Approximation Algorithms

Lecture 11:
MaxSat via Randomized Rounding

Part I:

Maximum Satisfiability (MaxSat)

Maximum Satisfiability (MaxSAt)

Given: Boolean variables x_{1}, \ldots, x_{n},

Maximum Satisfiability (MaxSat)

Given: Boolean variables x_{1}, \ldots, x_{n}, clauses C_{1}, \ldots, C_{m}

Maximum Satisfiability (MaxSAt)

Given: Boolean variables x_{1}, \ldots, x_{n}, clauses C_{1}, \ldots, C_{m} with weight w_{1}, \ldots, w_{m}.

Maximum Satisfiability (MaxSat)

Given: Boolean variables x_{1}, \ldots, x_{n}, clauses C_{1}, \ldots, C_{m} with weight w_{1}, \ldots, w_{m}.

Task:
Find an assignment of the variables x_{1}, \ldots, x_{n}

Maximum Satisfiability (MaxSat)

Given: Boolean variables x_{1}, \ldots, x_{n}, clauses C_{1}, \ldots, C_{m} with weight w_{1}, \ldots, w_{m}.

Task: Find an assignment of the variables x_{1}, \ldots, x_{n} such that the total weight of the satisfied clauses is maximized.

Maximum Satisfiability (MaxSat)

Given: Boolean variables x_{1}, \ldots, x_{n}, clauses C_{1}, \ldots, C_{m} with weight w_{1}, \ldots, w_{m}.

Task: Find an assignment of the variables x_{1}, \ldots, x_{n} such that the total weight of the satisfied clauses is maximized.

Literal: Variable or negation of variable - e.g. $x_{1}, \overline{x_{1}}$

Maximum Satisfiability (MaxSat)

Given: Boolean variables x_{1}, \ldots, x_{n}, clauses C_{1}, \ldots, C_{m} with weight w_{1}, \ldots, w_{m}.

Task: Find an assignment of the variables x_{1}, \ldots, x_{n} such that the total weight of the satisfied clauses is maximized.

Literal: Variable or negation of variable - e.g. $x_{1}, \overline{x_{1}}$
Clause: Disjunction of literals - e.g. $x_{1} \vee \overline{x_{2}} \vee x_{3}$

Maximum Satisfiability (MaxSat)

Given: Boolean variables x_{1}, \ldots, x_{n}, clauses C_{1}, \ldots, C_{m} with weight w_{1}, \ldots, w_{m}.

Task: Find an assignment of the variables x_{1}, \ldots, x_{n} such that the total weight of the satisfied clauses is maximized.

Literal: Variable or negation of variable - e.g. $x_{1}, \overline{x_{1}}$
Clause: Disjunction of literals - e.g. $x_{1} \vee \overline{x_{2}} \vee x_{3}$
Length of a clause: Number of literals

Maximum Satisfiability (MaxSat)

Given: Boolean variables x_{1}, \ldots, x_{n}, clauses C_{1}, \ldots, C_{m} with weight w_{1}, \ldots, w_{m}.

Task: Find an assignment of the variables x_{1}, \ldots, x_{n} such that the total weight of the satisfied clauses is maximized.

Literal: Variable or negation of variable - e.g. $x_{1}, \overline{x_{1}}$
Clause: Disjunction of literals - e.g. $x_{1} \vee \overline{x_{2}} \vee x_{3}$
Length of a clause: Number of literals
Problem is NP-hard since Satisfiability (Sat) is NP-hard: Is a given formula in conjunctive normal form satisfiable?

Maximum Satisfiability (MaxSat)

Given: Boolean variables x_{1}, \ldots, x_{n}, clauses C_{1}, \ldots, C_{m} with weight w_{1}, \ldots, w_{m}.

Task: Find an assignment of the variables x_{1}, \ldots, x_{n} such that the total weight of the satisfied clauses is maximized.

Literal: Variable or negation of variable - e.g. $x_{1}, \overline{x_{1}}$
Clause: Disjunction of literals - e.g. $x_{1} \vee \overline{x_{2}} \vee x_{3}$
Length of a clause: Number of literals
Problem is NP-hard since Satisfiability (Sat) is NP-hard: Is a given formula in conjunctive normal form satisfiable?
E.g. $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee \overline{x_{4}}\right)$.

Lecture 11:
MaxSat via Randomized Rounding

Part II:

A Simple Randomized Algorithm

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected -approximation for MaxSat.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected 1/2-approximation for MaxSat.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected 1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected
1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected
1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

$$
E[W]=
$$

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected
1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=
$$

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected 1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} \Upsilon_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=
$$

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected 1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected 1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

$l_{j}:=\operatorname{length}\left(C_{j}\right) . \Rightarrow$

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected 1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

$l_{j}:=$ length $\left(C_{j}\right) . \Rightarrow \operatorname{Pr}\left[C_{j}\right.$ satisfied $]=$

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected 1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

$l_{j}:=\operatorname{length}\left(C_{j}\right) . \Rightarrow \operatorname{Pr}\left[C_{j}\right.$ satisfied $]=1-(1 / 2)^{l_{j}} \geq$

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected 1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

$l_{j}:=\operatorname{length}\left(C_{j}\right) . \Rightarrow \operatorname{Pr}\left[C_{j}\right.$ satisfied $]=1-(1 / 2)^{l_{j}} \geq 1 / 2$.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected 1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} \Upsilon_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

$l_{j}:=\operatorname{length}\left(C_{j}\right) . \Rightarrow \operatorname{Pr}\left[C_{j}\right.$ satisfied $]=1-(1 / 2)^{l_{j}} \geq 1 / 2$.
Thus, $E[W] \geq$

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected 1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

$l_{j}:=\operatorname{length}\left(C_{j}\right) . \Rightarrow \operatorname{Pr}\left[C_{j}\right.$ satisfied $]=1-(1 / 2)^{l_{j}} \geq 1 / 2$.
Thus, $E[W] \geq 1 / 2 \sum_{j=1}^{m} w_{j} \geq$

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability $1 / 2$ provides an expected 1/2-approximation for MaxSat.

Proof.

Let $Y_{j} \in\{0,1\}$ be a random variable for the truth value of clause C_{j}.
Let W be a random variable for the total weight of the satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

$l_{j}:=\operatorname{length}\left(C_{j}\right) . \Rightarrow \operatorname{Pr}\left[C_{j}\right.$ satisfied $]=1-(1 / 2)^{l_{j}} \geq 1 / 2$.
Thus, $E[W] \geq 1 / 2 \sum_{j=1}^{m} w_{j} \geq \mathrm{OPT} / 2$. \square

Lecture 11:
MaxSat via Randomized Rounding

Part III:

Derandomization by Conditional Expectation

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1 /2-approximation algorithm for MaxSat.

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
Namely: set $x_{1}=1 \Leftrightarrow E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$.

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
Namely: set $x_{1}=1 \Leftrightarrow E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$.
$E[W]=$

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
Namely: set $x_{1}=1 \Leftrightarrow E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$.
$E[W]=\left(E\left[W \mid x_{1}=0\right]+E\left[W \mid x_{1}=1\right]\right) / 2$.

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
Namely: set $x_{1}=1 \Leftrightarrow E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$.
$E[W]=\left(E\left[W \mid x_{1}=0\right]+E\left[W \mid x_{1}=1\right]\right) / 2$.

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
Namely: set $x_{1}=1 \Leftrightarrow E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$.
$E[W]=\left(E\left[W \mid x_{1}=0\right]+E\left[W \mid x_{1}=1\right]\right) / 2$.
[because of original
random choice of x_{1}]
If x_{1} was set to $b_{1} \in\{0,1\}$,

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
Namely: set $x_{1}=1 \Leftrightarrow E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$.
$E[W]=\left(E\left[W \mid x_{1}=0\right]+E\left[W \mid x_{1}=1\right]\right) / 2$.
[because of original
random choice of x_{1}]
If x_{1} was set to $b_{1} \in\{0,1\}$, then $E\left[W \mid x_{1}=b_{1}\right] \geq$

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
Namely: set $x_{1}=1 \Leftrightarrow E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$.
$E[W]=\left(E\left[W \mid x_{1}=0\right]+E\left[W \mid x_{1}=1\right]\right) / 2$.
[because of original
random choice of x_{1}]
If x_{1} was set to $b_{1} \in\{0,1\}$, then $E\left[W \mid x_{1}=b_{1}\right] \geq E[W] \geq$

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
Namely: set $x_{1}=1 \Leftrightarrow E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$.
$E[W]=\left(E\left[W \mid x_{1}=0\right]+E\left[W \mid x_{1}=1\right]\right) / 2$.
[because of original
random choice of x_{1}]
If x_{1} was set to $b_{1} \in\{0,1\}$,
then $E\left[W \mid x_{1}=b_{1}\right] \geq E[W] \geq \mathrm{OPT} / 2$.

Derandomization by Conditional Expectation

Assume (by induction) that we have set x_{1}, \ldots, x_{i} to b_{1}, \ldots, b_{i} such that

Derandomization by Conditional Expectation

Assume (by induction) that we have set x_{1}, \ldots, x_{i} to b_{1}, \ldots, b_{i} such that

$$
E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq \mathrm{OPT} / 2
$$

Derandomization by Conditional Expectation

Assume (by induction) that we have set x_{1}, \ldots, x_{i} to b_{1}, \ldots, b_{i} such that

$$
E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq \mathrm{OPT} / 2
$$

Then (similar to the base case):

Derandomization by Conditional Expectation

Assume (by induction) that we have set x_{1}, \ldots, x_{i} to b_{1}, \ldots, b_{i} such that

$$
E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq \mathrm{OPT} / 2
$$

Then (similar to the base case):

$$
\left.\left.\begin{array}{rl}
\left(E \left[W \mid x_{1}\right.\right. & =b_{1}, \ldots, x_{i}
\end{array}=b_{i}, x_{i+1}=0\right] ~ 子 ~+E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=1\right]\right) / 2 \text { }
$$

Derandomization by Conditional Expectation

Assume (by induction) that we have set x_{1}, \ldots, x_{i} to b_{1}, \ldots, b_{i} such that

$$
E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq \mathrm{OPT} / 2
$$

Then (similar to the base case):

$$
\begin{aligned}
&\left(E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=0\right]\right. \\
&\left.+E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=1\right]\right) / 2 \\
&=E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq \mathrm{OPT} / 2
\end{aligned}
$$

Derandomization by Conditional Expectation

Assume (by induction) that we have set x_{1}, \ldots, x_{i} to b_{1}, \ldots, b_{i} such that

$$
E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq \mathrm{OPT} / 2
$$

Then (similar to the base case):

$$
\begin{aligned}
& \left(E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=0\right]\right. \\
+E\left[W \mid x_{1}=\right. & \left.\left.b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=1\right]\right) / 2 \\
= & E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq \mathrm{OPT} / 2
\end{aligned}
$$

So we set $x_{i+1}=1 \Leftrightarrow$

Derandomization by Conditional Expectation

Assume (by induction) that we have set x_{1}, \ldots, x_{i} to b_{1}, \ldots, b_{i} such that

$$
E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq \mathrm{OPT} / 2
$$

Then (similar to the base case):

$$
\begin{aligned}
& \left(E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=0\right]\right. \\
+E\left[W \mid x_{1}=\right. & \left.\left.b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=1\right]\right) / 2 \\
= & E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq \mathrm{OPT} / 2
\end{aligned}
$$

So we set $x_{i+1}=1 \Leftrightarrow$

$$
\begin{aligned}
E\left[W \mid x_{1}\right. & \left.=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=1\right] \\
\geq E\left[W \mid x_{1}\right. & \left.=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=0\right]
\end{aligned}
$$

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_{1}=b_{1}, \ldots, x_{i}=b_{i}$ and a clause C_{j}.

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_{1}=b_{1}, \ldots, x_{i}=b_{i}$ and a clause C_{j}.

If C_{j} is already satisfied, then it contributes exactly $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_{1}=b_{1}, \ldots, x_{i}=b_{i}$ and a clause C_{j}.

If C_{j} is already satisfied, then it contributes exactly w_{j} to $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_{1}=b_{1}, \ldots, x_{i}=b_{i}$ and a clause C_{j}.

If C_{j} is already satisfied, then it contributes exactly w_{j} to $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.

If C_{j} is not yet satisfied and contains k unassigned variables, then it contributes exactly
$E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_{1}=b_{1}, \ldots, x_{i}=b_{i}$ and a clause C_{j}.

If C_{j} is already satisfied, then it contributes exactly w_{j} to $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.

If C_{j} is not yet satisfied and contains k unassigned variables, then it contributes exactly $w_{j}\left(1-(1 / 2)^{k}\right)$ to $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_{1}=b_{1}, \ldots, x_{i}=b_{i}$ and a clause C_{j}.

If C_{j} is already satisfied, then it contributes exactly w_{j} to $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.

If C_{j} is not yet satisfied and contains k unassigned variables, then it contributes exactly $w_{j}\left(1-(1 / 2)^{k}\right)$ to $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.

The conditional expectation is simply the sum of the contributions from each clause.

Summary

Using Conditional Expectation is a standard procedure with which many randomized algorithms can be derandomized.

Summary

Using Conditional Expectation is a standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

Summary

Using Conditional Expectation is a standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Summary

Using Conditional Expectation is a standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.
Quality of the obtained solution is then at least as high as the expected value.

Summary

Using Conditional Expectation is a standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.
Quality of the obtained solution is then at least as high as the expected value.

The algorithm iteratively sets the variables and greedily decides for the locally best assignment.

Summary

Using Conditional Expectation is a standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.
Quality of the obtained solution is then at least as high as the expected value.

The algorithm iteratively sets the variables and greedily decides for the locally best assignment.

Lecture 11:
MaxSat via Randomized Rounding

Part IV:
Randomized Rounding

An ILP

maximize

subject to

where $\quad C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \overline{x_{i}}$ for $j=1, \ldots, m$.

An ILP

maximize

subject to

$$
y_{i} \in\{0,1\},
$$

$$
\text { for } i=1, \ldots, n
$$

where $\quad C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$ for $j=1, \ldots, m$.

An ILP

maximize

subject to

$$
\begin{aligned}
& y_{i} \in\{0,1\}, \\
& z_{j} \in\{0,1\},
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } i=1, \ldots, n \\
& \text { for } j=1, \ldots, m
\end{aligned}
$$

where $\quad C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \overline{x_{i}}$ for $j=1, \ldots, m$.

An ILP

$\operatorname{maximize} \quad \sum_{j=1}^{m} w_{j} z_{j}$
subject to

$$
\begin{aligned}
& y_{i} \in\{0,1\}, \\
& z_{j} \in\{0,1\},
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } i=1, \ldots, n \\
& \text { for } j=1, \ldots, m
\end{aligned}
$$

where $\quad C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \overline{x_{i}}$ for $j=1, \ldots, m$.

An ILP

$$
\begin{array}{lll}
\text { maximize } & \sum_{j=1}^{m} w_{j} z_{j} & \\
\text { subject to } & \sum_{i \in P_{j}}+\sum_{i \in N_{j}} & \text { for } j=1, \ldots, m \\
& y_{i} \in\{0,1\}, & \text { for } i=1, \ldots, n \\
& z_{j} \in\{0,1\}, & \text { for } j=1, \ldots, m
\end{array}
$$

where $\quad C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \overline{x_{i}}$ for $j=1, \ldots, m$.

An ILP

$$
\begin{aligned}
\text { maximize } & \sum_{j=1}^{m} w_{j} z_{j} \\
\text { subject to } & \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}} \\
& y_{i} \in\{0,1\}, \\
& z_{j} \in\{0,1\},
\end{aligned}
$$

$$
\text { for } j=1, \ldots, m
$$

$$
\text { for } i=1, \ldots, n
$$

$$
\text { for } j=1, \ldots, m
$$

where $\quad C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \overline{x_{i}}$ for $j=1, \ldots, m$.

An ILP

$$
\begin{array}{rll}
\text { maximize } & \sum_{j=1}^{m} w_{j} z_{j} & \\
\text { subject to } & \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) & \text { for } j=1, \ldots, m \\
& y_{i} \in\{0,1\}, & \text { for } i=1, \ldots, n \\
& z_{j} \in\{0,1\}, & \text { for } j=1, \ldots, m
\end{array}
$$

where $\quad C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$ for $j=1, \ldots, m$.

An ILP

$$
\begin{array}{rll}
\text { maximize } & \sum_{j=1}^{m} w_{j} z_{j} & \\
\text { subject to } & \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq & \text { for } j=1, \ldots, m \\
& y_{i} \in\{0,1\}, & \text { for } i=1, \ldots, n \\
& z_{j} \in\{0,1\}, & \text { for } j=1, \ldots, m
\end{array}
$$

where $\quad C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$ for $j=1, \ldots, m$.

An ILP

$$
\begin{array}{rll}
\text { maximize } & \sum_{j=1}^{m} w_{j} z_{j} & \\
\text { subject to } & \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j} & \text { for } j=1, \ldots, m \\
& y_{i} \in\{0,1\}, & \text { for } i=1, \ldots, n \\
& z_{j} \in\{0,1\}, & \text { for } j=1, \ldots, m
\end{array}
$$

where $\quad C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$ for $j=1, \ldots, m$.

... and its Relaxation

maximize $\sum_{j=1}^{m} w_{j} z_{j}$
subject to $\quad \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}$ for $j=1, \ldots, m$
$0 \leq y_{i} \leq 1$,
for $i=1, \ldots, n$
$0 \leq z_{j} \leq 1$,
for $j=1, \ldots, m$
where $\quad C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$ for $j=1, \ldots, m$

Randomized Rounding

Theorem. Let $\left(y^{*}, z^{*}\right)$ be an optimal solution to the LP-relaxation.

Randomized Rounding

Theorem. Let $\left(y^{*}, z^{*}\right)$ be an optimal solution to the LP-relaxation. Independently setting each variable x_{i} to 1

Randomized Rounding

Theorem. Let $\left(y^{*}, z^{*}\right)$ be an optimal solution to the LP-relaxation. Independently setting each variable x_{i} to 1 with probability y_{i}^{*} provides a)-approximation for MaxSat.

Randomized Rounding

Theorem. Let $\left(y^{*}, z^{*}\right)$ be an optimal solution to the LP-relaxation. Independently setting each variable x_{i} to 1 with probability y_{i}^{*} provides a ($1-1 / e$)-approximation for MaxSAt.

Randomized Rounding

Theorem. Let $\left(y^{*}, z^{*}\right)$ be an optimal solution to the LP-relaxation. Independently setting each variable x_{i} to 1 with probability y_{i}^{*} provides a ($1-1 / e$)-approximation for MaxSAt.
≈ 0.63

Lecture 11:
MaxSat via Randomized Rounding

Part V:

Randomized Rounding - Proof

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$)

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$ (i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$)

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$)

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$) with $f(0)=a$

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$) with $f(0)=a$

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$) with $f(0)=a$ and $f(1)=a+b$

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$) with $f(0)=a$ and $f(1)=a+b$

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$) with $f(0)=a$ and $f(1)=a+b$

$$
\Rightarrow f(x) \geq b x+a \text { for } x \in[0,1] .
$$

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$) with $f(0)=a$ and $f(1)=a+b$

$$
\Rightarrow f(x) \geq b x+a \text { for } x \in[0,1] .
$$

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$) with $f(0)=a$ and $f(1)=a+b$

Arithmetic-Geometric Mean Inequality (AGMI):

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$) with $f(0)=a$ and $f(1)=a+b$

Arithmetic-Geometric Mean Inequality (AGMI):
For all non-negative numbers a_{1}, \ldots, a_{k} :

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$) with $f(0)=a$ and $f(1)=a+b$

Arithmetic-Geometric Mean Inequality (AGMI):
For all non-negative numbers a_{1}, \ldots, a_{k} :

$$
\left(\prod_{i=1}^{k} a_{i}\right)^{1 / k} \leq
$$

Mathematical Toolkit

Let f be a function that is concave on $[0,1]$
(i.e. $f^{\prime \prime}(x) \leq 0$ on $[0,1]$) with $f(0)=a$ and $f(1)=a+b$

Arithmetic-Geometric Mean Inequality (AGMI):
For all non-negative numbers a_{1}, \ldots, a_{k} :

$$
\left(\prod_{i=1}^{k} a_{i}\right)^{1 / k} \leq \frac{1}{k}\left(\sum_{i=1}^{k} a_{i}\right)
$$

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=
$$

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right)
$$

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}
$$

$$
\leq
$$

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}
$$

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}
$$

$\prod_{i=1}^{\left(\prod_{i}^{a_{i}}\right)^{1 / k} \leq \frac{1}{k}\left(\sum_{i=1}^{k} a_{i}\right)} \leq \quad\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)$

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}
$$

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}
$$

$\left(\prod_{i=1}^{k} a_{i}\right)^{1 / k} \leq \frac{1}{k}\left(\sum_{i=1}^{k} a_{i}\right)$	
	$\leq\left[\frac{1}{l_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}}$
	$=\left[1-\frac{1}{l_{j}}\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)\right]^{l_{j}}$

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}
$$

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}
$$

$$
\begin{aligned}
& \leq\left[\frac{1}{l_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}} \\
& =[1-\frac{1}{l_{j}} \underbrace{\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)}_{\geq}]^{l_{j}} \\
&
\end{aligned}
$$

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}
$$

Randomized Rounding (Proof)

Consider a fixed clause C_{j} of length l_{j}. Then we have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}
$$

Randomized Rounding (Proof)

The function $f\left(z_{j}^{*}\right)=1-\left(1-\frac{z_{j}^{*}}{L_{j}}\right)^{l_{j}}$ is concave on $[0,1]$.

Randomized Rounding (Proof)

The function $f\left(z_{j}^{*}\right)=1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}}$ is concave on $[0,1]$. Thus
$\operatorname{Pr}\left[C_{j}\right.$ satisfied $] \geq$

Randomized Rounding (Proof)

The function $f\left(z_{j}^{*}\right)=1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}}$ is concave on $[0,1]$. Thus

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq f\left(z_{j}^{*}\right) \geq
$$

Randomized Rounding (Proof)

The function $f\left(z_{j}^{*}\right)=1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}}$ is concave on $[0,1]$. Thus

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq f\left(z_{j}^{*}\right) \geq f(1) \cdot z_{j}^{*}+f(0)
$$

$$
\geq
$$

Randomized Rounding (Proof)

The function $f\left(z_{j}^{*}\right)=1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}}$ is concave on $[0,1]$. Thus

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] & \geq f\left(z_{j}^{*}\right) \geq f(1) \cdot z_{j}^{*}+f(0) \\
& \geq\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*} \\
& \geq
\end{aligned}
$$

Randomized Rounding (Proof)

The function $f\left(z_{j}^{*}\right)=1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}}$ is concave on $[0,1]$. Thus

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] & \geq f\left(z_{j}^{*}\right) \geq f(1) \cdot z_{j}^{*}+f(0) \\
& \geq\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*} \\
& \geq \\
1+x & \leq e^{x}
\end{aligned}
$$

Randomized Rounding (Proof)

The function $f\left(z_{j}^{*}\right)=1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}}$ is concave on $[0,1]$. Thus

$$
\begin{aligned}
& \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq f\left(z_{j}^{*}\right) \geq f(1) \cdot z_{j}^{*}+f(0) \\
& \geq\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*} \\
& \geq \\
& 1+x \leq e^{x} \\
& x=-\frac{1}{l_{j}}
\end{aligned}
$$

Randomized Rounding (Proof)

The function $f\left(z_{j}^{*}\right)=1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}}$ is concave on $[0,1]$. Thus

$$
\begin{aligned}
& \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq f\left(z_{j}^{*}\right) \geq f(1) \cdot z_{j}^{*}+f(0) \\
& \geq\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*} \\
& \geq \\
& 1+x \leq e^{x} \\
& x=-\frac{1}{l_{j}} \Rightarrow 1-\frac{1}{l_{j}} \leq e^{-1 / l_{j}}
\end{aligned}
$$

Randomized Rounding (Proof)

The function $f\left(z_{j}^{*}\right)=1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}}$ is concave on $[0,1]$. Thus

$$
\begin{aligned}
& \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq f\left(z_{j}^{*}\right) \geq f(1) \cdot z_{j}^{*}+f(0) \\
& \geq\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*} \\
& \geq\left(1-\frac{1}{e}\right) z_{j}^{*} \\
& 1+x \leq e^{x} \\
& x=-\frac{1}{l_{j}} \Rightarrow 1-\frac{1}{l_{j}} \leq e^{-1 / l_{j}}
\end{aligned}
$$

Randomized Rounding (Proof)

Therefore

$$
E[W]=\sum_{j=1}^{m} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \cdot w_{j}
$$

$$
\geq
$$

Randomized Rounding (Proof)

Therefore

$$
\begin{aligned}
E[W] & =\sum_{j=1}^{m} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \cdot w_{j} \\
& \geq\left(1-\frac{1}{e}\right) \sum_{j=1}^{m} w_{j} z_{j}^{*} \\
& =
\end{aligned}
$$

Randomized Rounding (Proof)

Therefore

$$
\begin{aligned}
E[W] & =\sum_{j=1}^{m} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \cdot w_{j} \\
& \geq\left(1-\frac{1}{e}\right) \sum_{j=1}^{m} w_{j} z_{j}^{*} \\
& =
\end{aligned}
$$

Randomized Rounding (Proof)

Therefore

$$
\begin{aligned}
E[W] & =\sum_{j=1}^{m} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \cdot w_{j} \\
& \geq\left(1-\frac{1}{e}\right) \sum_{j=1}^{m} w_{j} z_{j}^{*} \\
& =\left(1-\frac{1}{e}\right) \mathrm{OPT}_{\mathrm{LP}} \\
& \geq
\end{aligned}
$$

Randomized Rounding (Proof)

Therefore

$$
\begin{aligned}
E[W] & =\sum_{j=1}^{m} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \cdot w_{j} \\
& \geq\left(1-\frac{1}{e}\right) \sum_{j=1}^{m} w_{j} z_{j}^{*}{ }^{\text {LP objective function }} \\
& =\left(1-\frac{1}{e}\right) \mathrm{OPT}_{\mathrm{LP}} \\
& \geq\left(1-\frac{1}{e}\right) \mathrm{OPT}
\end{aligned}
$$

Randomized Rounding (Proof)

Therefore

$$
\begin{aligned}
E[W] & =\sum_{j=1}^{m} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \cdot w_{j} \\
& \geq\left(1-\frac{1}{e}\right) \sum_{j=1}^{m} w_{j} z_{j}^{*}{ }^{\text {LP objective function }} \\
& =\left(1-\frac{1}{e}\right) \mathrm{OPT}_{\mathrm{LP}} \\
& \geq\left(1-\frac{1}{e}\right) \mathrm{OPT}
\end{aligned}
$$

Theorem. The previous algorithm can be derandomized by the method of conditional expectation.

Lecture 11:
MaxSat via Randomized Rounding

Part VI:
Combining the Algorithms

Take the better of the two solutions!

Theorem. The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a -approximation for MaxSat.

Take the better of the two solutions!

Theorem. The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a 3/4-approximation for MaxSat.

Take the better of the two solutions!

Theorem. The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a 3/4-approximation for MaxSat.

Proof.

We use another probabilistic argument.
With probability $1 / 2$, choose the solution of the first algorithm; otherwise the solution of the second algorithm.

Take the better of the two solutions!

Theorem. The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a 3/4-approximation for MaxSat.

Proof.

We use another probabilistic argument.
With probability $1 / 2$, choose the solution of the first algorithm; otherwise the solution of the second algorithm.

The better solution is at least as good as the expectation of the above algorithm.

Take the better of the two solutions!

The probability that clause C_{i} is satisfied is at least:

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[
$$

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right) z_{j}^{*}}_{\text {LP-rounding }}+
$$

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right) z_{j}^{*}}_{\text {LP-rounding }}+\underbrace{\left(1-2^{-l_{j}}\right)}_{\text {rand. alg. }}] .
$$

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right)}_{\text {LP-rounding }}+\underbrace{\left(1-2^{-l_{j}}\right)}_{\text {rand. alg. }}] z_{j}^{*}
$$

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right)}_{\text {LP-rounding }}+\underbrace{\left(1-2^{-l_{j}}\right)}_{\text {rand. alg. }}] z_{j}^{*} \underbrace{\geq \frac{3}{4} z_{j}^{*}}_{\text {we claim! }}
$$

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right)}_{\text {LP-rounding }}+\underbrace{\left(1-2^{-l_{j}}\right)}_{\text {rand. alg. }}] z_{j}^{*} \underbrace{\geq \frac{3}{4} z_{j}^{*}}_{\text {we claim! }}
$$

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right)}_{\text {LP-rounding }}+\underbrace{\left(1-2^{-l_{j}}\right)}_{\text {rand. alg. }}] z_{j}^{*} \underbrace{\geq \frac{3}{4} z_{j}^{*}}_{\text {we claim! }}
$$

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)
For $l_{j} \in\{1,2\}$, a simple calculation yields exactly $\frac{3}{4} z_{j}^{*}$.

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right)}_{\text {LP-rounding }}+\underbrace{\left(1-2^{-l_{j}}\right)}_{\text {rand. alg. }}] z_{j}^{*} \underbrace{\geq \frac{3}{4} z_{j}^{*}}_{\text {we claim! }}
$$

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)
For $l_{j} \in\{1,2\}$, a simple calculation yields exactly $\frac{3}{4} z_{j}^{*}$.
For $l_{j} \geq 3, \quad 1-\left(1-1 / l_{j}\right)^{l_{j}} \geq \quad$ and $1-2^{-l_{j}} \geq$

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right)}_{\text {LP-rounding }}+\underbrace{\left(1-2^{-l_{j}}\right)}_{\text {rand. alg. }}] z_{j}^{*} \underbrace{\geq \frac{3}{4} z_{j}^{*}}_{\text {we claim! }}
$$

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)
For $l_{j} \in\{1,2\}$, a simple calculation yields exactly $\frac{3}{4} z_{j}^{*}$.
For $l_{j} \geq 3, \quad 1-\left(1-1 / l_{j}\right)^{l_{j}} \geq(1-1 / e)$ and $1-2^{-l_{j}} \geq$

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right)}_{\text {LP-rounding }}+\underbrace{\left(1-2^{-l_{j}}\right)}_{\text {rand. alg. }}] z_{j}^{*} \underbrace{\geq \frac{3}{4} z_{j}^{*}}_{\text {we claim! }}
$$

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)
For $l_{j} \in\{1,2\}$, a simple calculation yields exactly $\frac{3}{4} z_{j}^{*}$.
For $l_{j} \geq 3, \quad 1-\left(1-1 / l_{j}\right)^{l_{j}} \geq(1-1 / e)$ and $1-2^{-l_{j}} \geq \frac{7}{8}$.

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right)}_{\text {LP-rounding }}+\underbrace{\left(1-2^{-l_{j}}\right)}_{\text {rand. alg. }}] z_{j}^{*} \underbrace{\geq \frac{3}{4} z_{j}^{*}}_{\text {we claim! }}
$$

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)
For $l_{j} \in\{1,2\}$, a simple calculation yields exactly $\frac{3}{4} z_{j}^{*}$.
For $l_{j} \geq 3, \quad 1-\left(1-1 / l_{j}\right)^{l_{j}} \geq(1-1 / e)$ and $1-2^{-l_{j}} \geq \frac{7}{8}$. Thus, we have at least:

$$
\frac{1}{2}\left[\left(1-\frac{1}{e}\right)+\frac{7}{8}\right] z_{j}^{*} \approx
$$

\square

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right)}_{\text {LP-rounding }}+\underbrace{\left(1-2^{-l_{j}}\right)}_{\text {rand. alg. }}] z_{j}^{*} \underbrace{\geq \frac{3}{4} z_{j}^{*}}_{\text {we claim! }}
$$

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)
For $l_{j} \in\{1,2\}$, a simple calculation yields exactly $\frac{3}{4} z_{j}^{*}$.
For $l_{j} \geq 3, \quad 1-\left(1-1 / l_{j}\right)^{l_{j}} \geq(1-1 / e)$ and $1-2^{-l_{j}} \geq \frac{7}{8}$. Thus, we have at least:

$$
\frac{1}{2}\left[\left(1-\frac{1}{e}\right)+\frac{7}{8}\right] z_{j}^{*} \approx 0.753 z_{j}^{*} \geq
$$

\square

Take the better of the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
\frac{1}{2}[\underbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right)}_{\text {LP-rounding }}+\underbrace{\left(1-2^{-l_{j}}\right)}_{\text {rand. alg. }}] z_{j}^{*} \underbrace{\geq \frac{3}{4} z_{j}^{*}}_{\text {we claim! }}
$$

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)
For $l_{j} \in\{1,2\}$, a simple calculation yields exactly $\frac{3}{4} z_{j}^{*}$.
For $l_{j} \geq 3, \quad 1-\left(1-1 / l_{j}\right)^{l_{j}} \geq(1-1 / e)$ and $1-2^{-l_{j}} \geq \frac{7}{8}$. Thus, we have at least:

$$
\frac{1}{2}\left[\left(1-\frac{1}{e}\right)+\frac{7}{8}\right] z_{j}^{*} \approx 0.753 z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}
$$

\square

Visualization and Derandomization

Visualization and Derandomization

Visualization and Derandomization

Visualization and Derandomization

Visualization and Derandomization

- Randomized alg. is better for large values of l_{j}.

Visualization and Derandomization

- Randomized alg. is better for large values of l_{j}.
- Randomized LP-rounding is better for small values of l_{j}

Visualization and Derandomization

- Randomized alg. is better for large values of l_{j}.
- Randomized LP-rounding is better for small values of l_{j}
\Rightarrow higher probability of satisfying clause $C_{j} . \quad \operatorname{Pr}\left[C_{j}\right.$ sat. $] / z_{j}^{*}$

Visualization and Derandomization

- Randomized alg. is better for large values of l_{j}.
- Randomized LP-rounding is better for small values of l_{j}
\Rightarrow higher probability of satisfying clause $C_{j} . \quad \operatorname{Pr}\left[C_{j}\right.$ sat. $] / z_{j}^{*}$

Visualization and Derandomization

- Randomized alg. is better for large values of l_{j}.
- Randomized LP-rounding is better for small values of l_{j}
\Rightarrow higher probability of satisfying clause $C_{j} . \quad \operatorname{Pr}\left[C_{j}\right.$ sat. $] / z_{j}^{*}$
The mean of the two solutions is at least $3 / 4$ for integer l_{j}.

Visualization and Derandomization

- Randomized alg. is better for large values of l_{j}.
- Randomized LP-rounding is better for small values of l_{j}
\Rightarrow higher probability of satisfying clause $C_{j} . \quad \operatorname{Pr}\left[C_{j}\right.$ sat. $] / z_{j}^{*}$
The mean of the two solutions is at least $3 / 4$ for integer l_{j}.

The maximum is at least as large as the mean.

Visualization and Derandomization

- Randomized alg. is better for large values of l_{j}.
- Randomized LP-rounding is better for small values of l_{j}
\Rightarrow higher probability of satisfying clause $C_{j} . \quad \operatorname{Pr}\left[C_{j}\right.$ sat. $] / z_{j}^{*}$
The mean of the two solutions is at least $3 / 4$ for integer l_{j}.

The maximum is at least as large as the mean.

This algorithm, too, can be derandomized by conditional expectation.

