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Flow Networks

A flow network G = (V, E) is a digraph (short for “directed graph”) with
� unique source s and sink t,
� no antiparallel edges, and
� a capacity c(u, v) ≥ 0 for every (u, v) ∈ E.
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Flow

An s–t flow in G is a real-valued function f : V ×V → R that satisfies
� flow conservation,

∑
v∈V

f (v, u) = ∑
v∈V

f (u, v) for all u ∈ V \ {s, t}, and

� capacity constraint, 0 ≤ f (u, v) ≤ c(u, v).
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The value | f | of an s–t flow f is defined as

| f | = ∑
v∈V

f (s, v)− ∑
v∈V

f (v, s).
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Maximum flow problem.
Given a flow network G
with source s and sink t,
find an s–t flow of
maximum value.
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By How Much May Flow Change?
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By How Much May Flow Change?

Given G and f , the residual capacity c f for a pair u, v ∈ V is

a b

c f (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E
f (v, u) if (v, u) ∈ E
0 otherwise.

c

c f (a, b) = 3

c f (b, a) = 2

c f (a, c) = 0
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Residual Networks & Augmenting Paths

The residual network G f = (V, E f ) for a flow network G with s–t flow f has

� E f = {(u, v) ∈ V ×V | c f (u, v) > 0}.
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Residual Networks & Augmenting Paths

reverse edges

The residual network G f = (V, E f ) for a flow network G with s–t flow f has

� E f = {(u, v) ∈ V ×V | c f (u, v) > 0}.
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5 - 7

Residual Networks & Augmenting Paths

reverse edges

The residual network G f = (V, E f ) for a flow network G with s–t flow f has

� E f = {(u, v) ∈ V ×V | c f (u, v) > 0}.

/7

/11

/12

/4

/11

/1

/8 /4

/15a

b

t

c

d

s

a

b

t

c

d

s

non-satured edges

/5
/3

/3

/5 /5

flow/capacity

/c f

/5

c f (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E
f (v, u) if (v, u) ∈ E
0 otherwise.

/12

/9

/14

/7/4

/20

/13

1

12

11

7

/16
11

/4
4

An augmenting path is an st-path in G f . ⇒ use to increase f

12
0

19



6 - 1

The Algorithms of Ford–Fulkerson and Edmonds–Karp

FordFulkerson(G = (V, E), c, s, t)
foreach uv ∈ E do

fuv ← 0

while G f contains augmenting path p do
∆← minuv∈p c f (uv)
foreach uv ∈ p do

if uv ∈ E then
fuv ← fuv + ∆

else
fvu ← fvu − ∆

return f

}
initialising zero flow

} return max flow

} residual capacity of paugmentation along p
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� Ford–Fulkerson runs in O(|E| · | f ?|) and Edmonds–Karp in O(|V| · |E|2) time.
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The Max-Flow Min-Cut Theorem
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The Max-Flow Min-Cut Theorem
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Theorem.
For an s–t flow f in a flow network G,
the following conditions are equivalent:
� f is a maximum s–t flow in G.
� G f contains no augmenting paths.

� | f | = c(S, T), which is the capacity of
some s–t cut (S, T) of G.
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The Push–Relabel Idea
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Preflow, Excess Flow, and Height

A preflow in G is a real-value function f : V ×V → R that
satisfies the capacity constraint and, for each u ∈ V \ {s},
� ∑

v∈V
f (v, u)− ∑

v∈V
f (u, v) ≥ 0. u /12

/42
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/16
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The excess flow of a vertex u is
� e(u) = ∑

v∈V
f (v, u)− ∑

v∈V
f (u, v). e(u) = 3

For a flow network G with preflow f , a height function is a
function h : V →N such that
� h(s) = |V|,
� h(t) = 0, and
� h(u) ≤ h(v) + 1 for every residual edge (u, v) ∈ E f .

A vertex u is called overflowing, when e(u) > 0.
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The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆
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Push(u, v)

v
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The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

u
/62

/2
u

/66
v

/6
e(u) = 5

h(u) = 4

e(v) = 1

h(v) = 3

∆ = 4

Example.

Push(u, v)

Example.

v



10 - 9

The Push Operation

Push(u, v)

Condition: u is overflowing, c f (u, v) > 0, and h(u) = h(v) + 1

Effect: Push min(e(u), c f (u, v)) overflow from u to v
∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u)− ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

u
/62

/2
u

/66
v

/6
e(u) = 5

h(u) = 4

e(v) = 1

h(v) = 3

∆ = 4

e(u) = 1 e(v) = 5

Example.

Push(u, v)

h(u) = 4 h(v) = 3

Example.

v
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The Relabel Operation

Relabel(u)

Condition: u is overflowing and h(u) ≤ h(v) for every v ∈ V with (u, v) ∈ E f
Effect: Increase the height of u
h(u)← 1 + min{h(v) : v ∈ V with (u, v) ∈ E f }
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The Relabel Operation

Relabel(u)

Condition: u is overflowing and h(u) ≤ h(v) for every v ∈ V with (u, v) ∈ E f
Effect: Increase the height of u
h(u)← 1 + min{h(v) : v ∈ V with (u, v) ∈ E f }

u

e(u) = 5
h(u) = 4

Example.

v

x

y

z

/13
13

/55
/73

/31
h(v) = 1 h(z) = 6

h(x) = 9
h(y) = 5
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The Relabel Operation

Relabel(u)

Condition: u is overflowing and h(u) ≤ h(v) for every v ∈ V with (u, v) ∈ E f
Effect: Increase the height of u
h(u)← 1 + min{h(v) : v ∈ V with (u, v) ∈ E f }

u

e(u) = 5
h(u) = 4

Example.

v

x

y

z

/13
13

/55
/73

/31
h(v) = 1 h(z) = 6

h(x) = 9
h(y) = 5

Relabel(u)
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The Relabel Operation

Relabel(u)

Condition: u is overflowing and h(u) ≤ h(v) for every v ∈ V with (u, v) ∈ E f
Effect: Increase the height of u
h(u)← 1 + min{h(v) : v ∈ V with (u, v) ∈ E f }

u

e(u) = 5
h(u) = 4

Example.
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/31
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The Relabel Operation

Relabel(u)

Condition: u is overflowing and h(u) ≤ h(v) for every v ∈ V with (u, v) ∈ E f
Effect: Increase the height of u
h(u)← 1 + min{h(v) : v ∈ V with (u, v) ∈ E f }

u

e(u) = 5
h(u) = 4

Example.

v

x

y

z

/13
13

/55
/73

/31
h(v) = 1 h(z) = 6

h(x) = 9
h(y) = 5

Relabel(u)
u

e(u) = 5
h(u) = 6

v

x

y

z

/13
13

/55
/73

/31
h(v) = 1 h(z) = 6

h(x) = 9
h(y) = 5
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The Push-Relabel Algorithm

Push-Relabel(G)

InitPreflow(G, s)
while ∃ applicable Push or Relabel operation x do

apply x
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The Push-Relabel Algorithm

Push-Relabel(G)

InitPreflow(G, s)
while ∃ applicable Push or Relabel operation x do

apply x

InitPreflow(G, s)

foreach v ∈ V do h(v)← 0; e(v)← 0
h(s)← |V|
foreach (u, v) ∈ E do f (u, v)← 0
foreach v such that (s, v) ∈ E do

f (s, v)← c(s, v)
e(v)← c(s, v)
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The Push-Relabel Algorithm

Push-Relabel(G)

InitPreflow(G, s)
while ∃ applicable Push or Relabel operation x do

apply x

InitPreflow(G, s)

foreach v ∈ V do h(v)← 0; e(v)← 0
h(s)← |V|
foreach (u, v) ∈ E do f (u, v)← 0
foreach v such that (s, v) ∈ E do

f (s, v)← c(s, v)
e(v)← c(s, v)

� initializes heights
� pushes max flow over every edge

that leaves s
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Correctness

Part 1.
If the algorithm terminates, the preflow is a maximum flow.

� If an overflowing vertex exists, the algorithm can continue.

� The algorithm maintains f as a preflow and h as a height function.

� The sink t is not reachable from source s in G f .
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Correctness

Part 1.
If the algorithm terminates, the preflow is a maximum flow.

� If an overflowing vertex exists, the algorithm can continue.

� The algorithm maintains f as a preflow and h as a height function.

� The sink t is not reachable from source s in G f .

Part 2.
The algorithm terminates and the heights stay finite.

� Find upper bound on heights.

� Find upper bound for the number of calls to Relabel.

� Find upper bound for the number of calls to Push.
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Continuation

Lemma 1.
If a vertex u is overflowing, either a push or
a relabel operation applies to u.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Continuation

Lemma 1.
If a vertex u is overflowing, either a push or
a relabel operation applies to u.

Proof.
Assuming h(u) is valid, we have
� h(u) ≤ h(v) + 1 for all v with (u, v) ∈ E f .

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
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h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Continuation

Lemma 1.
If a vertex u is overflowing, either a push or
a relabel operation applies to u.

Proof.
Assuming h(u) is valid, we have
� h(u) ≤ h(v) + 1 for all v with (u, v) ∈ E f .
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c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

If no push operation is valid for (u, v) ∈ E f , then

� h(u) ≤ h(v) for all v with (u, v) ∈ E f .

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Continuation

Lemma 1.
If a vertex u is overflowing, either a push or
a relabel operation applies to u.

Proof.
Assuming h(u) is valid, we have
� h(u) ≤ h(v) + 1 for all v with (u, v) ∈ E f .
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h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

If no push operation is valid for (u, v) ∈ E f , then

� h(u) ≤ h(v) for all v with (u, v) ∈ E f .

Therefore, Relabel(u) is applicable.

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f



15 - 1

Maintaining the Preflow

Lemma 2.
The push-relabel algorithm maintains a
preflow f .

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Maintaining the Preflow

Lemma 2.
The push-relabel algorithm maintains a
preflow f .

Proof.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f

� InitPreflow initialises a preflow f . X

� Relabel(u) doesn’t affect f . X

� Push(u, v) maintains f as a preflow. X
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Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
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e(u)← e(u)− ∆
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h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:
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Height function:
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16 - 3

Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f



16 - 4

Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:

� If (v, u) is added to E f , then

h(v) = h(u)− 1 < h(u) + 1.
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∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
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� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:

� If (v, u) is added to E f , then

h(v) = h(u)− 1 < h(u) + 1.

� If (u, v) is removed from E f , then X.

X

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
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Condition: u is overflowing and
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Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:

� Under Relabel(u), h remains a height function:

� If (v, u) is added to E f , then

h(v) = h(u)− 1 < h(u) + 1.

� If (u, v) is removed from E f , then X.

� (u, v) ∈ E f , then h(u) ≤ h(v) + 1

� (w, u) ∈ E f , then h(w) < h(u) + 1

X

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Maintaining the Height Function

Lemma 3.
The push–relabel algorithm
maintains h as a height function.

Proof.
� InitPreflow initialises h as a height function. X

� Under Push(u, v), h remains a height function:

� Under Relabel(u), h remains a height function:

� If (v, u) is added to E f , then

h(v) = h(u)− 1 < h(u) + 1.

� If (u, v) is removed from E f , then X.

� (u, v) ∈ E f , then h(u) ≤ h(v) + 1

� (w, u) ∈ E f , then h(w) < h(u) + 1

X

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆

Relabel(u)

Condition: u is overflowing and
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Height function:
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X
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Reachability of the Sink

Lemma 4.
During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f



17 - 2

Reachability of the Sink

Lemma 4.
During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Proof.
Suppose there is a path s = v0, v1, . . . , vk = t in G f .
Then

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Reachability of the Sink

Lemma 4.
During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Proof.
Suppose there is a path s = v0, v1, . . . , vk = t in G f .
Then

� (vi, vi+1) ∈ E f for 0 ≤ i ≤ k− 1, and

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Proof.
Suppose there is a path s = v0, v1, . . . , vk = t in G f .
Then

� (vi, vi+1) ∈ E f for 0 ≤ i ≤ k− 1, and

� h(vi) ≤ h(vi+1) + 1 for 0 ≤ i ≤ k− 1.

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Reachability of the Sink

Lemma 4.
During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Proof.
Suppose there is a path s = v0, v1, . . . , vk = t in G f .
Then

� (vi, vi+1) ∈ E f for 0 ≤ i ≤ k− 1, and

� h(vi) ≤ h(vi+1) + 1 for 0 ≤ i ≤ k− 1.

⇒ h(s) ≤ h(t) + k = k

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Reachability of the Sink

Lemma 4.
During the execution of the push–relabel algorithm,
there is no path from s to t in G f .

Proof.
Suppose there is a path s = v0, v1, . . . , vk = t in G f .
Then

� (vi, vi+1) ∈ E f for 0 ≤ i ≤ k− 1, and

� h(vi) ≤ h(vi+1) + 1 for 0 ≤ i ≤ k− 1.

⇒ h(s) ≤ h(t) + k = k

But since k < |V|, it follows that h(s) < |V|. 7

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Correctness of the Algorithm (Part I)

Theorem 5.
When the push–relabel algorithm terminates,
the computed preflow f is a maximum flow.
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Correctness of the Algorithm (Part I)

Theorem 5.
When the push–relabel algorithm terminates,
the computed preflow f is a maximum flow.

Proof.
� By Lemma 1, the algorithm stops

when there is no overflowing vertex.

� By Lemma 2, f is a preflow.
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the computed preflow f is a maximum flow.
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� By Lemma 1, the algorithm stops

when there is no overflowing vertex.

� By Lemma 2, f is a preflow.

⇒ f is a flow.
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Correctness of the Algorithm (Part I)
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When the push–relabel algorithm terminates,
the computed preflow f is a maximum flow.

Proof.
� By Lemma 1, the algorithm stops

when there is no overflowing vertex.

� By Lemma 2, f is a preflow.

⇒ f is a flow.

� By Lemma 3, h is a height function.

� So by Lemma 4, there is no s–t path in G f .
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Theorem 5.
When the push–relabel algorithm terminates,
the computed preflow f is a maximum flow.

Proof.
� By Lemma 1, the algorithm stops

when there is no overflowing vertex.

� By Lemma 2, f is a preflow.

⇒ f is a flow.

� By Lemma 3, h is a height function.

� So by Lemma 4, there is no s–t path in G f .

⇒ By the Max-Flow Min-Cut Theorem,
the flow f is a maximum flow.
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Correctness

Part 1.
If the algorithm terminates, the preflow is maximum flow.

� If an overflowing vertex exists, the algorithm can continue.

� The algorithm maintains f as a preflow and h as a height function.

� Sink t is not reachable from source s in G f .

X
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Correctness

Part 1.
If the algorithm terminates, the preflow is maximum flow.

� If an overflowing vertex exists, the algorithm can continue.

� The algorithm maintains f as a preflow and h as a height function.

� Sink t is not reachable from source s in G f .

Part 2.
The algorithm terminates and the heights stay finite.

� Find upper bound on heights.

� Find upper bound for the number of calls to Relabel.

� Find upper bound for the number of calls to Push.

X
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Reachability of the Source in the Residual Graph

Lemma 6.
For every overflowing vertex v,
there is a path from v to s in G f .
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there is a path from v to s in G f .

Proof.
� Sv ← set of vertices reachable from v in G f .

� Suppose that s 6∈ Sv.

� Since f is a preflow and s 6∈ Sv, we have ∑
w∈Sv

e(w) ≥ 0.

� Since v ∈ Sv, we even have ∑
w∈Sv

e(w) > 0.

� There is an edge (u, w) with u 6∈ Sv, w ∈ Sv and f (u, w) > 0.

� But then c f (w, u) > 0, meaning u is reachable from v. 7

v

s Sv

e(v) > 0
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Upper Bounds on the Height and #Relabel Operations

Lemma 7.
During the push–relabel algorithm,
we have h(v) ≤ 2|V| − 1 for all v ∈ V.

Relabel(u)

Condition: u is overflowing and
h(u) ≤ h(v) ∀v ∈ V with (u, v) ∈ E f

h(u)← 1 + min{h(v) : (u, v) ∈ E f }

Height function:

� h(s) = |V|
� h(t) = 0
� h(u) ≤ h(v) + 1 ∀(u, v) ∈ E f
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Saturating and Unsaturating Push Operations

� saturating if afterwards c f (u, v) = 0,

The operation Push(u, v) is
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Upper Bound on the Number of Saturating Push Operations

Lemma 9.
The push–relabel algorithm executes
at most 2|V| · |E| saturating Push operations.

Push(u, v)

Condition: u is overflowing,
c f (u, v) > 0, and h(u) = h(v) + 1

∆← min(e(u), c f (u, v))
if (u, v) ∈ E then

f (u, v)← f (u, v) + ∆
else

f (v, u)← f (v, u) + ∆

e(u)← e(u)− ∆
e(v)← e(v) + ∆
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Upper Bound on the Number of Unsaturating Push Ops

Lemma 10.
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Termination of the Algorithm

Theorem 11.
The push–relabel algorithm terminates after
O(|V|2|E|) valid Push or Relabel ops.

Proof.
� Follows by Corollary 8 and Lemmas 9+10.

Theorem 5.
When the push–relabel algorithm terminates,
the computed preflow f is a maximum flow.
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Implementation

The actual running time depends on the selection order of the overflowing vertices:

� FIFO implementation:
Pick overflowing vertex by first-in-first-out principle: O(|V|3) running time.

with dynamic trees: O(|V||E| log |V|
2

|E| )

� Highest label:

For Push select highest overflowing vertex: O(|V|2|E| 12 )

� Excess scaling:
For Push(u, v) choose edge (u, v) such that u is overflowing, e(u) is sufficiently
high and e(v) sufficiently small : O(|E|+ |V|2 log C), where C = max

(u,v)∈E
c(u, v)
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Discussion

� The push–relabel method offers an alternative framework to the Ford–Fulkerson
method to develop algorithms that solve the maximum flow problem.

� Push–relabel algorithms are regarded as benchmarks for maximum flow algorithms.

� In practice, heuristics are used to improve the performance of push–relabel algo-
rithms. Any ideas?

� The algorithm can be extended to solve the minimum-cost flow problem.
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� [CLRS Ch26] ← Cormen et al. “Introduction to Algorithms”

Original paper:
� [Goldberg, Tarjan ’88] A new approach to the maximum-flow problem
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