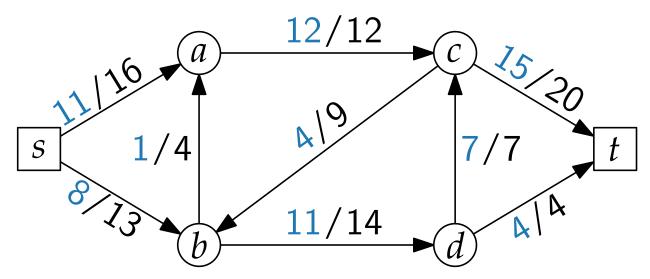
capacity constraint, $0 \le f(u, v) \le c(u, v)$.



An *s*-*t* flow in *G* is a real-valued function $f: V \times V \rightarrow \mathbb{R}$ that satisfies flow conservation,

 $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \text{ for all } u \in V \setminus \{s, t\}, \text{ and}$

capacity constraint, $0 \le f(u, v) \le c(u, v)$.

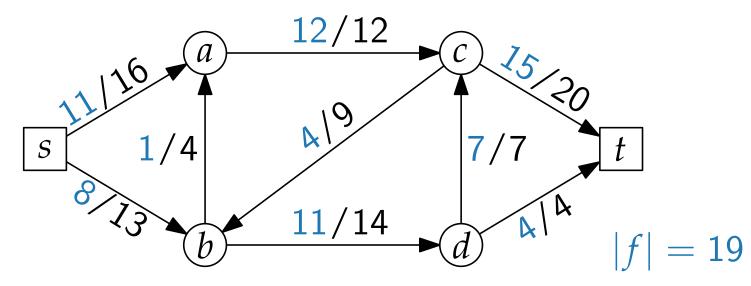


The value |f| of an *s*-*t* flow *f* is defined as $|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s).$

An *s*-*t* flow in *G* is a real-valued function $f: V \times V \rightarrow \mathbb{R}$ that satisfies **flow conservation**,

 $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \text{ for all } u \in V \setminus \{s, t\}, \text{ and}$

capacity constraint, $0 \le f(u, v) \le c(u, v)$.



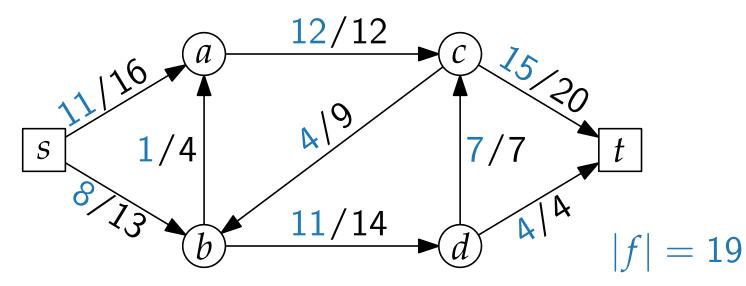
The value |f| of an *s*-*t* flow *f* is defined as

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s).$$

An *s*-*t* flow in *G* is a real-valued function $f: V \times V \rightarrow \mathbb{R}$ that satisfies **flow conservation**,

 $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \text{ for all } u \in V \setminus \{s, t\}, \text{ and}$

capacity constraint, $0 \le f(u, v) \le c(u, v)$.



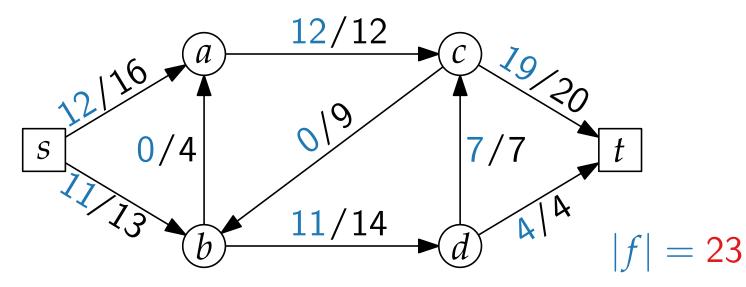
Maximum flow problem. Given a flow network Gwith source s and sink t, find an s-t flow of maximum value.

The value |f| of an *s*-*t* flow *f* is defined as $|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s).$

An *s*-*t* flow in *G* is a real-valued function $f: V \times V \rightarrow \mathbb{R}$ that satisfies **flow conservation**,

 $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \text{ for all } u \in V \setminus \{s, t\}, \text{ and}$

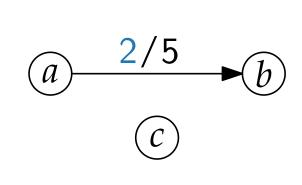
capacity constraint, $0 \le f(u, v) \le c(u, v)$.



Maximum flow problem. Given a flow network Gwith source s and sink t, find an s-t flow of maximum value.

The value |f| of an *s*-*t* flow *f* is defined as $|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s).$

By How Much May Flow Change?



By How Much May Flow Change?

Given G and f, the residual capacity c_f for a pair $u, v \in V$ is

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise.} \end{cases}$$

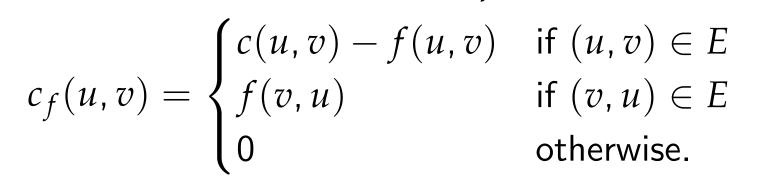
$$a \xrightarrow{2/5} b c_f(a, b) = 3$$

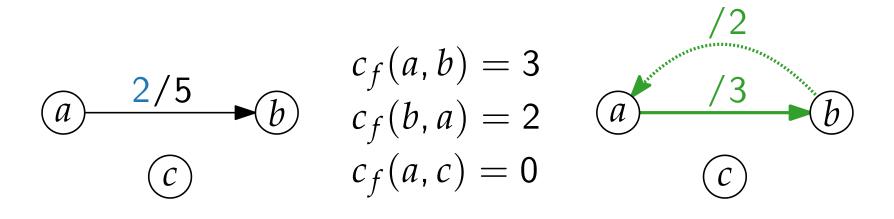
$$c_f(b, a) = 2$$

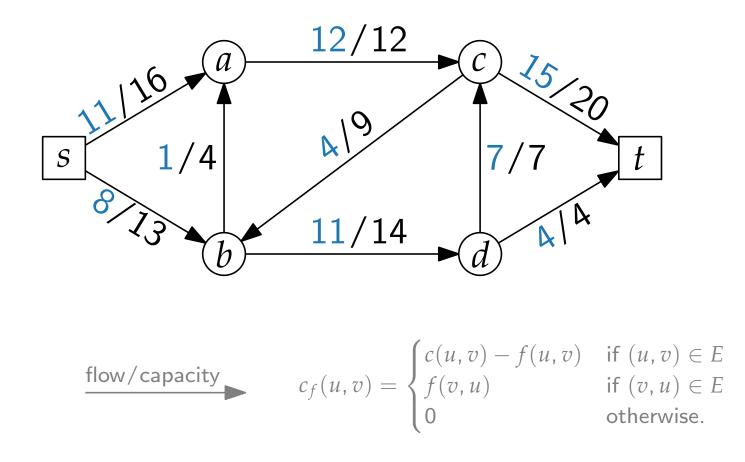
$$c_f(a, c) = 0$$

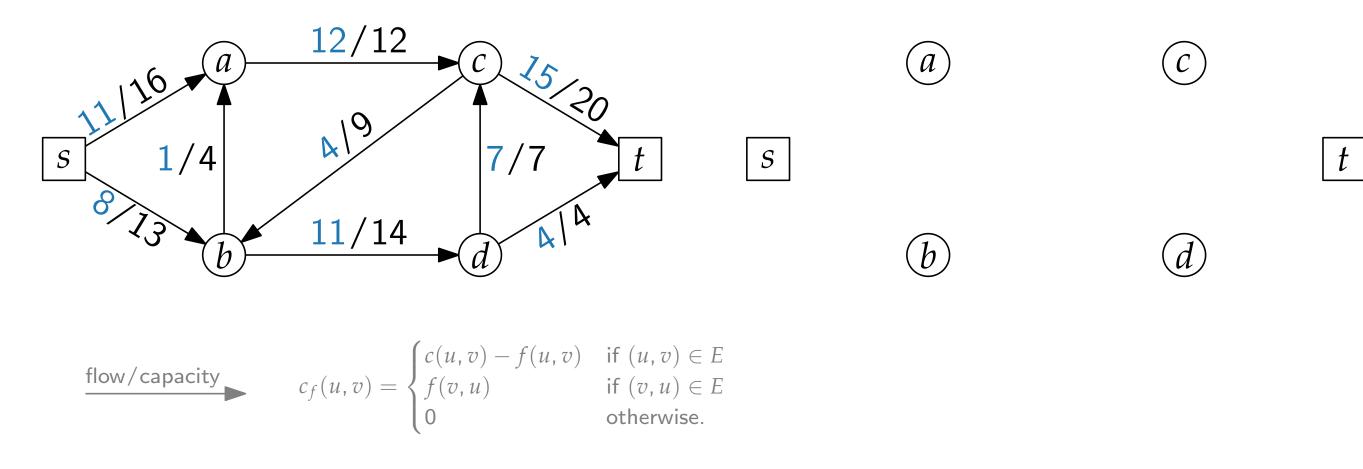
By How Much May Flow Change?

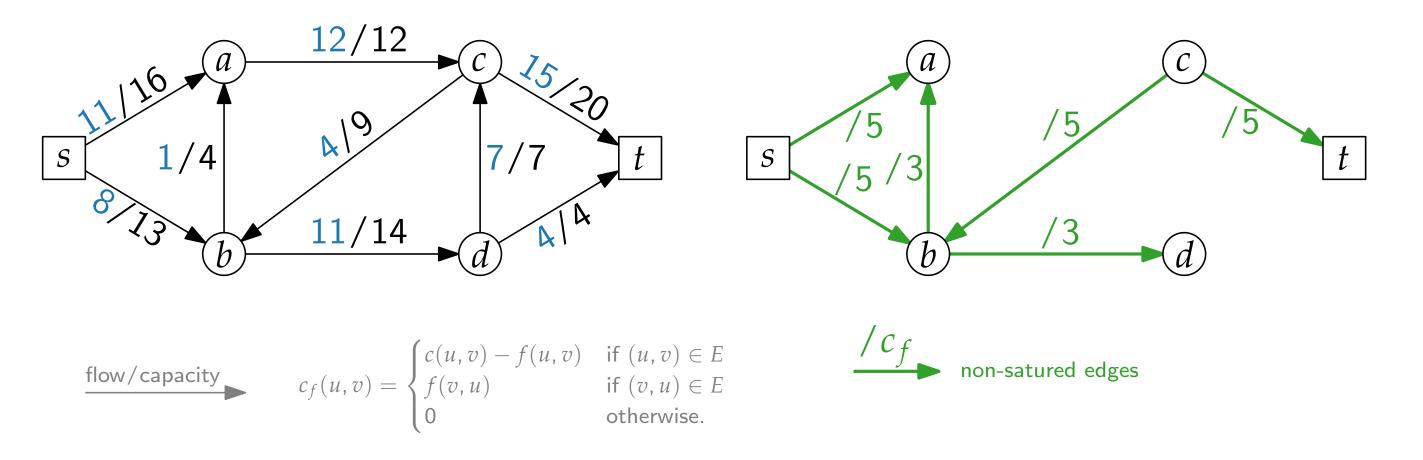
Given G and f, the residual capacity c_f for a pair $u, v \in V$ is

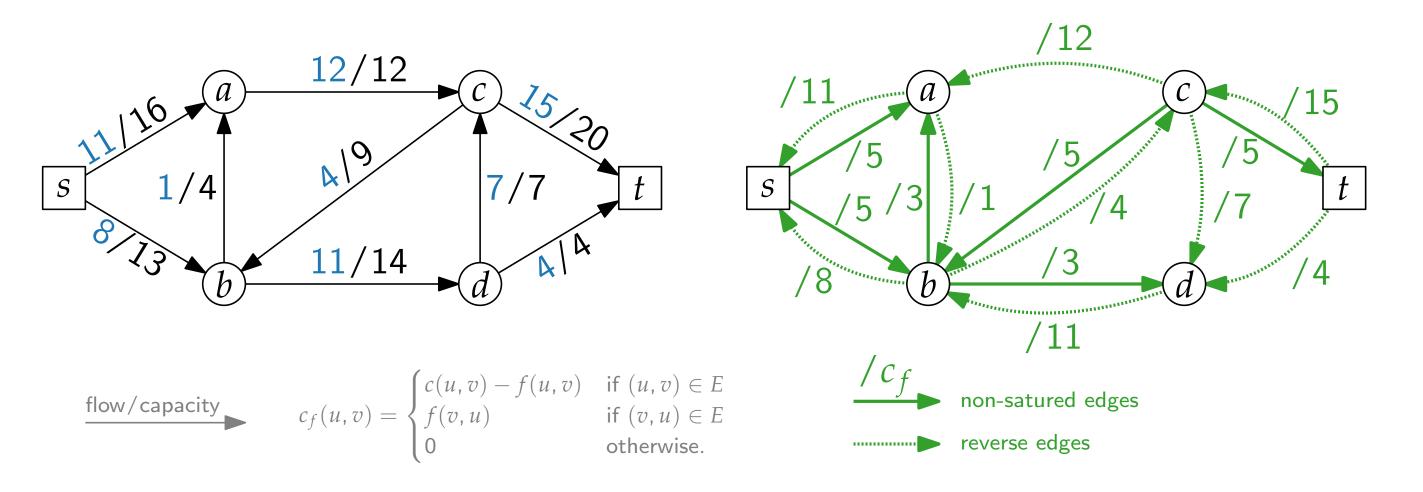






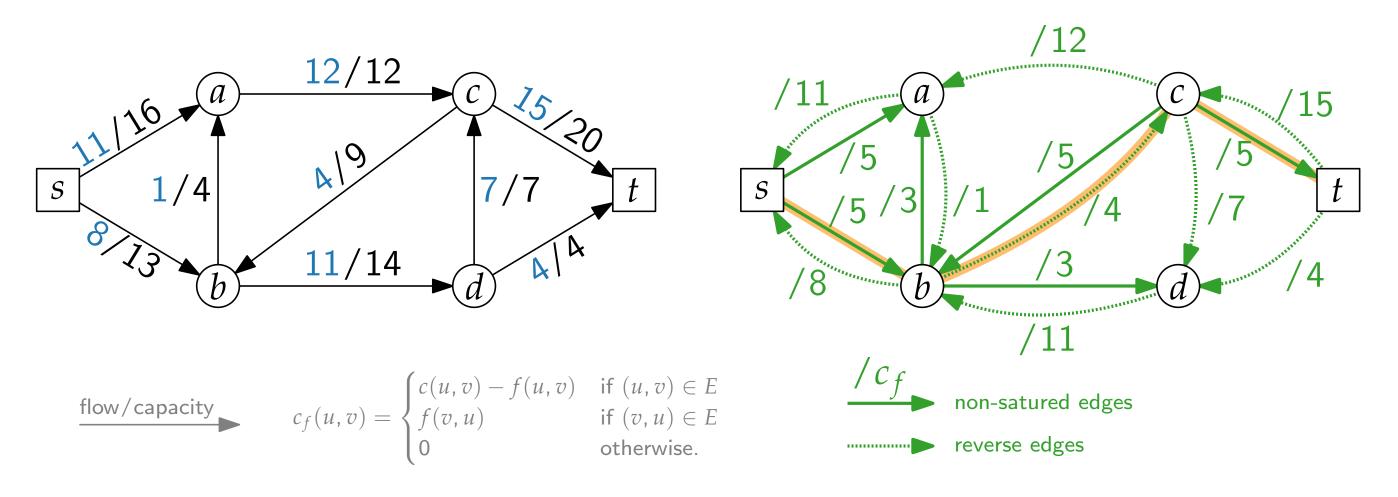






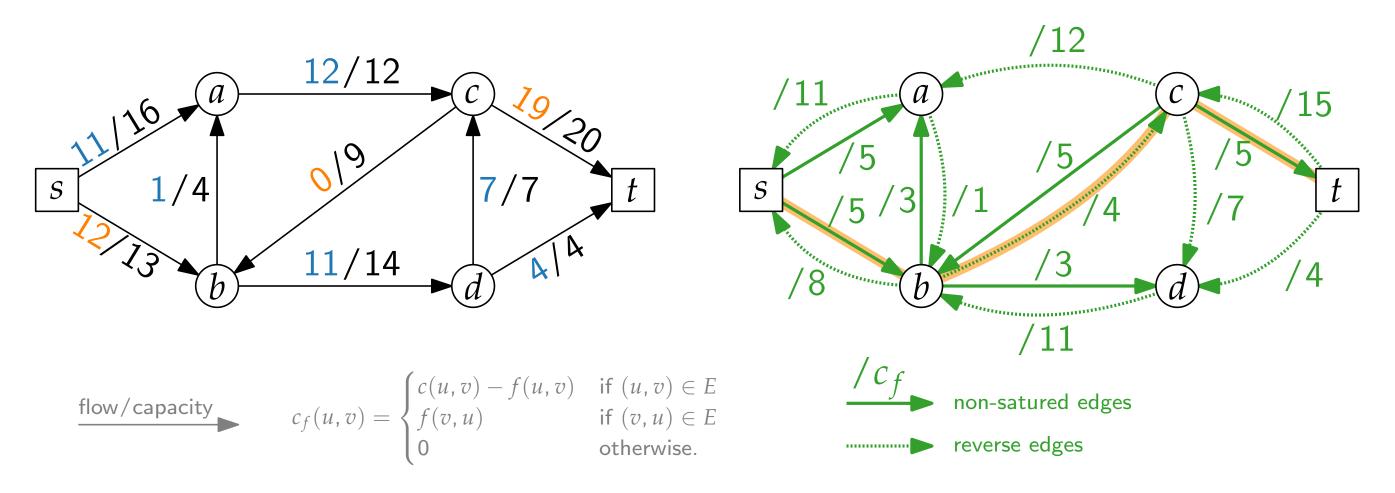
The residual network $G_f = (V, E_f)$ for a flow network G with s-t flow f has $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}.$

An **augmenting path** is an *st*-path in G_f .



The residual network $G_f = (V, E_f)$ for a flow network G with s-t flow f has $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}.$

An **augmenting path** is an *st*-path in G_f . \Rightarrow use to increase *f*



The Algorithms of Ford–Fulkerson and Edmonds–Karp

```
FordFulkerson(G = (V, E), c, s, t)
  foreach uv \in E do
                                                } initialising zero flow
    | f_{uv} \leftarrow 0
  while G_f contains augmenting path p do
       \Delta \leftarrow \min_{uv \in p} c_f(uv) \qquad \} \text{ residual capacity of } p
       foreach uv \in p do

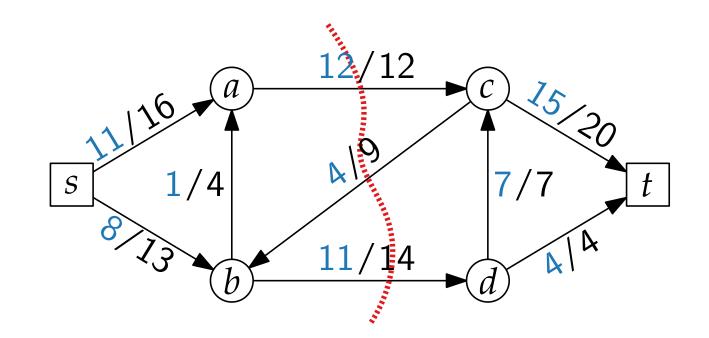
\begin{bmatrix}
f_{uv} \leftarrow f_{uv} + \Delta \\
else \\
f_{vu} \leftarrow f_{vu} - \Delta
\end{bmatrix}
augmentation along p
           if uv \in E then
  return f
                                                   return max flow
```

The Algorithms of Ford–Fulkerson and Edmonds–Karp EdmondsKarp FordFulkerson(G = (V, E), c, s, t) foreach $uv \in E$ do $\int f_{uv} \leftarrow 0$ fortest while G_f contains augmenting path p do } initialising zero flow $\Delta \leftarrow \min_{uv \in p} c_f(uv) \qquad \} \text{ residual capacity of } p$ foreach $uv \in p$ do if $uv \in E$ then augmentation along preturn f return max flow

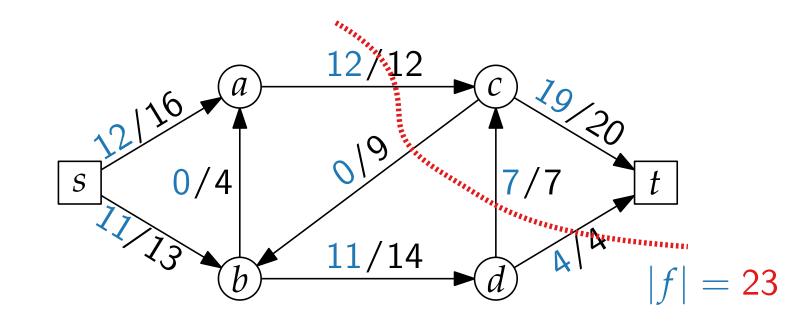
The Algorithms of Ford–Fulkerson and Edmonds–Karp EdmondsKarp FordFulkerson(G = (V, E), c, s, t) foreach $uv \in E$ do $\int f_{uv} \leftarrow 0$ initialising zero flow while G_f contains augmenting path p do $\Delta \leftarrow \min_{uv \in p} c_f(uv) \qquad \} \text{ residual capacity of } p$ foreach $uv \in p$ do $\begin{bmatrix} \mathbf{u} & \mathbf{v} \in \mathbf{L} \text{ then} \\ f_{uv} \leftarrow f_{uv} + \Delta \\ \mathbf{else} \\ f_{vu} \leftarrow f_{vu} - \Delta \end{bmatrix}$ augmentation along preturn f return max flow

Ford–Fulkerson runs in $\mathcal{O}(|E| \cdot |f^*|)$ and Edmonds–Karp in $\mathcal{O}(|V| \cdot |E|^2)$ time.

The Max-Flow Min-Cut Theorem

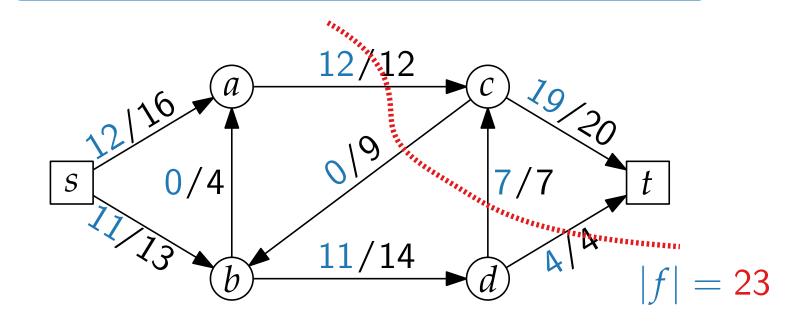


The Max-Flow Min-Cut Theorem



The Max-Flow Min-Cut Theorem

Theorem.
For an s-t flow f in a flow network G, the following conditions are equivalent:
f is a maximum s-t flow in G.
G_f contains no augmenting paths.
|f| = c(S, T), which is the capacity of some s-t cut (S, T) of G.



A New Approach to the Maximum-Flow Problem

ANDREW V. GOLDBERG

Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

ROBERT E. TARJAN

Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the *preflow* concept of Karzanov is introduced. A preflow is like a flow, except that the trait amount

A New Approach to the Maximum-Flow Problem

ANDREW V. GOLDBERG

Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

ROBERT E. TARJAN

Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the *preflow* concept of Karzanov is introduced. A preflow is like a flow, except that the trait amount

A New Approach to the Maximum-Flow Problem

ANDREW V. GOLDBERG

Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

ROBERT E. TARJAN

Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the *preflow* concept of Karzanov is introduced. A preflow is like a flow, except that the trait amount for the trait and the method based of the state of the

A New Approach to the Maximum-Flow Problem

ANDREW V. GOLDBERG

Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

ROBERT E. TARJAN

Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the *preflow* concept of Karzanov is introduced. A preflow is like a flow, except that the trait amount

A New Approach to the Maximum-Flow Problem

ANDREW V. GOLDBERG

Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

ROBERT E. TARJAN

Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the *preflow* concept of Karzanov is introduced. A preflow is like a flow, except that the trait amount for the trait and the method based of the state of the

A New Approach to the Maximum-Flow Problem

ANDREW V. GOLDBERG

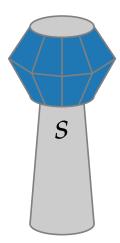
Massachusetts Institute of Technology, Cambridge, Massachusetts

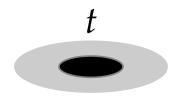
AND

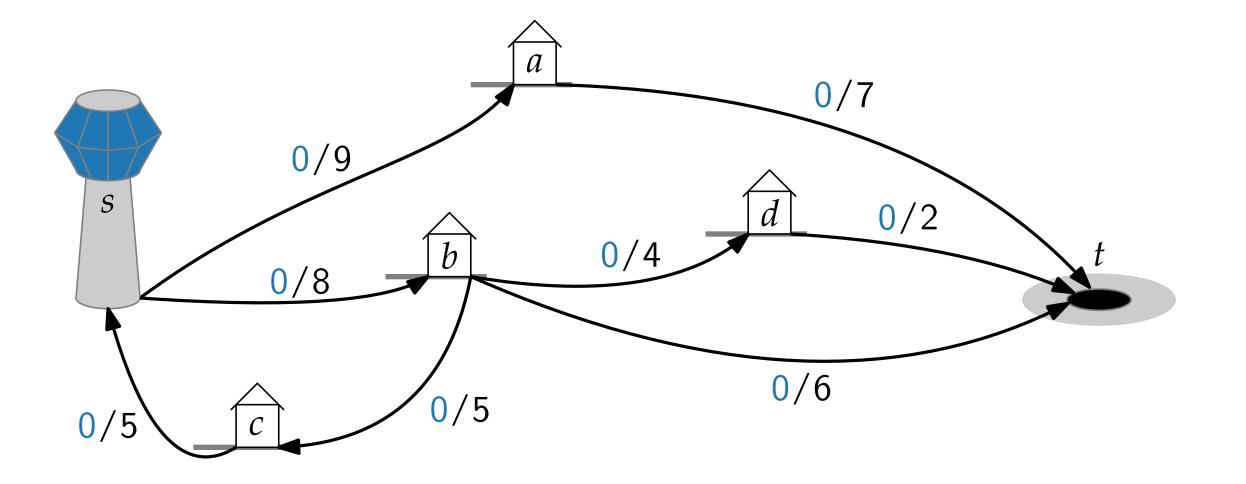
ROBERT E. TARJAN

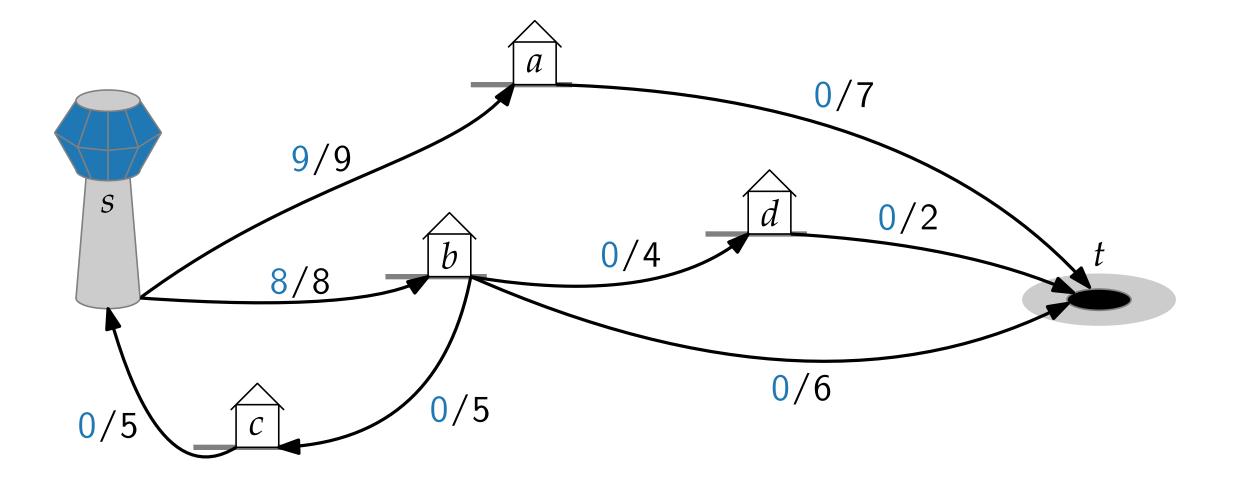
Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey

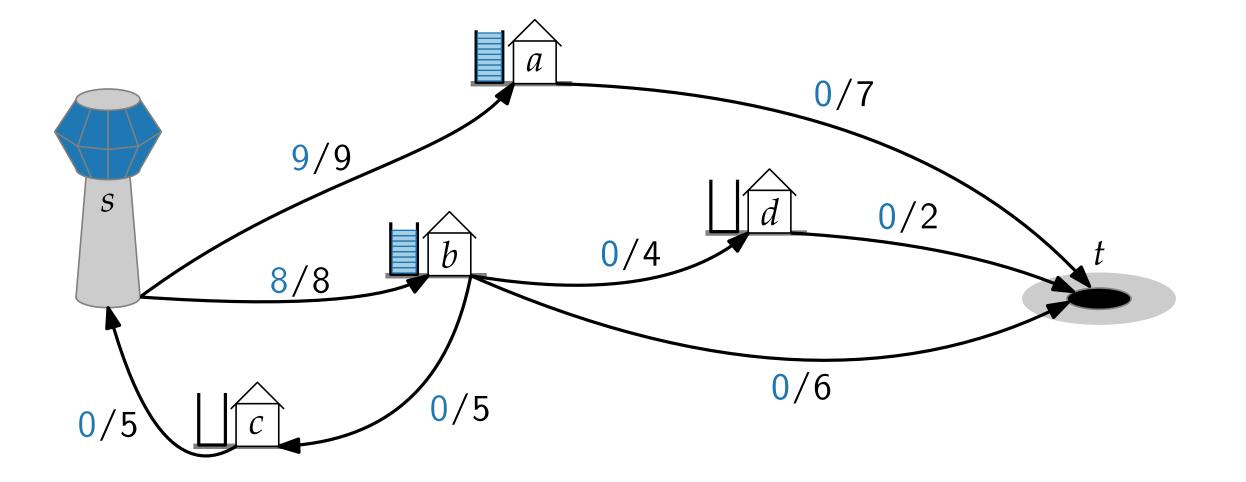
Abstract. All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the *preflow* concept of Karzanov is introduced. A preflow is like a flow, except that the trait amount for the trait and the method based of the state of the

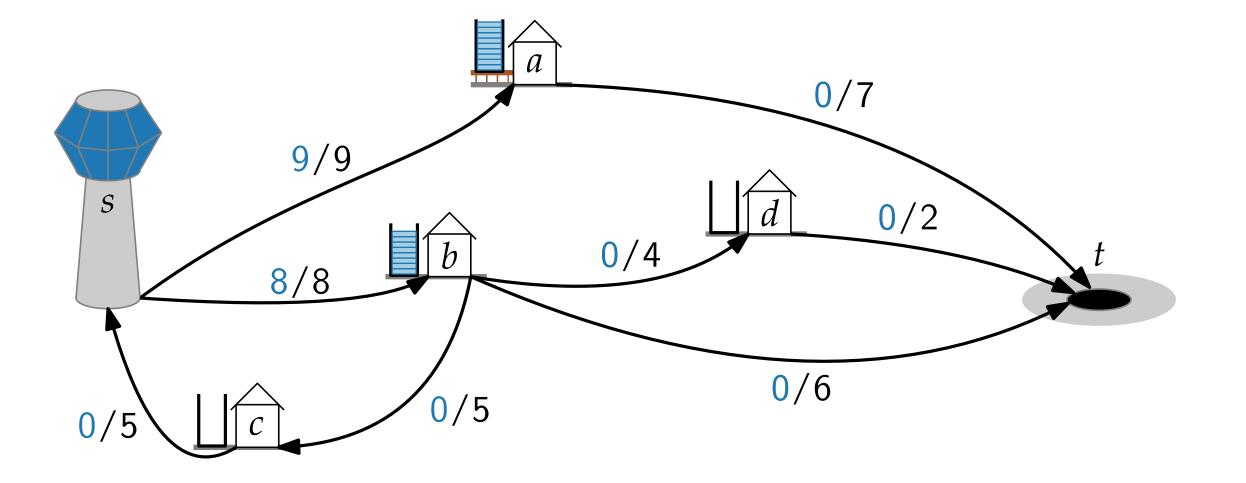


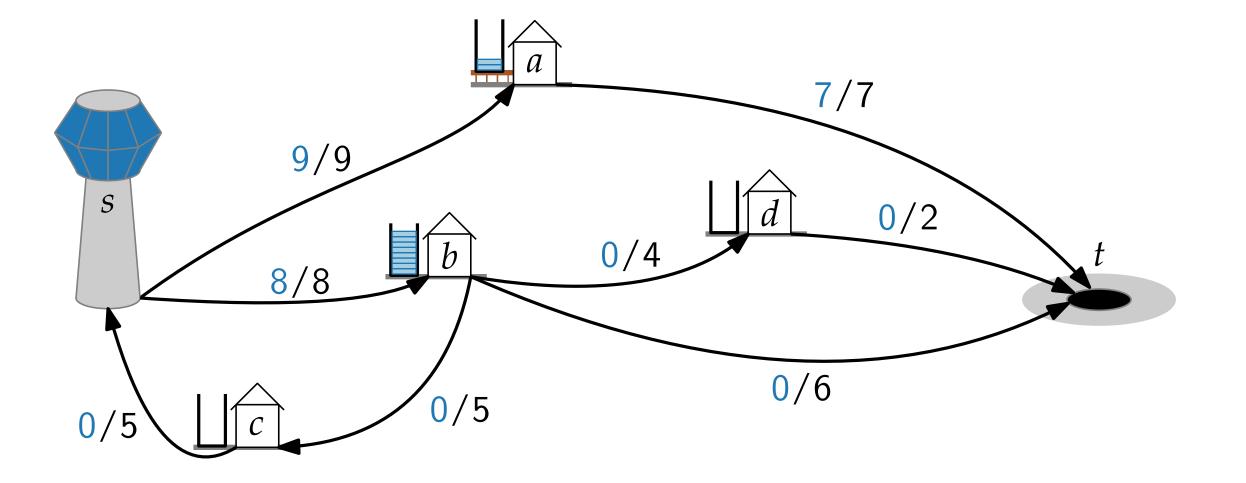


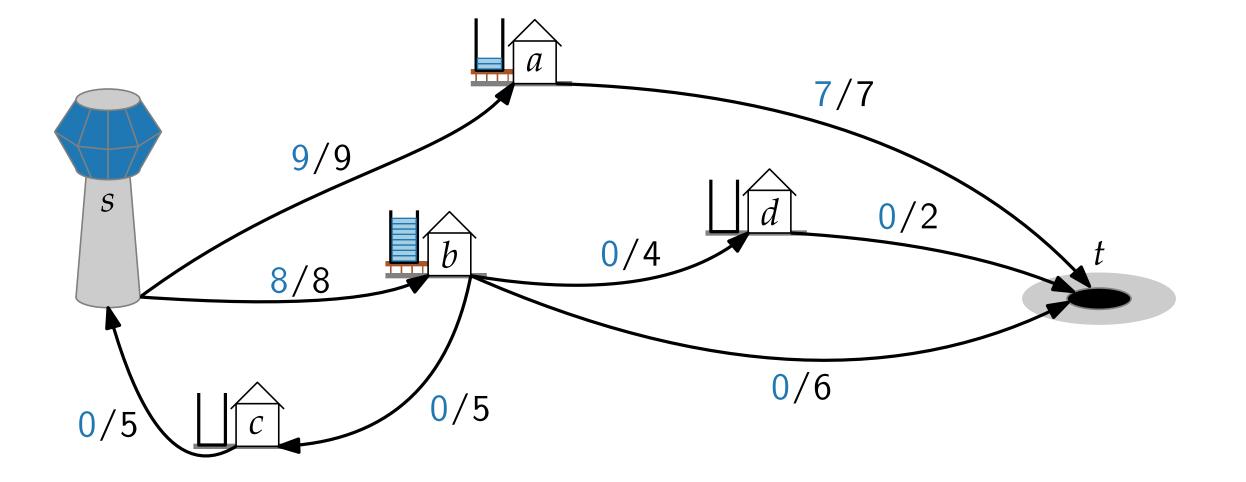


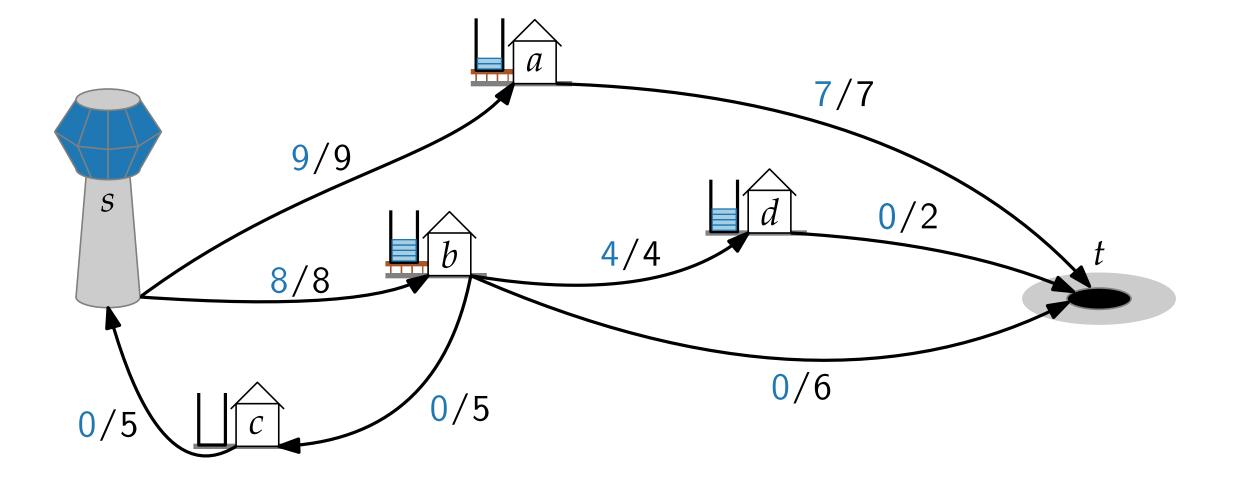


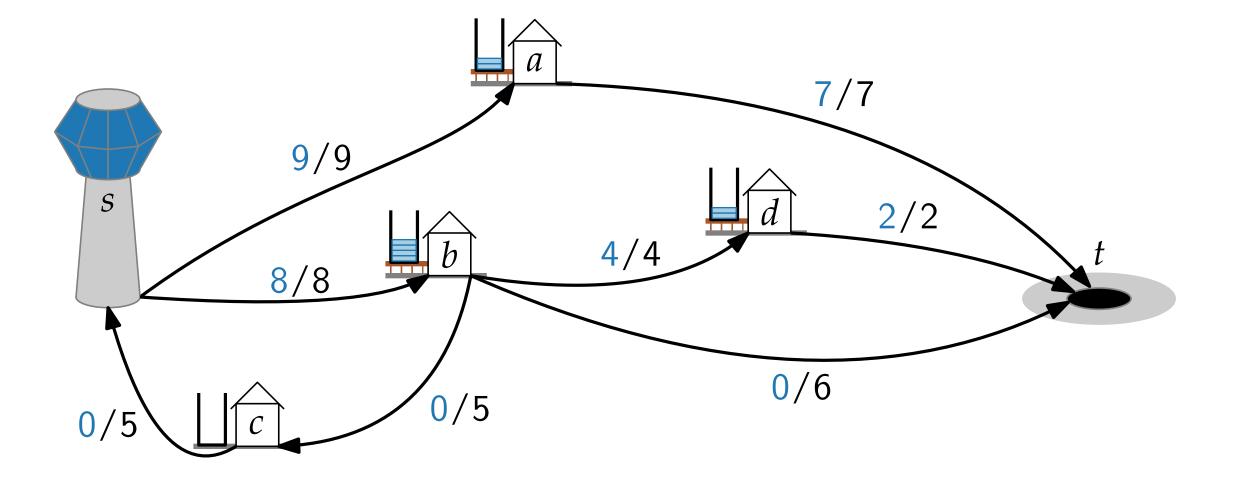


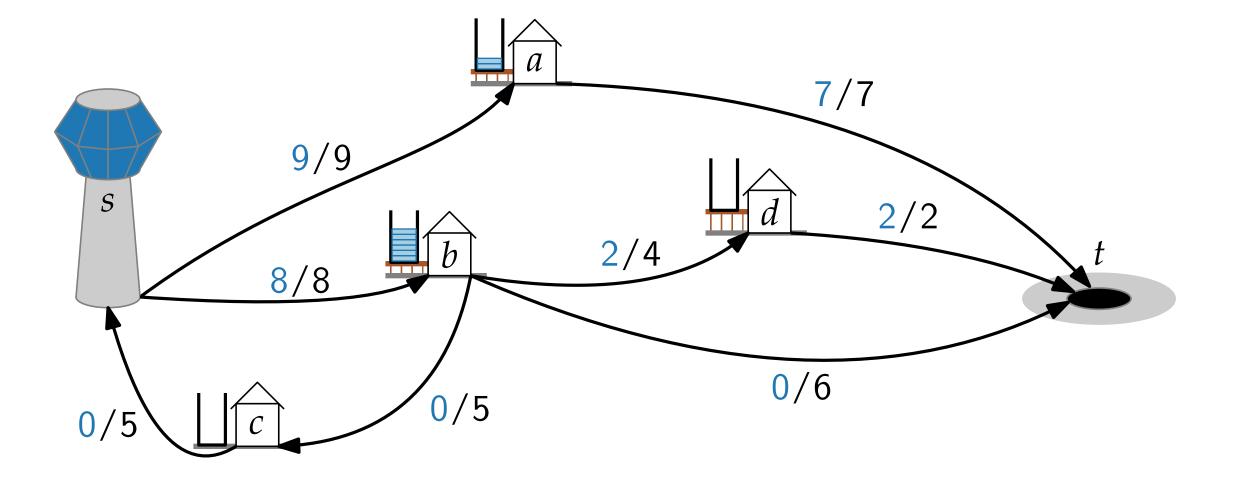


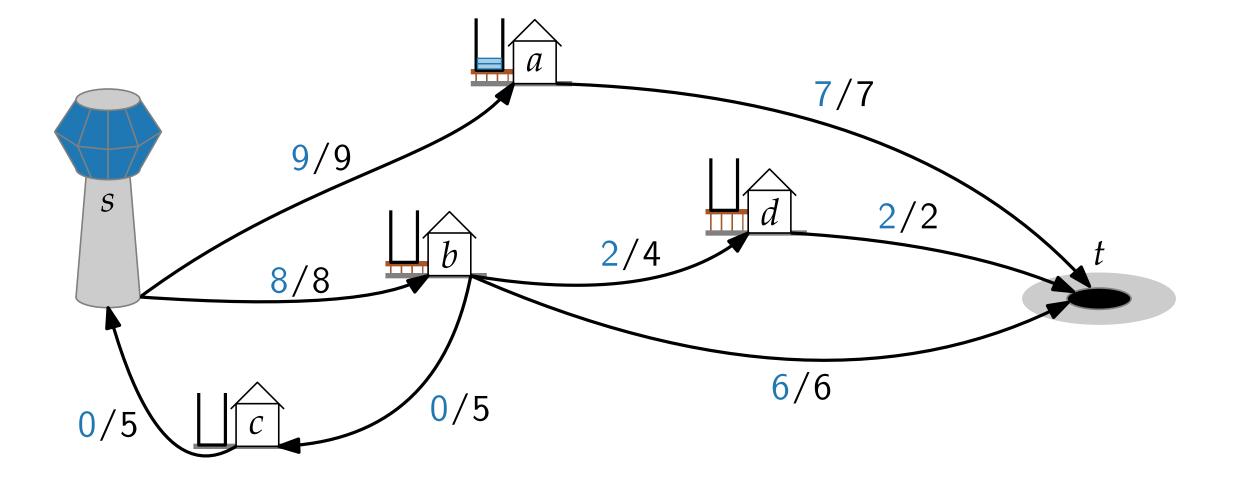


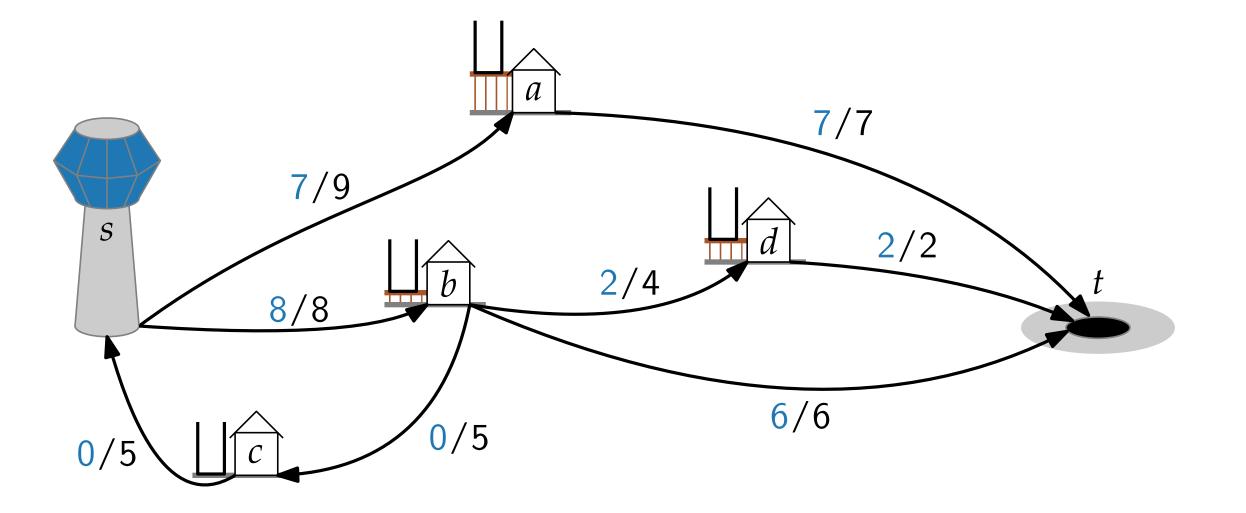






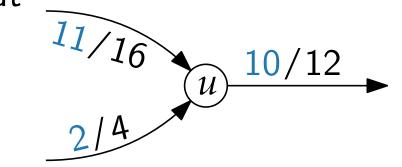




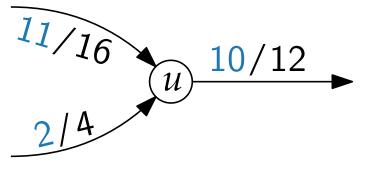


A **preflow** in G is a real-value function $f: V \times V \to \mathbb{R}$ that satisfies the capacity constraint and, for each $u \in V \setminus \{s\}$,

$$\sum_{v \in V} f(v, u) - \sum_{v \in V} f(u, v) \ge 0.$$



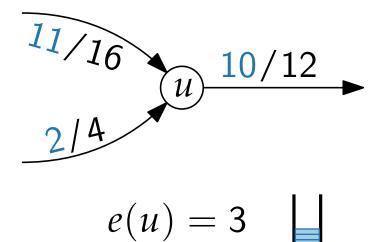
A preflow in G is a real-value function $f: V \times V \to \mathbb{R}$ that satisfies the capacity constraint and, for each $u \in V \setminus \{s\}$, $\sum_{v \in V} f(v, u) - \sum_{v \in V} f(u, v) \ge 0.$



The excess flow of a vertex u is $e(u) = \sum_{v \in V} f(v, u) - \sum_{v \in V} f(u, v).$

e(u) = 3

A preflow in G is a real-value function $f: V \times V \to \mathbb{R}$ that satisfies the capacity constraint and, for each $u \in V \setminus \{s\}$, $\sum_{v \in V} f(v, u) - \sum_{v \in V} f(u, v) \ge 0.$



9 - 3

The excess flow of a vertex u is $e(u) = \sum_{v \in V} f(v, u) - \sum_{v \in V} f(u, v).$

A vertex u is called **overflowing**, when e(u) > 0.

A preflow in G is a real-value function $f: V \times V \to \mathbb{R}$ that satisfies the capacity constraint and, for each $u \in V \setminus \{s\}$, $\sum_{v \in V} f(v, u) - \sum_{v \in V} f(u, v) \ge 0.$

11/16 u 10/12 2/4

e(u) = 3

The excess flow of a vertex u is $e(u) = \sum_{v \in V} f(v, u) - \sum_{v \in V} f(u, v).$

A vertex u is called **overflowing**, when e(u) > 0.

For a flow network G with preflow f, a **height function** is a function $h: V \to \mathbb{N}$ such that

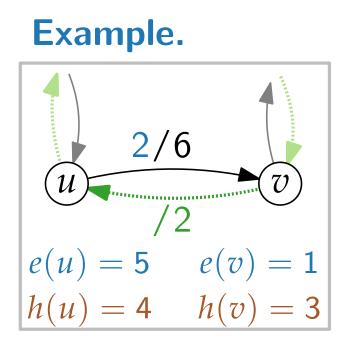
- $\bullet h(s) = |V|,$
- h(t) = 0, and
- $h(u) \le h(v) + 1$ for every residual edge $(u, v) \in E_f$.

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1**Effect:** Push min $(e(u), c_f(u, v))$ overflow from *u* to *v*

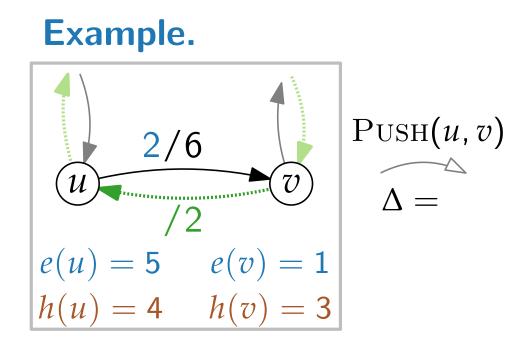
PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1**Effect:** Push min $(e(u), c_f(u, v))$ overflow from *u* to *v*



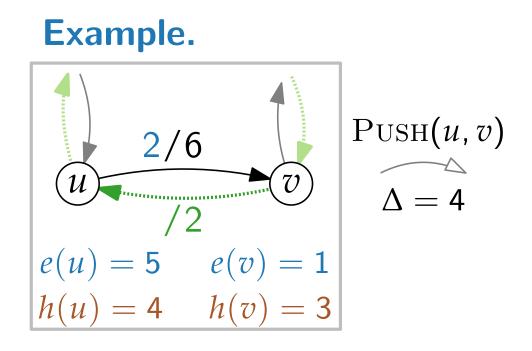
PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 **Effect:** Push min $(e(u), c_f(u, v))$ overflow from *u* to *v* $\Delta \leftarrow \min(e(u), c_f(u, v))$



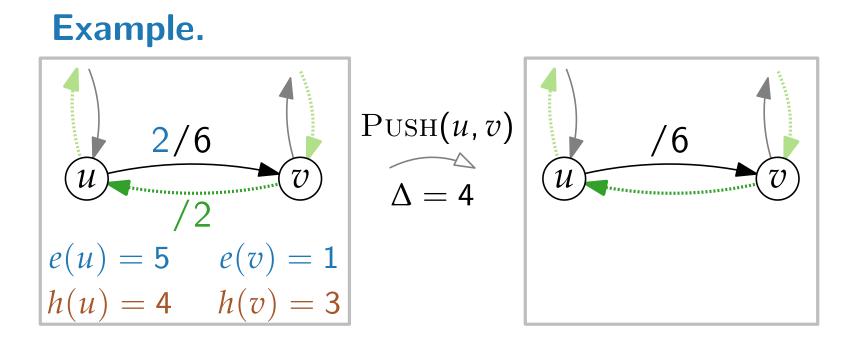
PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 **Effect:** Push min $(e(u), c_f(u, v))$ overflow from *u* to *v* $\Delta \leftarrow \min(e(u), c_f(u, v))$



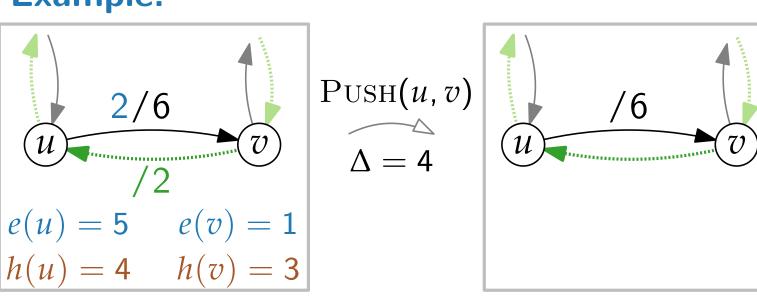
PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 **Effect:** Push min $(e(u), c_f(u, v))$ overflow from *u* to *v* $\Delta \leftarrow \min(e(u), c_f(u, v))$



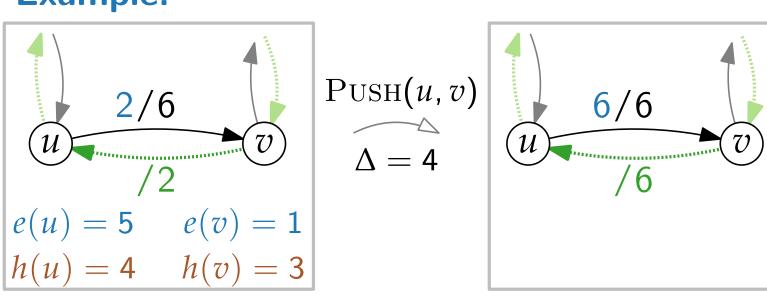
Push(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 **Effect:** Push min $(e(u), c_f(u, v))$ overflow from *u* to *v* $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\mid f(v, u) \leftarrow f(v, u) - \Delta$ **Example.**



Push(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 **Effect:** Push min $(e(u), c_f(u, v))$ overflow from *u* to *v* $\Delta \leftarrow \min(e(u), c_f(u, v))$ **if** $(u, v) \in E$ **then** $\mid f(u, v) \leftarrow f(u, v) + \Delta$ **else** $\mid f(v, u) \leftarrow f(v, u) - \Delta$ **Example.**



Push(u, v)

Condition: u is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1**Effect:** Push min $(e(u), c_f(u, v))$ overflow from u to v $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $f(u,v) \leftarrow f(u,v) + \Delta$ else **Example**. $f(v, u) \leftarrow f(v, u) - \Delta$ $e(u) \leftarrow e(u) - \Delta$ PUSH(u, v)2/6 $e(v) \leftarrow e(v) + \Delta$

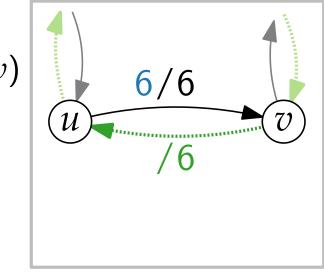
 \mathcal{U}

h(v) = 3

 $e(u) = 5 \qquad e(v) = 1$

h(u) = 4

 $\Lambda = 4$



Push(u, v)

Condition: u is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1**Effect:** Push min $(e(u), c_f(u, v))$ overflow from u to v $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $f(u, v) \leftarrow f(u, v) + \Delta$ else **Example**. $f(v, u) \leftarrow f(v, u) - \Delta$ $e(u) \leftarrow e(u) - \Delta$ PUSH(u, v)2/6 $e(v) \leftarrow e(v) + \Delta$

 \mathcal{U}

h(u) = 4

 $e(u) = 5 \qquad e(v) = 1$

 \mathcal{U}

h(v) = 3

 $\Lambda = 4$

10 - 9

6/6

/6

e(u) = 1 e(v) = 5

h(u) = 4 h(v) = 3

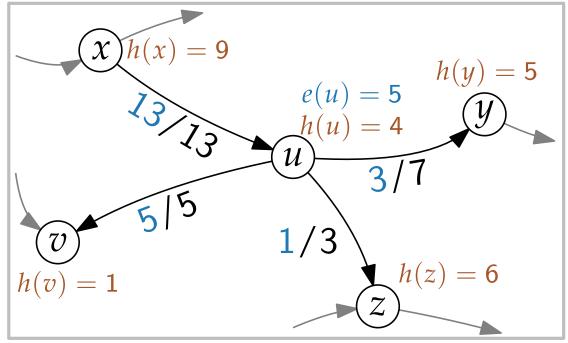
 $[\mathcal{U}]$

RELABEL(u)

Condition: *u* is overflowing and $h(u) \le h(v)$ for every $v \in V$ with $(u, v) \in E_f$ **Effect:** Increase the height of *u* $h(u) \leftarrow 1 + \min\{h(v): v \in V \text{ with } (u, v) \in E_f\}$

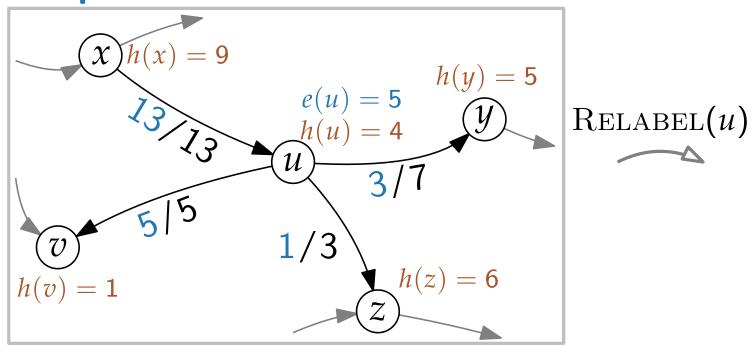
RELABEL(u)

Condition: *u* is overflowing and $h(u) \le h(v)$ for every $v \in V$ with $(u, v) \in E_f$ **Effect:** Increase the height of *u* $h(u) \leftarrow 1 + \min\{h(v): v \in V \text{ with } (u, v) \in E_f\}$



RELABEL(u)

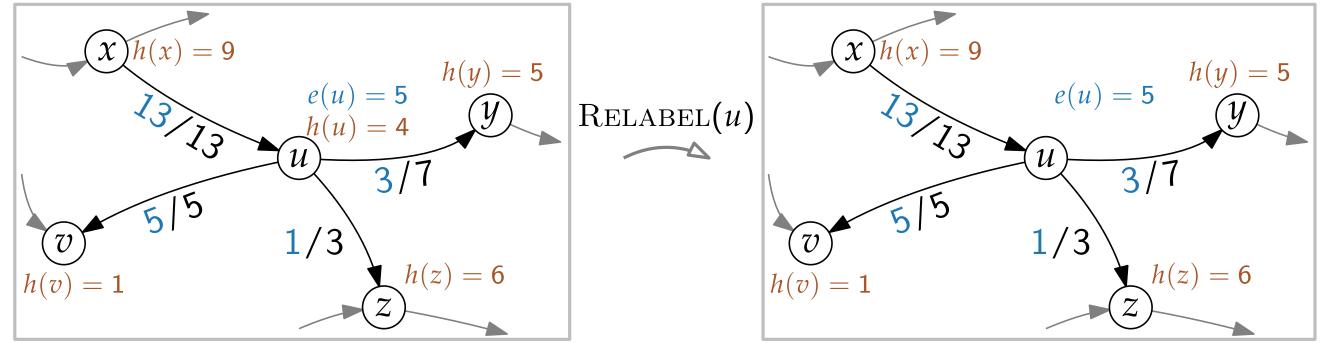
Condition: *u* is overflowing and $h(u) \le h(v)$ for every $v \in V$ with $(u, v) \in E_f$ **Effect:** Increase the height of *u* $h(u) \leftarrow 1 + \min\{h(v): v \in V \text{ with } (u, v) \in E_f\}$



The Relabel Operation

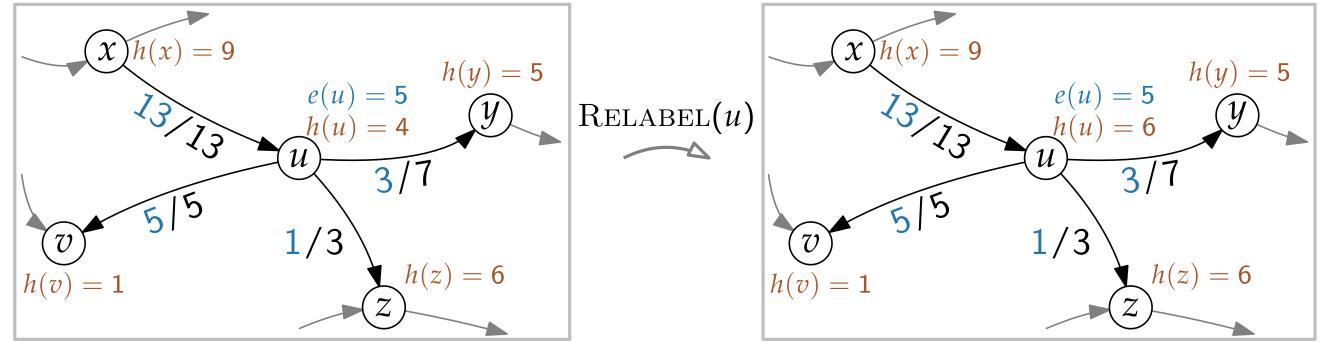
RELABEL(u)

Condition: *u* is overflowing and $h(u) \le h(v)$ for every $v \in V$ with $(u, v) \in E_f$ **Effect:** Increase the height of *u* $h(u) \leftarrow 1 + \min\{h(v): v \in V \text{ with } (u, v) \in E_f\}$



RELABEL(u)

Condition: *u* is overflowing and $h(u) \le h(v)$ for every $v \in V$ with $(u, v) \in E_f$ **Effect:** Increase the height of *u* $h(u) \leftarrow 1 + \min\{h(v): v \in V \text{ with } (u, v) \in E_f\}$



The PUSH-RELABEL Algorithm

```
PUSH-RELABEL(G)

INITPREFLOW(G, s)

while \exists applicable PUSH or RELABEL operation x do

\lfloor apply x
```

The $\operatorname{Push-Relabel}$ Algorithm

```
PUSH-RELABEL(G)
INITPREFLOW(G, s)
while \exists applicable PUSH or RELABEL operation x do
\lfloor apply x
```

INITPREFLOW(G, s)

```
foreach v \in V do h(v) \leftarrow 0; e(v) \leftarrow 0

h(s) \leftarrow |V|

foreach (u, v) \in E do f(u, v) \leftarrow 0

foreach v such that (s, v) \in E do

| f(s, v) \leftarrow c(s, v)

e(v) \leftarrow c(s, v)
```

The $\operatorname{Push-Relabel}$ Algorithm

```
PUSH-RELABEL(G)
INITPREFLOW(G, s)
while \exists applicable PUSH or RELABEL operation x do
\lfloor apply x
```

INITPREFLOW(G, s)

```
foreach v \in V do h(v) \leftarrow 0; e(v) \leftarrow 0

h(s) \leftarrow |V|

foreach (u, v) \in E do f(u, v) \leftarrow 0

foreach v such that (s, v) \in E do

\begin{vmatrix} f(s, v) \leftarrow c(s, v) \\ e(v) \leftarrow c(s, v) \end{vmatrix}
```

- initializes heights
- pushes max flow over every edge that leaves s

Correctness

Part 1.

If the algorithm terminates, the preflow is a maximum flow.

- If an overflowing vertex exists, the algorithm can continue.
- The algorithm maintains f as a preflow and h as a height function.
- The sink t is not reachable from source s in G_f .

Correctness

Part 1.

If the algorithm terminates, the preflow is a maximum flow.

- If an overflowing vertex exists, the algorithm can continue.
- The algorithm maintains f as a preflow and h as a height function.
- The sink t is not reachable from source s in G_f .

Part 2.

The algorithm terminates and the heights stay finite.

- Find upper bound on heights.
- Find upper bound for the number of calls to RELABEL.
- Find upper bound for the number of calls to PUSH.

Continuation

Lemma 1.

If a vertex u is overflowing, either a push or a relabel operation applies to u.

Height function:

 $\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

RELABEL(u)

Condition: *u* is overflowing and $h(u) \le h(v) \ \forall v \in V \text{ with } (u, v) \in E_f$ $h(u) \leftarrow 1 + \min\{h(v): (u, v) \in E_f\}$

Continuation

Lemma 1.

If a vertex u is overflowing, either a push or a relabel operation applies to u.

Proof.

Assuming h(u) is valid, we have $h(u) \le h(v) + 1$ for all v with $(u, v) \in E_f$.

Height function:

 $\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

RELABEL(u)

Condition: *u* is overflowing and $h(u) \le h(v) \ \forall v \in V \text{ with } (u, v) \in E_f$ $h(u) \leftarrow 1 + \min\{h(v): (u, v) \in E_f\}$

Continuation

Lemma 1.

If a vertex u is overflowing, either a push or a relabel operation applies to u.

Proof.

Assuming h(u) is valid, we have $h(u) \le h(v) + 1$ for all v with $(u, v) \in E_f$. If no push operation is valid for $(u, v) \in E_f$, then

 $h(u) \le h(v) \text{ for all } v \text{ with } (u, v) \in E_f.$

Height function:

 $\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

RELABEL(u)

Continuation

Lemma 1.

If a vertex u is overflowing, either a push or a relabel operation applies to u.

Proof.

Assuming h(u) is valid, we have $h(u) \le h(v) + 1$ for all v with $(u, v) \in E_f$.

If no push operation is valid for $(u, v) \in E_f$, then $h(u) \le h(v)$ for all v with $(u, v) \in E_f$.

Therefore, RELABEL(u) is applicable.

Height function:

 $\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\perp f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

RELABEL(u)

Maintaining the Preflow

Lemma 2.

The push-relabel algorithm maintains a preflow f.

Height function:

 $\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

RELABEL(u)

Maintaining the Preflow

Lemma 2.

The push-relabel algorithm maintains a preflow f.

Proof.

- INITPREFLOW initialises a preflow f. \checkmark
- RELABEL(u) doesn't affect f. \checkmark
- PUSH(u, v) maintains f as a preflow. \checkmark

Height function:

 $\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

```
Condition: u is overflowing and

h(u) \le h(v) \ \forall v \in V \text{ with } (u, v) \in E_f

h(u) \leftarrow 1 + \min\{h(v): (u, v) \in E_f\}
```

Lemma 3.

The push-relabel algorithm maintains h as a height function.

Height function:

 $\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

RELABEL(u)

Lemma 3.

The push-relabel algorithm maintains h as a height function.

Proof.

INITPREFLOW initialises h as a height function. \checkmark

```
Height function:
```

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

RELABEL(u)

Lemma 3.

The push-relabel algorithm maintains h as a height function.

Proof.

- INITPREFLOW initialises h as a height function. \checkmark
- Under PUSH(u, v), *h* remains a height function:

Height function:

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

```
Condition: u is overflowing and

h(u) \le h(v) \ \forall v \in V \text{ with } (u, v) \in E_f

h(u) \leftarrow 1 + \min\{h(v): (u, v) \in E_f\}
```

Lemma 3.

The push-relabel algorithm maintains h as a height function.

Proof.

- INITPREFLOW initialises h as a height function. \checkmark
- Under PUSH(u, v), *h* remains a height function:
 - If (v, u) is added to E_f , then h(v) = h(u) - 1 < h(u) + 1.

Height function:

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

```
Condition: u is overflowing and

h(u) \le h(v) \ \forall v \in V \text{ with } (u, v) \in E_f

h(u) \leftarrow 1 + \min\{h(v): (u, v) \in E_f\}
```

Lemma 3.

The push-relabel algorithm maintains h as a height function.

Proof.

- INITPREFLOW initialises h as a height function.
- Under PUSH(u, v), *h* remains a height function:
 - If (v, u) is added to E_f , then h(v) = h(u) - 1 < h(u) + 1.
 - If (u, v) is removed from E_f , then \checkmark .

Height function:

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

```
Condition: u is overflowing and

h(u) \le h(v) \ \forall v \in V \text{ with } (u, v) \in E_f

h(u) \leftarrow 1 + \min\{h(v): (u, v) \in E_f\}
```

Lemma 3.

The push-relabel algorithm maintains h as a height function.

Proof.

- INITPREFLOW initialises h as a height function. \checkmark
- Under PUSH(u, v), *h* remains a height function:
 - If (v, u) is added to E_f , then h(v) = h(u) - 1 < h(u) + 1.
 - If (u, v) is removed from E_f , then \checkmark .
- Under Relabel(u), *h* remains a height function:

■ $(u, v) \in E_f$, then $h(u) \le h(v) + 1$ ■ $(w, u) \in E_f$, then h(w) < h(u) + 1

Height function:

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

```
Condition: u is overflowing and

h(u) \le h(v) \ \forall v \in V \text{ with } (u, v) \in E_f

h(u) \leftarrow 1 + \min\{h(v): (u, v) \in E_f\}
```

Lemma 3.

The push-relabel algorithm maintains h as a height function.

Proof.

- INITPREFLOW initialises h as a height function.
- Under PUSH(u, v), *h* remains a height function:
 - If (v, u) is added to E_f , then h(v) = h(u) - 1 < h(u) + 1.
 - If (u, v) is removed from E_f , then \checkmark .
- Under Relabel(u), *h* remains a height function:
 - $(u, v) \in E_f$, then $h(u) \le h(v) + 1$ ■ $(w, u) \in E_f$, then h(w) < h(u) + 1

Height function:

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

PUSH(u, v)

Condition: *u* is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\lfloor f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

```
Condition: u is overflowing and

h(u) \le h(v) \ \forall v \in V \text{ with } (u, v) \in E_f

h(u) \leftarrow 1 + \min\{h(v): (u, v) \in E_f\}
```

Lemma 4.

During the execution of the push-relabel algorithm, there is no path from s to t in G_f .

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

Lemma 4.

During the execution of the push-relabel algorithm, there is no path from s to t in G_f .

Proof.

Suppose there is a path $s = v_0, v_1, \ldots, v_k = t$ in G_f . Then

$$h(s) = |V|$$

$$h(t) = 0$$

$$h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f$$

Lemma 4.

During the execution of the push-relabel algorithm, there is no path from s to t in G_f .

Proof.

Suppose there is a path $s = v_0, v_1, \ldots, v_k = t$ in G_f . Then

•
$$(v_i, v_{i+1}) \in E_f$$
 for $0 \le i \le k-1$, and

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

Lemma 4.

During the execution of the push-relabel algorithm, there is no path from s to t in G_f .

Proof.

Suppose there is a path $s = v_0, v_1, \ldots, v_k = t$ in G_f . Then

•
$$(v_i, v_{i+1}) \in E_f$$
 for $0 \le i \le k-1$, and

■ $h(v_i) \le h(v_{i+1}) + 1$ for $0 \le i \le k - 1$.

$$h(s) = |V|$$

$$h(t) = 0$$

$$h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f$$

Lemma 4.

During the execution of the push-relabel algorithm, there is no path from s to t in G_f .

Proof.

Suppose there is a path $s = v_0, v_1, \ldots, v_k = t$ in G_f . Then

•
$$(v_i, v_{i+1}) \in E_f$$
 for $0 \le i \le k-1$, and

■ $h(v_i) \le h(v_{i+1}) + 1$ for $0 \le i \le k - 1$.

 $\Rightarrow h(s) \le h(t) + k = k$

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

Lemma 4.

During the execution of the push-relabel algorithm, there is no path from s to t in G_f .

Proof.

Suppose there is a path $s = v_0, v_1, \ldots, v_k = t$ in G_f . Then

•
$$(v_i, v_{i+1}) \in E_f$$
 for $0 \le i \le k-1$, and

■
$$h(v_i) \le h(v_{i+1}) + 1$$
 for $0 \le i \le k - 1$.

 $\Rightarrow h(s) \le h(t) + k = k$

But since k < |V|, it follows that h(s) < |V|.

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

Theorem 5.

When the push-relabel algorithm terminates, the computed preflow f is a maximum flow.

Theorem 5.

When the push-relabel algorithm terminates, the computed preflow f is a maximum flow.

Proof.

- By Lemma 1, the algorithm stops when there is no overflowing vertex.
- By Lemma 2, f is a preflow.

Theorem 5.

When the push-relabel algorithm terminates, the computed preflow f is a maximum flow.

Proof.

- By Lemma 1, the algorithm stops when there is no overflowing vertex.
- By Lemma 2, f is a preflow.

 $\Rightarrow f$ is a flow.

Theorem 5.

When the push-relabel algorithm terminates, the computed preflow f is a maximum flow.

Proof.

- By Lemma 1, the algorithm stops when there is no overflowing vertex.
- By Lemma 2, f is a preflow.

 \Rightarrow *f* is a flow.

- By Lemma 3, *h* is a height function.
- So by Lemma 4, there is no s-t path in G_f .

Theorem 5.

When the push-relabel algorithm terminates, the computed preflow f is a maximum flow.

Proof.

- By Lemma 1, the algorithm stops when there is no overflowing vertex.
- By Lemma 2, f is a preflow.

 $\Rightarrow f$ is a flow.

- By Lemma 3, *h* is a height function.
- So by Lemma 4, there is no s-t path in G_f .

 \Rightarrow By the Max-Flow Min-Cut Theorem, the flow f is a maximum flow.

Correctness

Part 1. 🗸

If the algorithm terminates, the preflow is maximum flow.

- If an overflowing vertex exists, the algorithm can continue.
- The algorithm maintains f as a preflow and h as a height function.
- Sink t is not reachable from source s in G_f .

Correctness

Part 1. 🗸

If the algorithm terminates, the preflow is maximum flow.

- If an overflowing vertex exists, the algorithm can continue.
- The algorithm maintains f as a preflow and h as a height function.
- Sink t is not reachable from source s in G_f .

Part 2.

The algorithm terminates and the heights stay finite.

- Find upper bound on heights.
- Find upper bound for the number of calls to RELABEL.
 - Find upper bound for the number of calls to $\rm PUSH.$

Lemma 6.

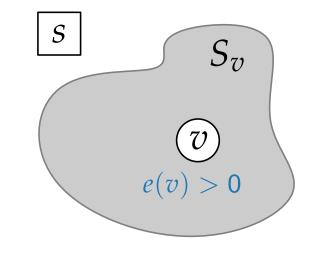
For every overflowing vertex v, there is a path from v to s in G_f .

Lemma 6.

For every overflowing vertex v, there is a path from v to s in G_f .

Proof.

- $S_v \leftarrow$ set of vertices reachable from v in G_f .
- Suppose that $s \notin S_v$.



0.

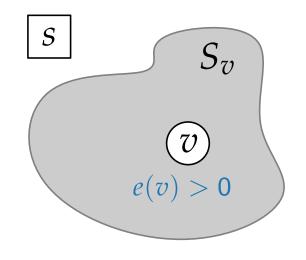
Lemma 6.

For every overflowing vertex v, there is a path from v to s in G_f .

Proof.

- \blacksquare $S_v \leftarrow$ set of vertices reachable from v in G_f .
- Suppose that $s \notin S_v$.
- Since f is a preflow and $s \notin S_v$, we have $\sum e(w) \ge 0$.

 $w \in S_{\tau}$



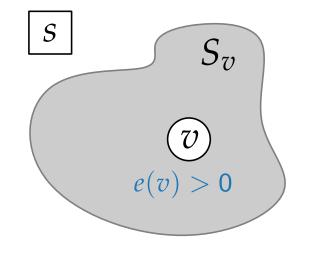
Lemma 6.

For every overflowing vertex v, there is a path from v to s in G_f .

Proof.

- $S_v \leftarrow$ set of vertices reachable from v in G_f .
- Suppose that $s \notin S_v$.
- Since f is a preflow and $s \notin S_v$, we have $\sum_{x \in S_v} e(w) \ge 0$.
- Since $v \in S_v$, we even have $\sum e(w) > 0$.

 $\sum_{w \in S_v} e(w) > 0.$



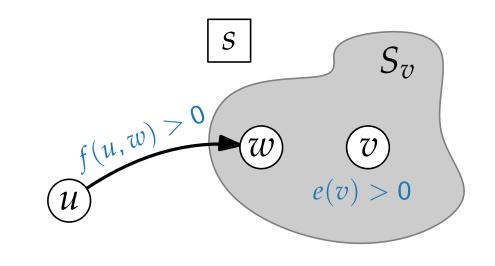
Lemma 6.

For every overflowing vertex v, there is a path from v to s in G_f .

Proof.

- $S_v \leftarrow$ set of vertices reachable from v in G_f .
- Suppose that $s \notin S_v$.
- Since f is a preflow and $s \notin S_v$, we have
- Since $v \in S_v$, we even have $\sum_{w \in S_v} e(w) > 0$.

There is an edge (u, w) with $u \notin S_v$, $w \in S_v$ and f(u, w) > 0.



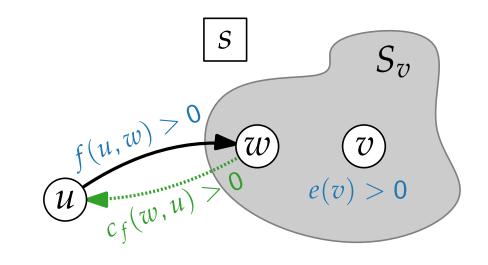
$$\sum_{w\in S_v} e(w) \ge 0.$$

Lemma 6.

For every overflowing vertex v, there is a path from v to s in G_f .

Proof.

- $S_v \leftarrow$ set of vertices reachable from v in G_f .
- Suppose that $s \notin S_v$.
- Since f is a preflow and $s \notin S_v$, we have
- Since $v \in S_v$, we even have $\sum_{w \in S_v} e(w) > 0$.
- There is an edge (u, w) with $u \notin S_v$, $w \in S_v$ and f(u, w) > 0.
- But then $c_f(w, u) > 0$, meaning u is reachable from v.



$$\sum_{w\in S_v} e(w) \ge 0$$

Lemma 7.

During the push-relabel algorithm, we have $h(v) \leq 2|V| - 1$ for all $v \in V$.

Height function:

h(s) = |V| h(t) = 0 $h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f$

RELABEL(u)

Lemma 7.

During the push-relabel algorithm, we have $h(v) \leq 2|V| - 1$ for all $v \in V$.

Proof.

- Statement holds after initialisation.
- \blacksquare Let v be an overflowing vertex that is relabeled.

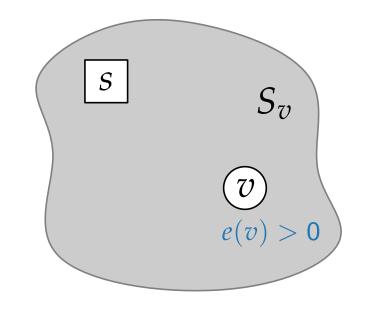
Height function:

$$h(s) = |V|$$

$$h(t) = 0$$

$$h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f$$

RELABEL(u)



Lemma 7.

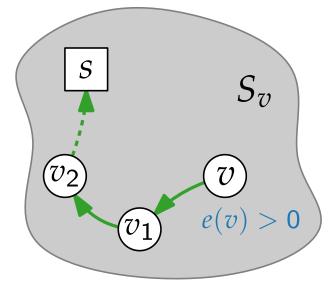
During the push-relabel algorithm, we have $h(v) \leq 2|V| - 1$ for all $v \in V$.

Proof.

- Statement holds after initialisation.
- \blacksquare Let v be an overflowing vertex that is relabeled.
- By Lemma 6, there is a path $v = v_0, v_1, \ldots, v_k = s$ in G_f .

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

RELABEL(u)



Lemma 7.

During the push-relabel algorithm, we have $h(v) \leq 2|V| - 1$ for all $v \in V$.

Proof.

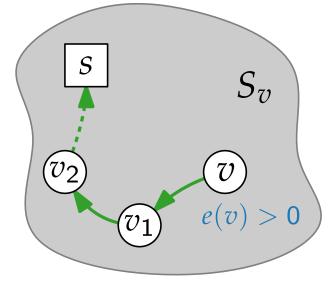
- Statement holds after initialisation.
- Let v be an overflowing vertex that is relabeled.
- By Lemma 6, there is a path $v = v_0, v_1, \ldots, v_k = s$ in G_f .
- Then $h(v_i) \le h(v_{i+1}) + 1$ for $0 \le i \le k 1$.

$$h(s) = |V|$$

$$h(t) = 0$$

$$h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f$$

RELABEL(u)



Lemma 7.

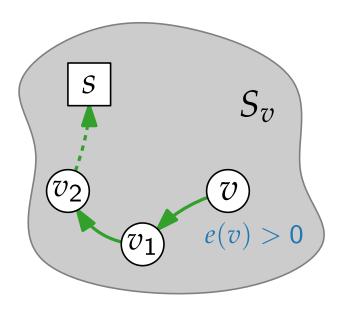
During the push-relabel algorithm, we have $h(v) \leq 2|V| - 1$ for all $v \in V$.

Proof.

- Statement holds after initialisation.
- Let v be an overflowing vertex that is relabeled.
- By Lemma 6, there is a path $v = v_0, v_1, \ldots, v_k = s$ in G_f .
- Then $h(v_i) \le h(v_{i+1}) + 1$ for $0 \le i \le k 1$.
- Since $k \leq |V| 1$, we have $h(v) \leq h(s) + k \leq 2|V| 1$.

$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

RELABEL(u)



Upper Bounds on the Height and $\#\operatorname{RelaBeL}$ Operations

Lemma 7.

During the push-relabel algorithm, we have $h(v) \leq 2|V| - 1$ for all $v \in V$.

Proof.

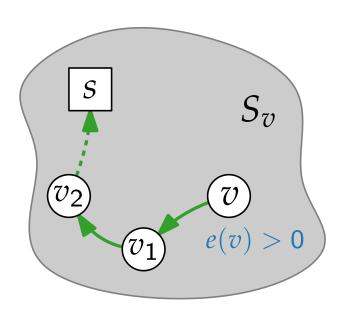
- Statement holds after initialisation.
- Let v be an overflowing vertex that is relabeled.
- By Lemma 6, there is a path $v = v_0, v_1, \ldots, v_k = s$ in G_f .
- Then $h(v_i) \le h(v_{i+1}) + 1$ for $0 \le i \le k 1$.
- Since $k \leq |V| 1$, we have $h(v) \leq h(s) + k \leq 2|V| 1$.

Corollary 8. The push-relabel algorithm executes at most $2|V|^2$ RELABEL operations.

Height function:

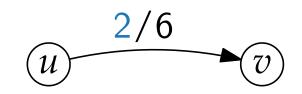
$$\begin{array}{l} h(s) = |V| \\ h(t) = 0 \\ h(u) \le h(v) + 1 \quad \forall (u, v) \in E_f \end{array}$$

RELABEL(u)

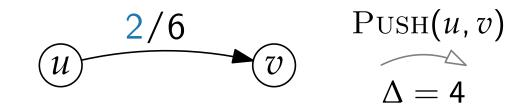


The operation PUSH(u, v) is

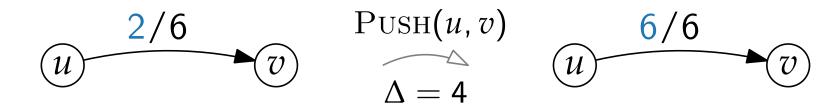
The operation PUSH(u, v) is



The operation PUSH(u, v) is

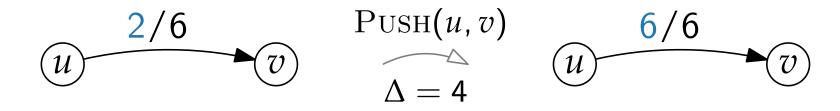


The operation PUSH(u, v) is



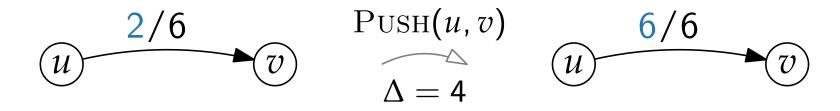
The operation PUSH(u, v) is

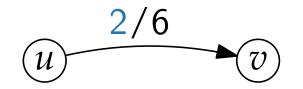
saturating if afterwards $c_f(u, v) = 0$,



The operation PUSH(u, v) is

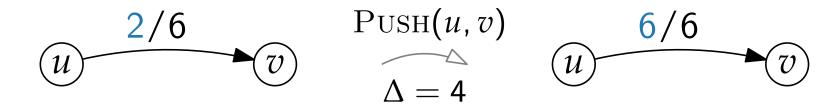
saturating if afterwards $c_f(u, v) = 0$,

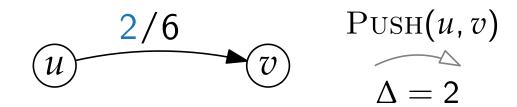




The operation PUSH(u, v) is

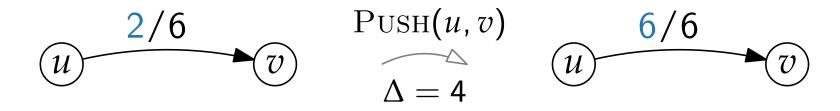
saturating if afterwards $c_f(u, v) = 0$,





The operation PUSH(u, v) is

saturating if afterwards $c_f(u, v) = 0$,





Upper Bound on the Number of Saturating PUSH Operations

Lemma 9.

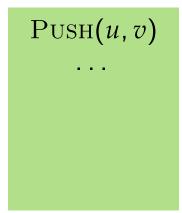
The push-relabel algorithm executes at most $2|V| \cdot |E|$ saturating PUSH operations.

Lemma 9.

The push-relabel algorithm executes at most $2|V| \cdot |E|$ saturating PUSH operations.

Proof.

- Consider saturating PUSH(u, v)
 - $\bullet h(u) = h(v) + 1$



Lemma 9.

The push-relabel algorithm executes at most $2|V| \cdot |E|$ saturating PUSH operations.

Proof.

Consider saturating PUSH(u, v)
 h(u) = h(v) + 1

```
PUSH(u, v)

Condition: u is overflowing,

c_f(u, v) > 0, and h(u) = h(v) + 1

\Delta \leftarrow \min(e(u), c_f(u, v))

if (u, v) \in E then

\mid f(u, v) \leftarrow f(u, v) + \Delta

else

\lfloor f(v, u) \leftarrow f(v, u) + \Delta

e(u) \leftarrow e(u) - \Delta

e(v) \leftarrow e(v) + \Delta
```

For another saturating PUSH(u, v), first PUSH(v, u) necessary h(v) = h(u) + 1 necessary

Pusн(*u*, *v*) Pusн(*v*, *u*)

Upper Bound on the Number of Saturating Push Operations

Lemma 9.

The push-relabel algorithm executes at most $2|V| \cdot |E|$ saturating PUSH operations.

Proof.

Consider saturating PUSH(u, v)
 h(u) = h(v) + 1

```
PUSH(u, v)

Condition: u is overflowing,

c_f(u, v) > 0, and h(u) = h(v) + 1

\Delta \leftarrow \min(e(u), c_f(u, v))

if (u, v) \in E then

\mid f(u, v) \leftarrow f(u, v) + \Delta

else

\lfloor f(v, u) \leftarrow f(v, u) + \Delta

e(u) \leftarrow e(u) - \Delta

e(v) \leftarrow e(v) + \Delta
```

For another saturating PUSH(u, v), first PUSH(v, u) necessary h(v) = h(u) + 1 necessary

After another saturating PUSH(u, v), both h(u) and h(v) have increased by at least two. PUSH(*u*, *v*) PUSH(*v*, *u*) PUSH(*u*, *v*)

Upper Bound on the Number of Saturating Push Operations

Lemma 9.

The push-relabel algorithm executes at most $2|V| \cdot |E|$ saturating PUSH operations.

Proof.

Consider saturating PUSH(u, v)
 h(u) = h(v) + 1

```
PUSH(u, v)

Condition: u is overflowing,

c_f(u, v) > 0, and h(u) = h(v) + 1

\Delta \leftarrow \min(e(u), c_f(u, v))

if (u, v) \in E then

\mid f(u, v) \leftarrow f(u, v) + \Delta

else

\lfloor f(v, u) \leftarrow f(v, u) + \Delta

e(u) \leftarrow e(u) - \Delta

e(v) \leftarrow e(v) + \Delta
```

For another saturating PUSH(u, v), first PUSH(v, u) necessary h(v) = h(u) + 1 necessary

- After another saturating PUSH(u, v), both h(u) and h(v) have increased by at least two.
- But by Lemma 6, $h(u) \leq 2|V| 1$ and $h(v) \leq 2|V| 1$.

Upper Bound on the Number of Saturating Push Operations

Lemma 9.

The push-relabel algorithm executes at most $2|V| \cdot |E|$ saturating PUSH operations.

Proof.

Consider saturating PUSH(u, v)
 h(u) = h(v) + 1

```
PUSH(u, v)

Condition: u is overflowing,

c_f(u, v) > 0, and h(u) = h(v) + 1

\Delta \leftarrow \min(e(u), c_f(u, v))

if (u, v) \in E then

\mid f(u, v) \leftarrow f(u, v) + \Delta

else

\lfloor f(v, u) \leftarrow f(v, u) + \Delta

e(u) \leftarrow e(u) - \Delta

e(v) \leftarrow e(v) + \Delta
```

PUSH(u, v)

PUSH(v, u)

PUSH(u, v)

. . .

For another saturating PUSH(u, v), first PUSH(v, u) necessary h(v) = h(u) + 1 necessary

- After another saturating PUSH(u, v), both h(u) and h(v) have increased by at least two.
- But by Lemma 6, $h(u) \leq 2|V| 1$ and $h(v) \leq 2|V| 1$.

There are at most 2|V| - 1 saturated PUSH operations for edge (u, v).

Lemma 10.

The push-relabel algorithm executes at most $4|V|^2 \cdot |E|$ unsaturating PUSH ops.

Lemma 10.

The push-relabel algorithm executes at most $4|V|^2 \cdot |E|$ unsaturating PUSH ops.

Proof.

• Consider $\mathcal{H} = \sum_{\substack{v \in V \setminus \{s,t\}, \\ v \text{ overflowing}}} h(v).$

After initialization and at the end $\mathcal{H} = 0$.

Lemma 10.

The push-relabel algorithm executes at most $4|V|^2 \cdot |E|$ unsaturating PUSH ops.

Proof.

• Consider $\mathcal{H} = \sum_{\substack{v \in V \setminus \{s,t\}, \\ v \text{ overflowing}}} h(v).$

- After initialization and at the end $\mathcal{H} = 0$.
- A saturating PUSH increases \mathcal{H} by at most 2|V| 1.
- By Lemma 9, all saturating PUSH operations increase \mathcal{H} by at most $(2|V|-1) \cdot 2|V| \cdot |E|$.

Lemma 10.

The push-relabel algorithm executes at most $4|V|^2 \cdot |E|$ unsaturating PUSH ops.

Proof.

• Consider $\mathcal{H} = \sum_{\substack{v \in V \setminus \{s,t\}, \\ v \text{ overflowing}}} h(v).$

- After initialization and at the end $\mathcal{H} = 0$.
- A saturating PUSH increases \mathcal{H} by at most 2|V| 1.
- By Lemma 9, all saturating PUSH operations increase \mathcal{H} by at most $(2|V|-1) \cdot 2|V| \cdot |E|$.
 - By Lemma 7, all RELABEL operations increase $\mathcal H$ by at most $(2|V|-1)\cdot |V|$.

Lemma 10.

The push-relabel algorithm executes at most $4|V|^2 \cdot |E|$ unsaturating PUSH ops.

Proof.

• Consider $\mathcal{H} = \sum_{\substack{v \in V \setminus \{s,t\}, \\ v \text{ overflowing}}} h(v).$

PUSH(u, v) **Condition:** u is overflowing, $c_f(u, v) > 0$, and h(u) = h(v) + 1 $\Delta \leftarrow \min(e(u), c_f(u, v))$ if $(u, v) \in E$ then $\mid f(u, v) \leftarrow f(u, v) + \Delta$ else $\mid f(v, u) \leftarrow f(v, u) + \Delta$ $e(u) \leftarrow e(u) - \Delta$ $e(v) \leftarrow e(v) + \Delta$

- After initialization and at the end $\mathcal{H} = 0$.
- A saturating PUSH increases \mathcal{H} by at most 2|V| 1.
- By Lemma 9, all saturating PUSH operations increase \mathcal{H} by at most $(2|V|-1) \cdot 2|V| \cdot |E|$.

By Lemma 7, all RELABEL operations increase H by at most (2|V| − 1) · |V|.
 An unsaturating PUSH(u, v) decreases H by at least 1 since h(u) − h(v) ≥ 1.

Termination of the Algorithm

Theorem 5.

When the push-relabel algorithm terminates, the computed preflow f is a maximum flow.

Theorem 11.

The push-relabel algorithm terminates after $\mathcal{O}(|V|^2|E|)$ valid PUSH or RELABEL ops.

Proof.

■ Follows by Corollary 8 and Lemmas 9+10.

Implementation

The actual running time depends on the selection order of the overflowing vertices:

FIFO implementation:

Pick overflowing vertex by *first-in-first-out* principle: $\mathcal{O}(|V|^3)$ running time. with dynamic trees: $\mathcal{O}(|V||E|\log \frac{|V|^2}{|E|})$

• Highest label:

For PUSH select highest overflowing vertex: $\mathcal{O}(|V|^2|E|^{\frac{1}{2}})$

Excess scaling:

For PUSH(u, v) choose edge (u, v) such that u is overflowing, e(u) is sufficiently high and e(v) sufficiently small: $O(|E| + |V|^2 \log C)$, where $C = \max_{(u,v) \in E} c(u, v)$

Discussion

- The push-relabel method offers an alternative framework to the Ford-Fulkerson method to develop algorithms that solve the maximum flow problem.
- Push-relabel algorithms are regarded as benchmarks for maximum flow algorithms.
- In practice, heuristics are used to improve the performance of push-relabel algorithms. Any ideas?
- The algorithm can be extended to solve the minimum-cost flow problem.

Literature

Main source:

■ [CLRS Ch26] ← Cormen et al. "Introduction to Algorithms"

Original paper:

■ [Goldberg, Tarjan '88] A new approach to the maximum-flow problem

Links:

Animations of the max-flow algorithms by Ford–Fulkerson and Edmonds–Karp: https://visualgo.net/en/maxflow