Approximation Algorithms

Lecture 12:
SteinerForest via Primal-Dual

Part I:
SteinerForest

SteinerForest

Given: A graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{N}$ and

SteinerForest

Given: A graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{N}$ and a set $R=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ of k vertex pairs.

SteinerForest

Given: A graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{N}$ and a set $R=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ of k vertex pairs.

SteinerForest

Given: A graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{N}$ and a set $R=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ of k vertex pairs.

Task: \quad Find an edge set $F \subseteq E$ of minimum total $\operatorname{cost} c(F)$

SteinerForest

Given: A graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{N}$ and a set $R=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ of k vertex pairs.

Task: \quad Find an edge set $F \subseteq E$ of minimum total cost $c(F)$ such that the subgraph (V, F) connects every pair $\left(s_{i}, t_{i}\right), i=1, \ldots, k$.

SteinerForest

Given: A graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{N}$ and a set $R=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ of k vertex pairs.

Task: \quad Find an edge set $F \subseteq E$ of minimum total cost $c(F)$ such that the subgraph (V, F) connects every pair $\left(s_{i}, t_{i}\right), i=1, \ldots, k$.

SteinerForest

Given: A graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{N}$ and a set $R=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ of k vertex pairs.

Task: \quad Find an edge set $F \subseteq E$ of minimum total cost $c(F)$ such that the subgraph (V, F) connects every pair $\left(s_{i}, t_{i}\right), i=1, \ldots, k$.

Special cases?

SteinerForest

Given: A graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{N}$ and a set $R=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ of k vertex pairs.

Task: \quad Find an edge set $F \subseteq E$ of minimum total cost $c(F)$ such that the subgraph (V, F) connects every pair $\left(s_{i}, t_{i}\right), i=1, \ldots, k$.

SteinerForest

Given: A graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{N}$ and a set $R=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ of k vertex pairs.

Task: \quad Find an edge set $F \subseteq E$ of minimum total cost $c(F)$ such that the subgraph (V, F) connects every pair $\left(s_{i}, t_{i}\right), i=1, \ldots, k$.

SteinerForest

Given: A graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{N}$ and a set $R=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ of k vertex pairs.

Task: \quad Find an edge set $F \subseteq E$ of minimum total cost $c(F)$ such that the subgraph (V, F) connects every pair $\left(s_{i}, t_{i}\right), i=1, \ldots, k$.

Special cases?
ShortestPath ($R=\{s, t\}$)
MinSpanningTree $(R=E)$ SteinerTree $(R=T \times T)$

Approaches?
■ Merge k shortest $s_{i}-t_{i}$ paths

Approaches?

- Merge k shortest $s_{i}-t_{i}$ paths

■ SteinerTree on the set of terminals

Approaches?

■ Merge k shortest $s_{i}-t_{i}$ paths
■ SteinerTree on the set of terminals
Above approaches perform poorly :-(

Approaches?

- Merge k shortest $s_{i}-t_{i}$ paths
- SteinerTree on the set of terminals

Above approaches perform poorly :-(

Approaches?

- Merge k shortest $s_{i}-t_{i}$ paths
- SteinerTree on the set of terminals

Above approaches perform poorly :-(

Approaches?

- Merge k shortest $s_{i}-t_{i}$ paths
- SteinerTree on the set of terminals

Above approaches perform poorly :-(

Approaches?

- Merge k shortest $s_{i}-t_{i}$ paths
- SteinerTree on the set of terminals

Above approaches perform poorly :-(

Approaches?

- Merge k shortest $s_{i}-t_{i}$ paths
- SteinerTree on the set of terminals

Above approaches perform poorly :-(

Approaches?

- Merge k shortest $s_{i}-t_{i}$ paths
- SteinerTree on the set of terminals

Above approaches perform poorly :-(

Difficulty:

Which terminals belong to the same tree of the forest?

Approximation Algorithms

Lecture 12:
SteinerForest via Primal-Dual

Part II:
Primal and Dual LP

An ILP
minimize
subject to

An ILP

minimize
subject to

$$
x_{e} \in\{0,1\} \quad e \in E
$$

An ILP

minimize $\sum_{e \in E} c_{e} x_{e}$
subject to

$$
x_{e} \in\{0,1\} \quad e \in E
$$

An ILP
minimize $\sum_{e \in E} c_{e} x_{e}$
subject to

$$
x_{e} \in\{0,1\} \quad e \in E
$$

An ILP
minimize $\sum_{e \in E} c_{e} x_{e}$
subject to

$$
x_{e} \in\{0,1\} \quad e \in E
$$

An ILP
minimize $\sum_{e \in E} c_{e} x_{e}$
subject to

$$
x_{e} \in\{0,1\} \quad e \in E
$$

minimize $\sum_{e \in E} c_{e} x_{e}$
subject to

$$
x_{e} \in\{0,1\} \quad e \in E
$$

An ILP

minimize $\sum_{e \in E} c_{e} x_{e}$
subject to

$$
x_{e} \in\{0,1\} \quad e \in E
$$

$$
\delta(S):=\{(u, v) \in E: u \in S \text { and } v \notin S\}
$$

An ILP

minimize $\sum_{e \in E} c_{e} x_{e}$
subject to

$$
x_{e} \in\{0,1\} \quad e \in E
$$

$$
\delta(S):=\{(u, v) \in E: u \in S \text { and } v \notin S\}
$$

An ILP

minimize $\sum_{e \in E} c_{e} x_{e}$
subject to $\sum_{e \in \delta(S)} x_{e} \geq 1$

$$
x_{e} \in\{0,1\} \quad e \in E
$$

$$
\delta(S):=\{(u, v) \in E: u \in S \text { and } v \notin S\}
$$

An ILP

minimize $\sum_{e \in E} c_{e} x_{e}$
subject to $\sum_{e \in \delta(S)} x_{e} \geq 1 \quad S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}$ $x_{e} \in\{0,1\} \quad e \in E$

$$
\delta(S):=\{(u, v) \in E: u \in S \text { and } v \notin S\}
$$

An ILP
minimize $\sum_{e \in E} c_{e} x_{e}$
subject to $\sum_{e \in \delta(S)} x_{e} \geq 1 \quad S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}$ $x_{e} \in\{0,1\} \quad e \in E$
where $\mathcal{S}_{i}:=\left\{S \subseteq V:\left|S \cap\left\{s_{i}, t_{i}\right\}\right|=1\right\}$
and $\delta(S):=\{(u, v) \in E: u \in S$ and $v \notin S\}$

An ILP
minimize $\sum_{e \in E} c_{e} x_{e}$
subject to $\sum_{e \in \delta(S)} x_{e} \geq 1 \quad S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}$ $x_{e} \in\{0,1\} \quad e \in E$
where $\mathcal{S}_{i}:=\left\{S \subseteq V:\left|S \cap\left\{s_{i}, t_{i}\right\}\right|=1\right\}$
and $\delta(S):=\{(u, v) \in E: u \in S$ and $v \notin S\}$
\rightsquigarrow exponentially many constraints!

LP-Relaxation and Dual LP

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \in \delta(S)} x_{e} \geq 1 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\} \\
& x_{e} \geq 0 & e \in E
\end{array}
$$

LP-Relaxation and Dual LP

$$
\begin{array}{lll}
\text { minimize } & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \in \delta(S)} x_{e} \geq 1 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}\left(y_{S}\right) \\
& x_{e} \geq 0 & e \in E
\end{array}
$$

LP-Relaxation and Dual LP

minimize $\sum_{e \in E} c_{e} x_{e}$
subject to $\sum_{e \in \delta(S)} x_{e} \geq 1 \quad S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}\left(y_{S}\right)$

$$
x_{e} \geq 0 \quad e \in E
$$

maximize
subject to

$$
y_{S} \geq 0 \quad S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
$$

LP-Relaxation and Dual LP

minimize $\sum_{e \in E} c_{e} x_{e}$
subject to $\sum_{e \in \delta(S)} x_{e} \geq 1 \quad S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}\left(y_{S}\right)$

$$
x_{e} \geq 0 \quad e \in E
$$

maximize

$$
\sum_{\substack{S \in \mathcal{S}_{i} \\ i \in\{1, \ldots, k\}}} y_{S}
$$

subject to

$$
y_{S} \geq 0
$$

$$
S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
$$

LP-Relaxation and Dual LP

minimize $\sum_{e \in E} c_{e} x_{e}$
subject to $\sum_{e \in \delta(S)} x_{e} \geq 1 \quad S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}\left(y_{S}\right)$

$$
x_{e} \geq 0 \quad e \in E
$$

maximize

$$
\sum_{\substack{S \in \mathcal{S}_{i} \\ i \in\{1, \ldots, k\}}} y_{S}
$$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

Intuition for the Dual

maximize	$\sum_{\substack{S \in \mathcal{S}_{i} \\ i \in\{1, \ldots, k\}}} y_{S}$
subject to	$\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} \quad e \in E$
	$y_{S} \geq 0$

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to $\quad \sum_{S: e \in \delta(S)} y_{S} \leq c_{e} \quad e \in E$

$$
y_{S} \geq 0 \quad S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
$$

The graph is a network of bridges, spanning the moats.

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to $\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} \quad e \in E$
$y_{S} \geq 0$
$S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}$
The graph is a network of bridges, spanning the moats.

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $i \in\{1, \ldots, k\}$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $i \in\{1, \ldots, k\}$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $i \in\{1, \ldots, k\}$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$\delta(S)=$ set
of edges /
bridges
over the
moat
around S

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$\delta(S)=$ set
of edges /
bridges
over the
moat
around S
$y_{S}=$ width of the moat around S

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $i \in\{1, \ldots, k\}$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$y_{S}=$ width of the moat around S

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$y_{S}=$ width of the moat around S

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$y_{S}=$ width of the moat around S

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $i \in\{1, \ldots, k\}$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$\delta(S)=$ set
of edges /
bridges
over the
moat
around S
$y_{S}=$ width of the moat around S

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$\delta(S)=$ set
of edges /
bridges
over the
moat
around S
$y_{S}=$ width of the moat around S

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$\delta(S)=$ set
of edges /
bridges
over the
moat
around S
$y_{S}=$ width of the moat around S

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$\delta(S)=$ set
of edges /
bridges
over the
moat
around S
$y_{S}=$ width of the moat around S

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$\delta(S)=$ set
of edges /
bridges
over the
moat
around S
$y_{S}=$ width of the moat around S

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$\delta(S)=$ set
of edges /
bridges
over the
moat
around S
$y_{S}=$ width of the moat around S

Intuition for the Dual

maximize $\sum_{S \in \mathcal{S}_{i}} y_{S}$
 $$
i \in\{1, \ldots, k\}
$$

subject to

$$
\begin{array}{ll}
\sum_{S: e \in \delta(S)} y_{S} \leq c_{e} & e \in E \\
y_{S} \geq 0 & S \in \mathcal{S}_{i}, i \in\{1, \ldots, k\}
\end{array}
$$

The graph is a network of bridges, spanning the moats.

$\delta(S)=$ set
of edges /
bridges
over the
moat
around S
$y_{S}=$ width of the moat around S

Approximation Algorithms

Lecture 12:
SteinerForest via Primal-Dual

Part III:
A First Primal-Dual Approach

Complementary Slackness (Rep.)

minimize	$c^{\top} x$	
subject to	$A x$	$\geq b$
	$x \geq 0$	

maximize	$b^{\top} y$	
subject to	$A^{\top} y$	$\leq c$
	y	≥ 0

Complementary Slackness (Rep.)

minimize $c^{\top} x$ subject to $\quad \begin{aligned} A x & \geq b \\ x & \geq 0\end{aligned}$

maximize	$b^{\top} y$		
subject to	$A^{\top} y$	\leq	c
	y	≥ 0	

Theorem. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right)$ be valid solutions for the primal and dual program (resp.). Then x and y are optimal if and only if the following conditions are met:

Primal CS:

For each $j=1, \ldots, n$: either $x_{j}=0$ or $\sum_{i=1}^{m} a_{i j} y_{i}=c_{j}$
Dual CS:
For each $i=1, \ldots, m$: either $y_{i}=0$ or $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$

A First Primal-Dual Approach

Complementary slackness: $x_{e}>0 \Rightarrow$

A First Primal-Dual Approach

Complementary slackness: $x_{e}>0 \Rightarrow \sum_{S: e \in \delta(S)} y_{S}=c_{e}$.

A First Primal-Dual Approach

Complementary slackness: $x_{e}>0 \Rightarrow \sum_{S: e \in \delta(S)} y_{S}=c_{e}$.
\Rightarrow pick "critical" edges (and only those)

A First Primal-Dual Approach

Complementary slackness: $x_{e}>0 \Rightarrow \sum_{S: e \in \delta(S)} y_{S}=c_{e}$.
\Rightarrow pick "critical" edges (and only those)
Idea: iteratively build a feasible integral primal solution.

A First Primal-Dual Approach

Complementary slackness: $x_{e}>0 \Rightarrow \sum_{S: e \in \delta(S)} y_{S}=c_{e}$.
\Rightarrow pick "critical" edges (and only those)
Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $\left(\sum_{e \in \delta(S)} x_{e}<1\right)$

A First Primal-Dual Approach

Complementary slackness: $x_{e}>0 \Rightarrow \sum_{S: e \in \delta(S)} y_{S}=c_{e}$.
\Rightarrow pick "critical" edges (and only those)
Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $\left(\sum_{e \in \delta(S)} x_{e}<1\right)$
\rightsquigarrow Consider related connected component C !

A First Primal-Dual Approach

Complementary slackness: $x_{e}>0 \Rightarrow \sum_{S: e \in \delta(S)} y_{S}=c_{e}$.
\Rightarrow pick "critical" edges (and only those)
Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $\left(\sum_{e \in \delta(S)} x_{e}<1\right)$
\rightsquigarrow Consider related connected component C !
How do we iteratively improve the dual solution?

A First Primal-Dual Approach

Complementary slackness: $x_{e}>0 \Rightarrow \sum_{S: e \in \delta(S)} y_{S}=c_{e}$.
\Rightarrow pick "critical" edges (and only those)
Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $\left(\sum_{e \in \delta(S)} x_{e}<1\right)$
\leadsto Consider related connected component C !
How do we iteratively improve the dual solution?
\rightsquigarrow Increase y_{C} (until some edge in $\delta(C)$ becomes critical)!

A First Primal-Dual Approach

PrimalDualSteinerForestNaive (G, c, R)

A First Primal-Dual Approach
PrimalDualSteinerForestNaive (G, c, R)

$$
y \leftarrow 0, F \leftarrow \varnothing
$$

return F

A First Primal-Dual Approach

PrimalDualSteinerForestNaive (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing$ while some $\left(s_{i}, t_{i}\right) \in R$ not connected in (V, F) do L return F

A First Primal-Dual Approach

PrimalDualSteinerForestNaive (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing$
while some $\left(s, t_{i}\right) \in R$ not connected in (V, F) do
$C \leftarrow$ comp. in (V, F) with $\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1$ for some i
return F

A First Primal-Dual Approach

PrimalDualSteinerForestNaive (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing$
while some $\left(s_{i}, t_{i}\right) \in R$ not connected in (V, F) do
$C \leftarrow$ comp. in (V, F) with $\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1$ for some i Increase y_{C}
return F

A First Primal-Dual Approach

PrimalDualSteinerForestNaive (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing$
while some $\left(s_{i}, t_{i}\right) \in R$ not connected in (V, F) do
$C \leftarrow$ comp. in (V, F) with $\left|C \cap\left\{s, t_{i}\right\}\right|=1$ for some i Increase y_{C}

$$
\text { until } \sum y_{S}=c_{e^{\prime}} \text { for some } e^{\prime} \in \delta(C) \text {. }
$$

return F

A First Primal-Dual Approach

PrimalDualSteinerForestNaive (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing$
while some $\left(s_{i}, t_{i}\right) \in R$ not connected in (V, F) do
$C \leftarrow$ comp. in (V, F) with $\left|C \cap\left\{s, t_{i}\right\}\right|=1$ for some i Increase y_{C}
until $\sum_{S: e^{\prime} \in \delta(S)} y_{S}=c_{e^{\prime}}$ for some $e^{\prime} \in \delta(C)$.
$F \leftarrow F \cup\left\{e^{\prime}\right\}$
return F

A First Primal-Dual Approach

PrimalDualSteinerForestNaive (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing$
while some $\left(s_{i}, t_{i}\right) \in R$ not connected in (V, F) do
$C \leftarrow$ comp. in (V, F) with $\left|C \cap\left\{s, t_{i}\right\}\right|=1$ for some i Increase y_{C}

$F \leftarrow F \cup\left\{e^{\prime}\right\}$
return F

Running Time?

A First Primal-Dual Approach

PrimalDualSteinerForestNaive (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing$
while some $\left(s_{i}, t_{i}\right) \in R$ not connected in (V, F) do
$C \leftarrow$ comp. in (V, F) with $\left|C \cap\left\{s, t_{i}\right\}\right|=1$ for some i Increase y_{C}
until $\sum y_{S}=c_{e^{\prime}}$ for some $e^{\prime} \in \delta(C)$.
$F \leftarrow F \cup\left\{e^{\prime}\right\}$
return F

Running Time?

Trick: Handle all y_{S} with $y_{S}=0$ implicitly

Analysis

The cost of the solution F can be written as

Analysis

The cost of the solution F can be written as

$$
\sum_{k \in}{ }_{k}=
$$

Analysis

The cost of the solution F can be written as

$$
\sum_{c \in \in} c_{i} c_{i}^{C S} \sum_{r \in F}
$$

Analysis

The cost of the solution F can be written as

Analysis

The cost of the solution F can be written as

$$
\sum_{e \in F} c_{e} \stackrel{C S}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

Analysis

The cost of the solution F can be written as

$$
\sum_{e \in F} c_{e} \stackrel{C S}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

Analysis

The cost of the solution F can be written as

$$
\sum_{e \in F} c_{e} \stackrel{C S}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$
There are examples with $|\delta(S) \cap F|=k$ for each $y_{S}>0$:

Analysis

The cost of the solution F can be written as

$$
\sum_{e \in F} c_{e} \stackrel{C S}{=} \sum_{e \in F} \sum_{S:} \sum_{e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$
There are examples with $|\delta(S) \cap F|=k$ for each $y_{S}>0$:

Analysis

The cost of the solution F can be written as

$$
\sum_{e \in F} c_{e} \stackrel{C S}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$
There are examples with $|\delta(S) \cap F|=k$ for each $y_{S}>0$:

Analysis

The cost of the solution F can be written as

$$
\sum_{e \in F} c_{e} \stackrel{C S}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$
There are examples with $|\delta(S) \cap F|=k$ for each $y_{S}>0$:

Analysis

The cost of the solution F can be written as

$$
\sum_{e \in F} c_{e} \stackrel{C S}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$
There are examples with $|\delta(S) \cap F|=k$ for each $y_{S}>0$:

Analysis

The cost of the solution F can be written as

$$
\sum_{e \in F} c_{e} \stackrel{C S}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$
There are examples with $|\delta(S) \cap F|=k$ for each $y_{S}>0$: But: Average degree of component is 2 !

Analysis

The cost of the solution F can be written as

$$
\sum_{e \in F} c_{e} \stackrel{C S}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$
There are examples with $|\delta(S) \cap F|=k$ for each $y_{S}>0$:
But: Average degree of component is 2 !
\Rightarrow Increase y_{C} for all components C simultaneously!

Lecture 12:
SteinerForest via Primal-Dual

Part IV:
Primal-Dual with Synchronized Increases

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest (G, C, R)
$y \leftarrow 0, F \leftarrow \varnothing, \ell \leftarrow 0$
while some $\left(s_{i}, t_{i}\right) \in R$ not connected in (V, F) do
$\ell \leftarrow \ell+1$

$$
F \leftarrow F \cup\left\{e_{\ell}\right\}
$$

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing, \ell \leftarrow 0$
while some $\left(s, t_{i}\right) \in R$ not connected in (V, F) do
$\ell \leftarrow \ell+1$
$\mathcal{C} \leftarrow\left\{\right.$ comp. C in (V, F) with $\left|C \cap\left\{s, t_{i}\right\}\right|=1$ for some $\left.i\right\}$

$$
F \leftarrow F \cup\left\{e_{\ell}\right\}
$$

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing, \ell \leftarrow 0$
while some $\left(s, t_{i}\right) \in R$ not connected in (V, F) do
$\ell \leftarrow \ell+1$
$\mathcal{C} \leftarrow\left\{\right.$ comp. C in (V, F) with $\left|C \cap\left\{s, t_{i}\right\}\right|=1$ for some $\left.i\right\}$ Increase y_{C} for all $C \in \mathcal{C}$ simultaneously

$$
F \leftarrow F \cup\left\{e_{\ell}\right\}
$$

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing, \ell \leftarrow 0$
while some $\left(s, t_{i}\right) \in R$ not connected in (V, F) do
$\ell \leftarrow \ell+1$
$\mathcal{C} \leftarrow\left\{\right.$ comp. C in (V, F) with $\left|C \cap\left\{s, t_{i}\right\}\right|=1$ for some $\left.i\right\}$ Increase y_{C} for all $C \in \mathcal{C}$ simultaneously until $\sum y_{S}=c_{e_{\ell}}$ for some $e_{\ell} \in \delta(C), C \in \mathcal{C}$. $s: e_{\ell} \in \delta(S)$
$F \leftarrow F \cup\left\{e_{\ell}\right\}$

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest (G, C, R)
$y \leftarrow 0, F \leftarrow \varnothing, \ell \leftarrow 0$
while some $\left(s, t_{i}\right) \in R$ not connected in (V, F) do
$\ell \leftarrow \ell+1$
$\mathcal{C} \leftarrow\left\{\right.$ comp. C in (V, F) with $\left|C \cap\left\{s, t_{i}\right\}\right|=1$ for some $\left.i\right\}$ Increase y_{C} for all $C \in \mathcal{C}$ simultaneously until $\sum y_{S}=c_{\ell}$ for some $e_{\ell} \in \delta(C), C \in \mathcal{C}$. $S: e_{\ell} \in \delta(S)$
$F \leftarrow F \cup\left\{e_{\ell}\right\}$
$F^{\prime} \leftarrow F$
return F^{\prime}

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing, \ell \leftarrow 0$
while some $\left(s, t_{i}\right) \in R$ not connected in (V, F) do
$\ell \leftarrow \ell+1$
$\mathcal{C} \leftarrow\left\{\right.$ comp. C in (V, F) with $\left|C \cap\left\{s, t_{i}\right\}\right|=1$ for some $\left.i\right\}$ Increase y_{C} for all $C \in \mathcal{C}$ simultaneously until $\quad \sum y_{S}=c_{\ell}$ for some $e_{\ell} \in \delta(C), C \in \mathcal{C}$. $s: e_{\ell \in \delta(S)}$
$F \leftarrow F \cup\left\{e_{\ell}\right\}$
$F^{\prime} \leftarrow F$
// Pruning
return F^{\prime}

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest (G, c, R)

$$
y \leftarrow 0, F \leftarrow \varnothing, \ell \leftarrow 0
$$

while some $\left(s_{i}, t_{i}\right) \in R$ not connected in (V, F) do
$\ell \leftarrow \ell+1$
$\mathcal{C} \leftarrow\left\{\right.$ comp. C in (V, F) with $\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1$ for some $\left.i\right\}$ Increase y_{C} for all $C \in \mathcal{C}$ simultaneously until $\quad \sum y_{S}=c_{e}$ for some $e_{\ell} \in \delta(C), C \in \mathcal{C}$. $S: e_{\ell} \in \delta(S)$
$F \leftarrow F \cup\left\{e_{\ell}\right\}$
$F^{\prime} \leftarrow F$
/ / Pruning
for $j \leftarrow \ell$ down to 1 do
return F^{\prime}

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing, \ell \leftarrow 0$
while some $\left(s_{i}, t_{i}\right) \in R$ not connected in (V, F) do
$\ell \leftarrow \ell+1$
$\mathcal{C} \leftarrow\left\{\right.$ comp. C in (V, F) with $\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1$ for some $\left.i\right\}$ Increase y_{C} for all $C \in \mathcal{C}$ simultaneously until $\quad \sum y_{S}=c_{e_{\ell}}$ for some $e_{\ell} \in \delta(C), C \in \mathcal{C}$. $S: e_{\ell} \in \delta(S)$
$F \leftarrow F \cup\left\{e_{\ell}\right\}$
$F^{\prime} \leftarrow F$
/ / Pruning
for $j \leftarrow \ell$ down to 1 do
if $F^{\prime} \backslash\left\{e_{j}\right\}$ is feasible solution then
L
return F^{\prime}

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest (G, c, R)
$y \leftarrow 0, F \leftarrow \varnothing, \ell \leftarrow 0$
while some $\left(s_{i}, t_{i}\right) \in R$ not connected in (V, F) do
$\ell \leftarrow \ell+1$
$\mathcal{C} \leftarrow\left\{\right.$ comp. C in (V, F) with $\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1$ for some $\left.i\right\}$ Increase y_{C} for all $C \in \mathcal{C}$ simultaneously until $\quad \sum y_{S}=c_{e_{\ell}}$ for some $e_{\ell} \in \delta(C), C \in \mathcal{C}$. $S: e_{\ell} \in \delta(S)$
$F \leftarrow F \cup\left\{e_{\ell}\right\}$
$F^{\prime} \leftarrow F$
/ / Pruning
for $j \leftarrow \ell$ down to 1 do
if $F^{\prime} \backslash\left\{e_{j}\right\}$ is feasible solution then
$\left\lfloor F^{\prime} \leftarrow F^{\prime} \backslash\left\{e_{j}\right\}\right.$
return F^{\prime}

Illustration

$G=K_{6}$ with Euclidean edge costs

Illustration

$G=K_{6}$ with Euclidean edge costs

Illustration

$G=K_{6}$ with Euclidean edge costs

Illustration

$G=K_{6}$ with Euclidean edge costs

Illustration

$G=K_{6}$ with Euclidean edge costs

Lecture 12:
SteinerForest via Primal-Dual

Part V:
Structure Lemma

Structure Lemma

Lemma.
For the set \mathcal{C} in any iteration of the algorithm:

Structure Lemma

Lemma.
For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq
$$

Structure Lemma

Lemma.
For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|C| .
$$

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|C| .
$$

Proof. First the intuition...

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|C| .
$$

Proof. First the intuition...

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|C| .
$$

Proof. First the intuition...

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof. First the intuition...

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof. First the intuition...

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof. First the intuition...

$$
\begin{aligned}
& -F^{\prime} \cap C \\
& \cdots \cdots \cdots \cdot F-F^{\prime}
\end{aligned}
$$

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof. First the intuition...

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|C| .
$$

Proof. First the intuition...
$=\delta(C) \cap F^{\prime}$

- $F^{\prime} \cap C$
$\cdots \cdots \cdots-F^{\prime}$

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\left|\delta(C) \cap F^{\prime}\right| \leq 2\right| C \mid .
$$

Proof. First the intuition...
$\cdots m(C) \cap F^{\prime}$

- $F^{\prime} \cap C$
$\cdots \cdots \cdots-F^{\prime}$

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof. First the intuition...
Every connected component C of F is a forest in F^{\prime}. \rightsquigarrow average degree \leq
$\delta(C) \cap F^{\prime}$
$-F^{\prime} \cap C$
$\cdots \cdots \cdots-F^{\prime}$

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof. First the intuition...
Every connected component C of F is a forest in F^{\prime}. \rightsquigarrow average degree ≤ 2
$\delta(C) \cap F^{\prime}$
$-F^{\prime} \cap C$
$\cdots \cdots \cdots-F^{\prime}$

Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof. First the intuition...
Every connected component C of F is a forest in F^{\prime}. \rightsquigarrow average degree ≤ 2
Difficulty: Some C not in \mathcal{C}.
$=\delta(C) \cap F^{\prime}$

- $F^{\prime} \cap C$
$\cdots \cdots \cdots-F^{\prime}$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}| .
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|C|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$. (Ignore components C with $\delta(C) \cap F^{\prime}=\varnothing$.)

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$. (Ignore components C with $\delta(C) \cap F^{\prime}=\varnothing$.)

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.
Claim. G_{i}^{\prime} is a forest. (Ignore components C with $\delta(C) \cap F^{\prime}=\varnothing$.)

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.

Claim. G_{i}^{\prime} is a forest.

Note: $\sum_{C \text { comp. }}\left|\delta(C) \cap F^{\prime}\right|=\sum_{v \in V\left(G_{i}^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v)$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.
Claim. G_{i}^{\prime} is a forest.
Note: $\sum_{C \text { comp. }}\left|\delta(C) \cap F^{\prime}\right|=\sum_{v \in V\left(G_{i}^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v)$

$$
=2\left|E\left(G_{i}^{\prime}\right)\right|
$$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.
Claim. G_{i}^{\prime} is a forest.
Note: $\sum_{C \text { comp. }}\left|\delta(C) \cap F^{\prime}\right|=\sum_{v \in V\left(G_{i}^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v)$

$$
\begin{gathered}
=2\left|E\left(G_{i}^{\prime}\right)\right| \leq 2 \mid V\left(G_{i}^{\prime}\right) \\
\square G_{i}^{*}
\end{gathered}
$$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.
Claim. G_{i}^{\prime} is a forest.
Note: $\sum_{C \text { comp. }}\left|\delta(C) \cap F^{\prime}\right|=\sum_{v \in V\left(G_{i}^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v)$

$$
=2\left|E\left(G_{i}^{\prime}\right)\right| \leq 2\left|V\left(G_{i}^{\prime}\right)\right|
$$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.
Claim. G_{i}^{\prime} is a forest.
Note: $\sum_{C \text { comp. }}\left|\delta(C) \cap F^{\prime}\right|=\sum_{v \in V\left(G_{i}^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v)$

$$
=2\left|E\left(G_{i}^{\prime}\right)\right| \leq 2\left|V\left(G_{i}^{\prime}\right)\right|
$$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.
Claim. G_{i}^{\prime} is a forest.
Note: $\sum_{C \text { comp. }}\left|\delta(C) \cap F^{\prime}\right|=\sum_{v \in V\left(G_{i}^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v)$

$$
=2\left|E\left(G_{i}^{\prime}\right)\right| \leq 2\left|V\left(G_{i}^{\prime}\right)\right|
$$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.
Claim. G_{i}^{\prime} is a forest.
Note: $\sum_{C \text { comp. }}\left|\delta(C) \cap F^{\prime}\right|=\sum_{v \in V\left(G_{i}^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v)$

$$
=2\left|E\left(G_{i}^{\prime}\right)\right| \leq 2\left|V\left(G_{i}^{\prime}\right)\right|
$$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum\left|\delta(C) \cap F^{\prime}\right| \leq 2|C|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.
Claim. G_{i}^{\prime} is a forest.
Note: $\sum_{C \text { comp. }}\left|\delta(C) \cap F^{\prime}\right|=\sum_{v \in V\left(G_{i}^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v)$

$$
=2\left|E\left(G_{i}^{\prime}\right)\right| \leq 2\left|V\left(G_{i}^{\prime}\right)\right|
$$

Claim. Inactive vertices have degree ≥ 2.

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.
Claim. G_{i}^{\prime} is a forest.
Note: $\sum_{C \text { comp. }}\left|\delta(C) \cap F^{\prime}\right|=\sum_{v \in V\left(G_{i}^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v)$

$$
=2\left|E\left(G_{i}^{\prime}\right)\right| \leq 2\left|V\left(G_{i}^{\prime}\right)\right|
$$

Claim. Inactive vertices have degree ≥ 2.
$\Rightarrow \sum_{v \text { active }} \operatorname{deg}_{G^{\prime}}(v) \leq$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.
Claim. G_{i}^{\prime} is a forest.
Note: $\sum_{C \text { comp. }}\left|\delta(C) \cap F^{\prime}\right|=\sum_{v \in V\left(G_{i}^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v)$

$$
=2\left|E\left(G_{i}^{\prime}\right)\right| \leq 2\left|V\left(G_{i}^{\prime}\right)\right|
$$

Claim. Inactive vertices have degree ≥ 2.
$\Rightarrow \sum_{v \text { active }} \operatorname{deg}_{G^{\prime}}(v) \leq$
$2 \cdot\left|V\left(G^{\prime}\right)\right|-2 \cdot \#($ inactive $)$

Proof of the Structure Lemma

Lemma. For the set \mathcal{C} in any iteration of the algorithm:

$$
\sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathcal{C}|
$$

Proof.

For $i=1, \ldots, \ell$, consider i-th iteration (when e_{i} was added to F).
Let $F_{i}=\left\{e_{1}, \ldots, e_{i}\right\}, G_{i}=\left(V, F_{i}\right)$, and $G_{i}^{*}=\left(V, F_{i} \cup F^{\prime}\right)$.
Contract every component C of G_{i} in G_{i}^{*} to a single vertex $\rightsquigarrow G_{i}^{\prime}$.
Claim. G_{i}^{\prime} is a forest.
Note: $\sum_{C \text { comp. }}\left|\delta(C) \cap F^{\prime}\right|=\sum_{v \in V\left(G_{i}^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v)$

$$
=2\left|E\left(G_{i}^{\prime}\right)\right| \leq 2\left|V\left(G_{i}^{\prime}\right)\right|
$$

Claim. Inactive vertices have degree ≥ 2.
$\Rightarrow \sum_{v \text { active }} \operatorname{deg}_{G^{\prime}}(v) \leq$
$2 \cdot\left|V\left(G^{\prime}\right)\right|-2 \cdot \#($ inactive $)=2|\mathcal{C}|$. \square

Approximation Algorithms

Lecture 12:
SteinerForest via Primal-Dual

Part VI:
Analysis

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a 2-approximation for SteinerForest.

Proof.

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

Proof.

As mentioned before,

$$
\sum_{e \in F^{\prime}} c_{e} \stackrel{C S}{=} \sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} .
$$

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

Proof.

As mentioned before,

$$
\sum_{e \in F^{\prime}} c_{e} \stackrel{C S}{=} \sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} .
$$

We prove by induction over the number of iterations of the algorithm that

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

Proof.

As mentioned before,

$$
\sum_{e \in F^{\prime}} c_{e} \stackrel{C S}{=} \sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} .
$$

We prove by induction over the number of iterations of the algorithm that

$$
\sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq
$$

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

Proof.

As mentioned before,

$$
\sum_{e \in F^{\prime}} c_{e} \stackrel{C S}{=} \sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} .
$$

We prove by induction over the number of iterations of the algorithm that

$$
\sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}
$$

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

Proof.

As mentioned before,

$$
\sum_{e \in F^{\prime}} c_{e} \stackrel{C S}{=} \sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} .
$$

We prove by induction over the number of iterations of the algorithm that

$$
\begin{equation*}
\sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S} \tag{*}
\end{equation*}
$$

From that, the claim of the theorem follows.

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a 2-approximation for SteinerForest.
Proof. $\quad \sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}$.

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

$$
\text { Proof. } \quad \sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S} \text {. }
$$

Base case trivial since we start with $y_{S}=0$ for every S.

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.
Proof. $\quad \sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}$.
Base case trivial since we start with $y_{S}=0$ for every S.
Assume that $(*)$ holds at the start of the current iteration.

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.
Proof. $\quad \sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}$.
Base case trivial since we start with $y_{S}=0$ for every S.
Assume that $(*)$ holds at the start of the current iteration. In the current iteration, we increase y_{C} for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

$$
\text { Proof. } \quad \sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S} \text {. }
$$

Base case trivial since we start with $y_{S}=0$ for every S.
Assume that $(*)$ holds at the start of the current iteration. In the current iteration, we increase y_{C} for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.
This increases the left side of $(*)$ by

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

$$
\text { Proof. } \quad \sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S} \text {. }
$$

Base case trivial since we start with $y_{S}=0$ for every S.
Assume that $(*)$ holds at the start of the current iteration. In the current iteration, we increase y_{C} for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.
This increases the left side of $(*)$ by $\varepsilon \cdot \sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right|$

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

$$
\text { Proof. } \quad \sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S} \text {. }
$$

Base case trivial since we start with $y_{S}=0$ for every S.
Assume that $(*)$ holds at the start of the current iteration. In the current iteration, we increase y_{C} for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.
This increases the left side of $(*)$ by $\varepsilon \cdot \sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right|$
and the right side by

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

$$
\text { Proof. } \quad \sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S} \text {. }
$$

Base case trivial since we start with $y_{S}=0$ for every S.
Assume that $(*)$ holds at the start of the current iteration. In the current iteration, we increase y_{C} for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.
This increases the left side of $(*)$ by $\varepsilon \cdot \sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right|$
and the right side by $\varepsilon \cdot 2|\mathcal{C}|$.

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

Proof.

$$
\begin{equation*}
\sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S} \tag{*}
\end{equation*}
$$

Base case trivial since we start with $y_{S}=0$ for every S.
Assume that $(*)$ holds at the start of the current iteration. In the current iteration, we increase y_{C} for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.
This increases the left side of $(*)$ by $\varepsilon \cdot \sum\left|\delta(C) \cap F^{\prime}\right|$ and the right side by $\varepsilon \cdot 2|\mathcal{C}|$.

Structure lemma \Rightarrow

Analysis

Theorem. The Primal-Dual algorithm with synchronized increases yields a
2-approximation for SteinerForest.

Proof.

$$
\begin{equation*}
\sum_{S}\left|\delta(S) \cap F^{\prime}\right| \cdot y_{S} \leq 2 \sum_{S} y_{S} . \tag{*}
\end{equation*}
$$

Base case trivial since we start with $y_{S}=0$ for every S.
Assume that $(*)$ holds at the start of the current iteration. In the current iteration, we increase y_{C} for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.
This increases the left side of $(*)$ by $\varepsilon \cdot \sum_{C \in \mathcal{C}}\left|\delta(C) \cap F^{\prime}\right|$ and the right side by $\varepsilon \cdot 2|\mathcal{C}|$.
Structure lemma $\Rightarrow(*)$ also holds after the current iteration.

Summary

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Sunnmary

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Is our analysis tight?

Summary

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Is our analysis tight?

$$
\boldsymbol{\varepsilon}_{1}=s_{n}
$$

$$
t_{2}=s_{1}
$$

$$
t_{n}=s_{n-1}
$$

$$
t_{3}=s_{2} \square
$$

Summary

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Is our analysis tight?

$$
\mathbf{\varepsilon}_{1}=s_{n}
$$

$$
t_{2}=s_{1} \square
$$

$$
o \quad t_{n}=s_{n-1}
$$

$$
t_{3}=s_{2}
$$

Sunn

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.
Is our analysis tight?

Sunnmary

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.
Is our analysis tight?

Summary

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.
Is our analysis tight?

Summary

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.
Is our analysis tight?

Summary

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.
Is our analysis tight?

$$
t_{2}=s_{1}
$$

$$
t_{n}=s_{n-1}
$$

$$
\mathrm{ALG}=(2-\varepsilon)(n-1)
$$

Summary

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.
Is our analysis tight?

$$
t_{2}=s_{1}
$$

Summary

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.
Is our analysis tight?

$$
t_{2}=s_{1}
$$

$$
t_{3}=s_{2}
$$

$$
\begin{aligned}
\mathrm{ALG} & =(2-\varepsilon)(n-1) \\
\mathrm{OPT} & =n
\end{aligned}
$$

Can we do better?

Summary

Theorem. The Primal-Dual algorithm with synchronized increases gives a
2-approximation for SteinerForest.
Is our analysis tight?

$$
t_{2}=s_{1}
$$

$$
t_{3}=s_{2}{ }^{\prime}
$$

$$
\begin{aligned}
\mathrm{ALG} & =(2-\varepsilon)(n-1) \\
\mathrm{OPT} & =n
\end{aligned}
$$

Can we do better?
No better approximation factor is known. :-(

Summary

Theorem. The Primal-Dual algorithm with synchronized increases gives a
2-approximation for SteinerForest.
Is our analysis tight?

$$
t_{2}=s_{1}
$$

$$
t_{3}=s_{2}
$$

$$
\begin{aligned}
& \mathrm{ALG}=(2-\varepsilon)(n-1) \\
& \mathrm{OPT}=n
\end{aligned}
$$

Can we do better?
No better approximation factor is known. :-(The integrality gap is $2-1 / n$.

Summary

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Is our analysis tight?

$$
t_{2}=s_{1}
$$

$$
t_{3}=s_{2}
$$

$$
\begin{aligned}
\mathrm{ALG} & =(2-\varepsilon)(n-1) \\
\mathrm{OPT} & =n
\end{aligned}
$$

Can we do better?
No better approximation factor is known. :-(
The integrality gap is $2-1 / n$.
SteinerForest (as SteinerTree) cannot be approximated within factor $\frac{96}{95} \approx 1.0105$ (unless $\mathrm{P}=\mathrm{NP}$). [Chlebik, Chlebiková '08]

