Approximation Algorithms Lecture 10: MINIMUM-DEGREE SPANNING TREE via Local Search

Part I: MINIMUM-DEGREE SPANNING TREE

Alexander Wolff

Winter 2022/23

Given: A connected graph *G*.

Given: A connected graph *G*.

Given: Task:

Given: Task:

Given: Task:

Given: Task:

MINIMUM-DEGREE SPANNING TREE

Given: Task:

MINIMUM-DEGREE SPANNING TREE

Given: Task:

MINIMUM-DEGREE SPANNING TREE

Given: Task:

A connected graph *G*. Find a spanning tree *T* that has the smallest maximum degree $\Delta(T)$ among all spanning trees of *G*.

 $T^{*}) = 3$

Why?

Special case of Hamiltonian Path!

Obs.A spanning tree *T* has...**n** vertices and? edges,

Obs.A spanning tree *T* has... \square *n* vertices and? edges, \square sum of degrees $\sum_{v \in V} deg_T(v) =$?

Obs.A spanning tree *T* has...n vertices and n - 1 edges,sum of degrees $\sum_{v \in V} deg_T(v) = ?$ verage degree ?

Obs.A spanning tree *T* has...n vertices and n - 1 edges,sum of degrees $\sum_{v \in V} \deg_T(v) = 2n - 2$,average degree ?

Obs.A spanning tree *T* has...n vertices and n - 1 edges,sum of degrees $\sum_{v \in V} \deg_T(v) = 2n - 2$,average degree < 2.

Obs.A spanning tree *T* has...n vertices and n - 1 edges,sum of degrees $\sum_{v \in V} \deg_T(v) = 2n - 2$,average degree < 2.

Obs.

Obs. A spanning tree *T* has... *n* vertices and n - 1 edges, sum of degrees $\sum \deg_T(v) = 2n - 2$, $v \in V$ average degree < 2. Obs. Let $V' \subseteq V(G)$. Then $\Delta(G) \geq \sum \deg(v)/|V'|$. $v \in V'$

Approximation Algorithms Lecture 10: MINIMUM-DEGREE SPANNING TREE via Local Search

> Part II: Edge Flips and Local Search

Def. An **improving flip** in *T* for a vertex *v* and an edge $uw \in E(G) \setminus E(T)$ is a flip with $\deg_T(v) >$

Def. An **improving flip** in *T* for a vertex *v* and an edge $uw \in E(G) \setminus E(T)$ is a flip with $\deg_T(v) > \max\{\deg_T(u), \deg_T(w)\} + 1.$

MinDegSpanningTreeLocalSearch(graph *G*) $T \leftarrow$ any spanning tree of *G* while \exists improving flip in *T* for a vertex *v* with $\deg_T(v) \ge \Delta(T) - \ell$ do do the improving flip return *T*

MinDegSpanningTreeLocalSearch(graph G) $T \leftarrow$ any spanning tree of G while \exists improving flip in *T* for a vertex vwith $\deg_T(v) \geq \Delta(T) - \ell$ do do the improving flip return T

Note: overly simplified visualization!

MinDegSpanningTreeLocalSearch(graph *G*) $T \leftarrow$ any spanning tree of *G* while \exists improving flip in *T* for a vertex *v* with $\deg_T(v) \ge \Delta(T) - \ell$ do \lfloor do the improving flip return *T*

MinDegSpanningTreeLocalSearch(graph G) $T \leftarrow$ any spanning tree of G while \exists improving flip in *T* for a vertex vwith $\deg_T(v) \geq \Delta(T) - \ell$ do do the improving flip return T

Note: overly simplified visualization!

MinDegSpanningTreeLocalSearch(graph G) $T \leftarrow$ any spanning tree of G while \exists improving flip in *T* for a vertex vwith $\deg_T(v) \geq \Delta(T) - \ell$ do do the improving flip return T

Note: overly simplified visualization!

MinDegSpanningTreeLocalSearch(graph *G*) $T \leftarrow$ any spanning tree of *G* while \exists improving flip in *T* for a vertex vwith $\deg_T(v) \ge \Delta(T) - \ell$ do \lfloor do the improving flip return *T*

MinDegSpanningTreeLocalSearch(graph *G*) $T \leftarrow$ any spanning tree of *G* while \exists improving flip in *T* for a vertex vwith $\deg_T(v) \ge \Delta(T) - \ell$ do \lfloor do the improving flip return *T*

MinDegSpanningTreeLocalSearch(graph G) $T \leftarrow$ any spanning tree of G while \exists improving flip in *T* for a vertex vwith $\deg_T(v) \geq \Delta(T) - \ell$ do do the improving flip return T

MinDegSpanningTreeLocalSearch(graph G) $T \leftarrow$ any spanning tree of G while \exists improving flip in *T* for a vertex vwith $\deg_T(v) \geq \Delta(T) - \ell$ do do the improving flip return T

MinDegSpanningTreeLocalSearch(graph G) $T \leftarrow$ any spanning tree of G while \exists improving flip in *T* for a vertex vwith $\deg_T(v) \geq \Delta(T) - \ell$ do do the improving flip return T

MinDegSpanningTreeLocalSearch(graph G) $T \leftarrow any spanning tree of G$ while \exists improving flip in *T* for a vertex vwith $\deg_T(v) \geq \Delta(T) - \ell$ do do the improving flip return T

global optimum

spanning trees T of G

Approximation Algorithms Lecture 10: MINIMUM-DEGREE SPANNING TREE via Local Search

> Part III: Lower Bound

Removing *k* edges decomposes *T* into k + 1 components

Removing *k* edges decomposes *T* into k + 1 components

Removing *k* edges decomposes *T* into *k* + 1 components
 E' = {edges in *G* between different components C_i ≠ C_j}.

Removing *k* edges decomposes *T* into *k* + 1 components *E'* = {edges in *G* between different components *C_i* ≠ *C_j*}. *S* := vertex cover of *E'*.

Removing *k* edges decomposes *T* into *k* + 1 components *E'* = {edges in *G* between different components *C_i* ≠ *C_j*}. *S* := vertex cover of *E'*.

■ $|E(T^*) \cap E'| \ge k$ for opt. spanning tree T^*

Removing *k* edges decomposes *T* into *k* + 1 components *E'* = {edges in *G* between different components *C_i* ≠ *C_j*}. *S* := vertex cover of *E'*.

|*E*(*T*^{*}) ∩ *E*'| ≥ *k* for opt. spanning tree *T*^{*}
 ∑_{v∈S} deg_{*T*^{*}}(v) ≥ *k*

Decomposition \Rightarrow Lower Bound for OPT

Removing *k* edges decomposes *T* into *k* + 1 components *E'* = {edges in *G* between different components *C_i* ≠ *C_j*}. *S* := vertex cover of *E'*.

 $|E(T^*) \cap E'| \ge k \text{ for opt. spanning tree } T^*$ $\sum_{v \in S} \deg_{T^*}(v) \ge k$ Lemma 1. $\Rightarrow \text{OPT} >$

Decomposition \Rightarrow Lower Bound for OPT

Removing *k* edges decomposes *T* into *k* + 1 components *E'* = {edges in *G* between different components *C_i* ≠ *C_j*}. *S* := vertex cover of *E'*.

 $|E(T^*) \cap E'| \ge k \text{ for opt. spanning tree } T^*$ $\sum_{v \in S} \deg_{T^*}(v) \ge k \qquad \qquad \text{Lemma 1.} \\ \Rightarrow \text{OPT} \ge k/|S|$

Approximation Algorithms Lecture 10: MINIMUM-DEGREE SPANNING TREE via Local Search

> Part IV: More Lemmas

Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$.

Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$.

Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$. Let E_i be the set of edges in T incident to S_i .

Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$. Let E_i be the set of edges in T incident to S_i .

 $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$

 $\Rightarrow S_1 \supseteq S_2 \supseteq \dots \\ \Rightarrow S_1 = V(G)$

Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$. Let E_i be the set of edges in T incident to S_i .

Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$. Let E_i be the set of edges in T incident to S_i .

 \Rightarrow $S_1 \supseteq S_2 \supseteq \dots$

 \Rightarrow S₁ = V(G)

 $\Rightarrow E_1 = E(T)$ Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$. Let E_i be the set of edges in T incident to S_i .

Lemma 2. There is some $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

 \Rightarrow $S_1 \supseteq S_2 \supseteq \dots$

 $\Rightarrow S_1 = V(G)$

 $\Rightarrow E_1 = E(T)$ Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$. Let E_i be the set of edges in T incident to S_i .

 \Rightarrow $S_1 \supseteq S_2 \supseteq \dots$

 $\Rightarrow S_1 = V(G)$

Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$. Let E_i be the set of edges in T incident to S_i .

 \Rightarrow $S_1 \supseteq S_2 \supseteq \dots$

 \Rightarrow S₁ = V(G)

Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$. Let E_i be the set of edges in T incident to S_i .

 $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$

 \Rightarrow S₁ = V(G)

Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$. Let E_i be the set of edges in T incident to S_i .

 \Rightarrow $S_1 \supset S_2 \supset \dots$

 \Rightarrow S₁ = V(G)

Let S_i be the set of vertices v in T with $\deg_T(v) \ge i$. Let E_i be the set of edges in T incident to S_i .

 \Rightarrow $S_1 \supset S_2 \supset \dots$

 \Rightarrow S₁ = V(G)

Lemma 3. For $i \ge \Delta(T) - \ell + 1$,

Lemma 3. For
$$i \ge \Delta(T) - \ell + 1$$
,
(i) $|E_i| \ge (i-1)|S_i| + 1$,

Lemma 3. For $i \ge \Delta(T) - \ell + 1$, (i) $|E_i| \ge (i-1)|S_i| + 1$, (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq$

Lemma 3. For $i \ge \Delta(T) - \ell + 1$, (i) $|E_i| \ge (i-1)|S_i| + 1$, (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \ge i |S_i|$

Lemma 3. For $i \ge \Delta(T) - \ell + 1$, (i) $|E_i| \ge (i-1)|S_i| + 1$, (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \ge i |S_i| - (|S_i| - 1)$

Proof. (i)
$$|E_i| \ge i |S_i| - (|S_i| - 1) = (i - 1) |S_i| + 1$$

Approximation Algorithms Lecture 10: MINIMUM-DEGREE SPANNING TREE via Local Search

> Part V: Approximation Factor

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem	m. Let <i>T</i> be a locally optimal spanning tree.
	Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree.
Then $\Delta(T) \leq 2 \cdot OPT + \ell$, where $\ell = \lceil \log_2 n \rceil$.**Proof.**Let S_i be the vertices v in *T* with $\deg_T(v) \geq i$.
Let E_i be the edges in *T* incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

Theorem. Let *T* be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$.

Theorem. Let *T* be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$. Let S_i be the vertices v in T with $\deg_T(v) \ge i$. **Proof.** Let E_i be the edges in T incident to S_i . **Lemma 1.** OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover. **Lemma 2.** There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$. **Lemma 3.** For $i \ge \Delta(T) - \ell + 1$, (i) $|E_i| \ge (i-1)|S_i| + 1$, (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this *i*!

Theorem.	Let <i>T</i> be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.		
Proof.	Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .		
Lemma 1.	OPT $\geq k/ S $ if $k = $ removed edges $ $, S vertex cover.		
Lemma 2.	There is an $i \ge \Delta(T) - \ell + 1$ with $ S_{i-1} \le 2 S_i $.		
(i) $ E_i \ge ($ (ii) Each economic of $T \setminus E$	For $i \ge \Delta(T) - \ell + 1$, $i - 1) S_i + 1$, $\lg e \in E(G) \setminus E_i$ connecting distinct components E_i is incident to a node of S_{i-1} .		
Remove E_i for this $i! \stackrel{\bullet}{\Rightarrow} S_{i-1}$ covers edges between comp.			

Theorem. Let *T* be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$. Let S_i be the vertices v in T with $\deg_T(v) \ge i$. **Proof.** Let E_i be the edges in T incident to S_i . **Lemma 1.** OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover. **Lemma 2.** There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$. **Lemma 3.** For $i \ge \Delta(T) - \ell + 1$, (i) $|E_i| \ge (i-1)|S_i| + 1$, (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} . Remove E_i for this $i! \stackrel{\bullet}{\Rightarrow} S_{i-1}$ covers edges between comp. $OPT \geq \frac{k}{|S|} =$

Theorem. Let *T* be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$. Let S_i be the vertices v in T with $\deg_T(v) \ge i$. **Proof.** Let E_i be the edges in T incident to S_i . **Lemma 1.** OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover. **Lemma 2.** There is an $i \ge \Delta(T) - \ell + 1$ with $|S_{i-1}| \le 2|S_i|$. **Lemma 3.** For $i \ge \Delta(T) - \ell + 1$, (i) $|E_i| \ge (i-1)|S_i| + 1$, (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} . Remove E_i for this $i! \Rightarrow S_{i-1}$ covers edges between comp. $OPT \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \ge$

Theorem.	Let <i>T</i> be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.		
Proof.	Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .		
Lemma 1.	OPT $\geq k/ S $ if $k = $ removed edges $ $, S vertex cover.		
Lemma 2.	There is an $i \ge \Delta(T) - \ell + 1$ with $ S_{i-1} \le 2 S_i $.		
Lemma 3. For $i \ge \Delta(T) - \ell + 1$, (i) $ E_i \ge (i-1) S_i + 1$, (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .			
Remove E	$ for this i! \Rightarrow S_{i-1} covers edges between comp. $ $ = \frac{ E_i }{ S_{i-1} } \ge \frac{(i-1) S_i +1}{ S_{i-1} } \ge $		

Theorem.	Let <i>T</i> be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.		
Proof.	Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .		
Lemma 1.	OPT $\geq k/ S $ if $k = $ removed edges $ $, S vertex cover.		
Lemma 2.	There is an $i \ge \Delta(T) - \ell + 1$ with $ S_{i-1} \le 2 S_i $.		
Lemma 3. For $i \ge \Delta(T) - \ell + 1$, (i) $ E_i \ge (i-1) S_i + 1$, (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .			
$\blacktriangleright \text{Remove } E$ $OPT \ge \frac{k}{ S } =$	$= \frac{ E_i }{ S_{i-1} } \geq \frac{(i-1) S_i +1}{ S_{i-1} } \geq \frac{(i-1) S_i +1}{ S_{i-1} } \geq \frac{(i-1) S_i +1}{2 S_i } >$		

Theorem.	Let <i>T</i> be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.		
Proof.	Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .		
Lemma 1.	OPT $\geq k/ S $ if $k = $ removed edges $ $, S vertex cover.		
Lemma 2.	There is an $i \ge \Delta(T) - \ell + 1$ with $ S_{i-1} \le 2 S_i $.		
Lemma 3. For $i \ge \Delta(T) - \ell + 1$, (i) $ E_i \ge (i-1) S_i + 1$, (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .			
$\blacktriangleright \text{Remove } E$ $OPT \ge \frac{k}{ S } =$ Lemma 1	<i>i</i> for this $i! \Rightarrow S_{i-1}$ covers edges between comp. = $\frac{ E_i }{ S_{i-1} } \ge \frac{(i-1) S_i +1}{ S_{i-1} } \ge \frac{(i-1) S_i +1}{2 S_i } > \frac{(i-1)}{2} \ge \frac{(i-1)}{2}$		

Theorem.	Let <i>T</i> be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.		
Proof.	Let S_i be the vertices v in T with $\deg_T(v) \ge i$. Let E_i be the edges in T incident to S_i .		
Lemma 1.	OPT $\geq k/ S $ if $k = $ removed edges $ $, S vertex cover.		
Lemma 2.	There is an $i \ge \Delta(T) - \ell + 1$ with $ S_{i-1} \le 2 S_i $.		
Lemma 3. For $i \ge \Delta(T) - \ell + 1$, (i) $ E_i \ge (i-1) S_i + 1$, (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .			
► Remove E_i for this $i! \Rightarrow S_{i-1}$ covers edges between comp. $OPT \ge \frac{k}{ S } = \frac{ E_i }{ S_{i-1} } \ge \frac{(i-1) S_i +1}{ S_{i-1} } \ge \frac{(i-1) S_i +1}{2 S_i } \ge \frac{(i-1)}{2} \ge \frac{\Delta(T)-\ell}{2}$			

Approximation Algorithms Lecture 10: MINIMUM-DEGREE SPANNING TREE via Local Search

Part VI: Termination, Running Time & Extensions

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

Each iteration decreases the potential of a solution.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

Each iteration decreases the potential of a solution.

The function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

Each iteration decreases the potential of a solution.

The function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

Each iteration decreases the potential of a solution.

The function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

The function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

The function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip
$$T \to T'$$
, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

The function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip
$$T \to T'$$
, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

The function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound. How does $\Phi(T)$ change?

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip
$$T \to T'$$
, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

The function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound. How does $\Phi(T)$ change? $\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \leq$ Homework

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip
$$T \to T'$$
, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

Homework

The function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound. How does $\Phi(T)$ change? $\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \leq 1 + x < e^x$

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip
$$T \to T'$$
, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

Homework

The function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Executing
$$f(n)$$
 iterations would exceed the lower bound.
How does $\Phi(T)$ change?
 $\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = 1 + x \le e^x$

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip
$$T \to T'$$
, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

Homework

The function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound. How does $\Phi(T)$ change? $\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} =$ Goal: After f(n) iterations: $\Phi(T) = n < 3n$

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip
$$T \to T'$$
, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

Homework

The function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound. Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change? $\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} =$ Goal: After f(n) iterations: $\Phi(T) = n < 3n$

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip
$$T \to T'$$
, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

The function is bounded both from above and below.

Lemma. For each spanning tree *T*, $\Phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound. Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change? $\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3}$ Goal: After f(n) iterations: $\Phi(T) = n < 3n$

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip
$$T \to T'$$
, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

Homework

The function is bounded both from above and below.

Lemma. For each spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound. Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change? $\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n\ln 3} = 3^{-n}$ Goal: After f(n) iterations: $\Phi(T) = n < 3n$

Theorem.	The algorithm finds	a locally	optimal
	spanning tree after	$O(n^4)$	iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip
$$T \to T'$$
, $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$.

Homework

The function is bounded both from above and below.

Lemma. For each spanning tree *T*, $\Phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound. Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change? $\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3} = 3^{-n}$ Goal: After f(n) iterations: $\Phi(T) = n < 3n$

Extensions

[Fürer & Raghavachari: SODA'92, JA'94]

Corollary. For any constant b > 1 and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree *T* with $\Delta(T) \le b \cdot \text{OPT} + \lceil \log_b n \rceil$.

Extensions

[Fürer & Raghavachari: SODA'92, JA'94]

Homework

Corollary. For any constant b > 1 and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree *T* with $\Delta(T) \le b \cdot \text{OPT} + \lceil \log_b n \rceil$.

Proof. Similar to previous pages.

Extensions

[Fürer & Raghavachari: SODA'92, JA'94]

Corollary. For any constant b > 1 and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree *T* with $\Delta(T) \le b \cdot \text{OPT} + \lceil \log_b n \rceil$.

Proof. Similar to previous pages. Homework

Theorem. There is a local search algorithm that runs in $O(EV\alpha(E, V) \log V)$ time and produces a spanning tree *T* with $\Delta(T) \leq OPT + 1$.