Lecture 10:
Minimum-Degree Spanning Tree via Local Search

Part I:
Minimum-Degree Spanning Tree

Minimum-Degree Spanning Tree

Given: A connected graph G.

Minimum-Degree Spanning Tree

Given: A connected graph G.

Minimum-Degree Spanning Tree

Given:
Task:

A connected graph G.
Find a spanning tree T that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G.

Minimum-Degree Spanning Tree

Given:
Task:

A connected graph G.
Find a spanning tree T that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G.

Minimum-Degree Spanning Tree

Given:
Task:

A connected graph G.
Find a spanning tree T that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G.

Minimum-Degree Spanning Tree

Given:
Task:

A connected graph G.
Find a spanning tree T that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G.

Minimum-Degree Spanning Tree

Given:
Task:

A connected graph G.
Find a spanning tree T that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G.

NP-hard. \because

Minimum-Degree Spanning Tree

Given:
Task:

A connected graph G.
Find a spanning tree T that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G.

NP-hard. \because Why?

Minimum-Degree Spanning Tree

Given:
Task:

A connected graph G.
Find a spanning tree T that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G.

NP-hard. \because
Why?
Special case of Hamiltonian Path!

Warm-up

Obs. A spanning tree T has...

Warm-up

Obs. A spanning tree T has...
$\square n$ vertices and ? edges,

Warm-up

Obs. A spanning tree T has...
$\square n$ vertices and ? edges,
\square sum of degrees $\sum_{v \in V} \operatorname{deg}_{T}(v)=$?

Warm-up

Obs. A spanning tree T has...
$\square n$ vertices and ? edges,
\square sum of degrees $\sum_{v \in V} \operatorname{deg}_{T}(v)=$?
\square average degree ?

Warm-up

Obs. A spanning tree T has...

- n vertices and $n-1$ edges,
\square sum of degrees $\sum_{v \in V} \operatorname{deg}_{T}(v)=$?
\square average degree ?

Warm-up
Obs. A spanning tree T has...

- n vertices and $n-1$ edges,
\square sum of degrees $\sum_{v \in V} \operatorname{deg}_{T}(v)=2 n-2$,
\square average degree ?

Warm-up
Obs. A spanning tree T has...

- n vertices and $n-1$ edges,
\square sum of degrees $\sum_{v \in V} \operatorname{deg}_{T}(v)=2 n-2$,
\square average degree <2.

Warm-up
Obs. A spanning tree T has...

- n vertices and $n-1$ edges,
\square sum of degrees $\sum_{v \in V} \operatorname{deg}_{T}(v)=2 n-2$,
\square average degree <2.
Obs. Let $V^{\prime} \subseteq V(G)$.
Then $\triangle(G) \geq$

Warm-up
Obs. A spanning tree T has...

- n vertices and $n-1$ edges,
\square sum of degrees $\sum_{v \in V} \operatorname{deg}_{T}(v)=2 n-2$,
\square average degree <2.
Obs. Let $V^{\prime} \subseteq V(G)$.
Then $\Delta(G) \geq \sum_{v \in V^{\prime}} \operatorname{deg}(v) /\left|V^{\prime}\right|$.

Warm-up
Obs. A spanning tree T has...

- n vertices and $n-1$ edges,
\square sum of degrees $\sum_{v \in V} \operatorname{deg}_{T}(v)=2 n-2$,
- average degree <2.

Obs. Let $V^{\prime} \subseteq V(G)$.
Then $\Delta(G) \geq \sum_{v \in V^{\prime}} \operatorname{deg}(v) /\left|V^{\prime}\right|$.
Obs.
Let T be a spanning tree with Then T has at most ? vertices of degree k.

Warm-up
Obs. A spanning tree T has...

- n vertices and $n-1$ edges,
\square sum of degrees $\sum_{v \in V} \operatorname{deg}_{T}(v)=2 n-2$,
\square average degree <2.
Obs. Let $V^{\prime} \subseteq V(G)$.
Then $\Delta(G) \geq \sum_{v \in V^{\prime}} \operatorname{deg}(v) /\left|V^{\prime}\right|$.
Obs.
Let T be a spanning tree with Then T has at most $\frac{2 n-2}{k}$ vertices of degree k.
 Lecture 10:
Minimum-Degree Spanning Tree via Local Search

Part II:
Edge Flips and Local Search

Edge Flips

$$
T+e-e^{\prime}
$$

is a new spanning tree

$$
\begin{array}{ll}
= & E(T) \\
\cdots & E(G)-E(T)
\end{array}
$$

Edge Flips

Def. An improving flip in T for a vertex v and an edge $u z \in \in E(G) \backslash E(T)$ is a flip with $\operatorname{deg}_{T}(v)>$

$$
T+e-e^{\prime}
$$

is a new spanning tree

$$
\begin{array}{ll}
= & E(T) \\
\cdots & E(G)-E(T)
\end{array}
$$

Edge Flips

Def. An improving flip in T for a vertex v and an edge $u w \in E(G) \backslash E(T)$ is a flip with $\operatorname{deg}_{T}(v)>\max \left\{\operatorname{deg}_{T}(u), \operatorname{deg}_{T}(w)\right\}+1$.

$$
\begin{array}{ll}
= & E(T) \\
\cdots & E(G)-E(T)
\end{array}
$$

Local Search

MinDegSpanningTreeLocalSearch(graph G) $T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G) $T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G) $T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

- Termination?

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

- Termination?
- runtime?

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

Local Search

MinDegSpanningTreeLocalSearch(graph G)
$T \leftarrow$ any spanning tree of G while \exists improving flip in T for a vertex v with $\operatorname{deg}_{T}(v) \geq \Delta(T)-\ell$ do do the improving flip
return T

- Termination?
- runtime?

■ $\ell=\left\lceil\log _{2} n\right\rceil$ approximation factor?

Example

Example

Goldner-Harary graph (minus two edges)

Example

$$
\Delta(T)=5
$$

Example

$$
\Delta(T)=5
$$

Example

$$
\Delta(T)=5
$$

Example

Goldner-Harary graph (minus two edges)

$$
\Delta(T)=5
$$

Example

Goldner-Harary graph (minus two edges)

$$
\Delta(T)=5
$$

Example

Goldner-Harary graph (minus two edges)

$$
\Delta(T)=5
$$

Example

Goldner-Harary graph (minus two edges)

$$
\Delta(T)=5
$$

$$
\text { improving flip } \quad \Delta\left(T^{\prime}\right)=4
$$

Example

Goldner-Harary graph (minus two edges)

$$
\Delta(T)=5
$$

$$
\text { improving flip } \quad \Delta\left(T^{\prime}\right)=4
$$

Example

$$
\Delta(T)=5
$$

Goldner-Harary graph (minus two edges)
$\Delta\left(T^{\prime \prime \prime}\right)=3$

$$
\text { improving flip }\left(\quad \Delta\left(T^{\prime}\right)=4\right.
$$

improving flip

$$
\Delta\left(T^{\prime \prime}\right)=4
$$

Example

$$
\Delta(T)=5
$$

Goldner-Harary graph (minus two edges)
$\Delta\left(T^{\prime \prime \prime}\right)=3$ but $\Delta\left(T^{*}\right)=2$
choose any spanning tree T

Example

$$
\Delta(T)=5
$$

Goldner-Harary graph (minus two edges)

$$
\Delta\left(T^{\prime \prime \prime}\right)=3 \text { but } \Delta\left(T^{*}\right)=2
$$

$$
\Delta\left(T^{\prime \prime}\right)=4
$$

$$
\text { improving flip }\left(\quad \Delta\left(T^{\prime}\right)=4\right.
$$ Lecture 10:

Minimum-Degree Spanning Tree via Local Search

Part III:
Lower Bound

Decomposition

Decomposition

Decomposition

■ Removing k edges decomposes T into $k+1$ components

Decomposition

■ Removing k edges decomposes T into $k+1$ components

Decomposition

■ Removing k edges decomposes T into $k+1$ components
$\square E^{\prime}=\left\{\right.$ edges in G between different components $\left.C_{i} \neq C_{j}\right\}$.

Decomposition

- Removing k edges decomposes T into $k+1$ components
$\square E^{\prime}=\left\{\right.$ edges in G between different components $\left.C_{i} \neq C_{j}\right\}$.
■ $S:=$ vertex cover of E^{\prime}.

Decomposition

■ Removing k edges decomposes T into $k+1$ components
$\square E^{\prime}=\left\{\right.$ edges in G between different components $\left.C_{i} \neq C_{j}\right\}$.
■ $S:=$ vertex cover of E^{\prime}.

■ $\left|E\left(T^{*}\right) \cap E^{\prime}\right| \geq k$ for opt. spanning tree T^{*}

Decomposition

■ Removing k edges decomposes T into $k+1$ components
$\square E^{\prime}=\left\{\right.$ edges in G between different components $\left.C_{i} \neq C_{j}\right\}$.
■ $S:=$ vertex cover of E^{\prime}.

- $\left|E\left(T^{*}\right) \cap E^{\prime}\right| \geq k$ for opt. spanning tree T^{*}
- $\sum_{v \in S} \operatorname{deg}_{T^{*}}(v) \geq k$

Decomposition \Rightarrow Lower Bound for OPT

- Removing k edges decomposes T into $k+1$ components
$\square E^{\prime}=\left\{\right.$ edges in G between different components $\left.C_{i} \neq C_{j}\right\}$.
■ $S:=$ vertex cover of E^{\prime}.

■ $\left|E\left(T^{*}\right) \cap E^{\prime}\right| \geq k$ for opt. spanning tree T^{*}

- $\sum_{v \in S} \operatorname{deg}_{T^{*}}(v) \geq k$

> Lemma 1.
> $\Rightarrow \mathrm{OPT} \geq$

Decomposition \Rightarrow Lower Bound for OPT

- Removing k edges decomposes T into $k+1$ components
$\square E^{\prime}=\left\{\right.$ edges in G between different components $\left.C_{i} \neq C_{j}\right\}$.
■ $S:=$ vertex cover of E^{\prime}.

■ $\left|E\left(T^{*}\right) \cap E^{\prime}\right| \geq k$ for opt. spanning tree T^{*}

- $\sum_{v \in S} \operatorname{deg}_{T^{*}}(v) \geq k$

Lemma 1.

$$
\Rightarrow \mathrm{OPT} \geq k /|S|
$$ Lecture 10:

Minimum-Degree Spanning Tree via Local Search

Part IV:
More Lemmas

More Lemmas

More Lemmas

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$.

More Lemmas

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$.

More Lemmas

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the set of edges in T incident to S_{i}.

More Lemmas

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the set of edges in T incident to S_{i}.

More Lemmas

$$
\begin{aligned}
& \Rightarrow S_{1} \supseteq S_{2} \supseteq \ldots \\
& \Rightarrow S_{1}=V(G)
\end{aligned}
$$

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the set of edges in T incident to S_{i}.

More Lemmas

$$
\begin{aligned}
& \Rightarrow S_{1} \supseteq S_{2} \supseteq \cdots \\
& \Rightarrow S_{1}=V(G) \\
& \Rightarrow E_{1}=E(T)
\end{aligned}
$$

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the set of edges in T incident to S_{i}.

More Lemmas

$$
\begin{aligned}
& \Rightarrow S_{1} \supseteq S_{2} \supseteq \cdots \\
& \Rightarrow S_{1}=V(G) \\
& \Rightarrow E_{1}=E(T)
\end{aligned}
$$

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$.
Let E_{i} be the set of edges in T incident to S_{i}.
Lemma 2. There is some $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{\mid}\right|$.

More Lemmas

$$
\begin{aligned}
& \Rightarrow S_{1} \supseteq S_{2} \supseteq \cdots \\
& \Rightarrow S_{1}=V(G) \\
& \Rightarrow E_{1}=E(T)
\end{aligned}
$$

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$.
Let E_{i} be the set of edges in T incident to S_{i}.
Lemma 2. There is some $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{\mid}\right|$.

Proof. $\left|S_{\Delta(T)-\ell}\right|>2^{\ell}\left|S_{\Delta(T)}\right|$

Otherwise

More Lemmas

$$
\begin{aligned}
& \Rightarrow S_{1} \supseteq S_{2} \supseteq \cdots \\
& \Rightarrow S_{1}=V(G) \\
& \Rightarrow E_{1}=E(T)
\end{aligned}
$$

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$.
Let E_{i} be the set of edges in T incident to S_{i}.
Lemma 2. There is some $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{\mid}\right|$.
Proof. $\left|S_{\Delta(T)-\ell}\right|>2^{\ell}\left|S_{\Delta(T)}\right|=2^{\left.\left[\log _{2} n\right\rceil \mid \log _{2} n\right\rceil}\left|S_{\Delta(T)}\right| \geq$
Otherwise

More Lemmas

$$
\begin{aligned}
& \Rightarrow S_{1} \supseteq S_{2} \supseteq \cdots \\
& \Rightarrow S_{1}=V(G) \\
& \Rightarrow E_{1}=E(T)
\end{aligned}
$$

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$.
Let E_{i} be the set of edges in T incident to S_{i}.
Lemma 2. There is some $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{i}\right|$.
Proof. $\left|S_{\Delta(T)-\ell}\right|>2^{\ell}\left|S_{\Delta(T)}\right|=2^{\left[\log _{2} n\right\rceil}\left|S_{\Delta(T)}\right| \geq n \cdot\left|S_{\Delta(T)}\right|$ Otherwise

More Lemmas

$$
\begin{aligned}
& \Rightarrow S_{1} \supseteq S_{2} \supseteq \cdots \\
& \Rightarrow S_{1}=V(G) \\
& \Rightarrow E_{1}=E(T)
\end{aligned}
$$

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$.
Let E_{i} be the set of edges in T incident to S_{i}.
Lemma 2. There is some $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{i}\right|$.
Proof. $\left|S_{\Delta(T)-\ell}\right|>2^{\ell}\left|S_{\Delta(T)}\right|=2^{\left[\log _{2} n\right\rceil}\left|S_{\Delta(T)}\right| \geq n \cdot\left|S_{\Delta(T)}\right|$. Otherwise

More Lemmas

$$
\begin{aligned}
& \Rightarrow S_{1} \supseteq S_{2} \supseteq \cdots \\
& \Rightarrow S_{1}=V(G) \\
& \Rightarrow E_{1}=E(T)
\end{aligned}
$$

Let S_{i} be the set of vertices v in T with $\operatorname{deg}_{T}(v) \geq i$.
Let E_{i} be the set of edges in T incident to S_{i}.
Lemma 2. There is some $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{i}\right|$.
Proof. $\left.\left|S_{\Delta(T)-\ell}\right|>2^{\ell}\left|S_{\Delta(T)}\right|=2^{\left.\left[\log _{2} n\right\rceil\right]}\left|S_{\Delta(T)}\right| \geq n \cdot\left|S_{\Delta(T)}\right|\right\rangle$ Otherwise TODO: What if $\ell>\Delta(T)$?

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)\left|S_{i}\right|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

Proof.
 (i) $\left|E_{i}\right| \geq$

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

Proof.
(i) $\left|E_{i}\right| \geq \underset{\text { vertex-deg }}{i\left|S_{i}\right|}$

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

Proof. (i) $\left|E_{i}\right| \geq \underset{\text { vertex-deg }}{i\left|S_{i}\right|}-\left(\left|S_{\text {counted twice? }}\right|-1\right)$

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

Proof. (i) $\left|E_{i}\right| \geq i\left|S_{\text {vertex-deg }}^{i}\right|-\left(\left|S_{i}\right|-1\right)=(i-1)\left|S_{i}\right|+1$

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

Proof. (i) $\left|E_{i}\right| \geq i\left|S_{\text {vertex-deg }}^{i}\right|-\left(\left|S_{i}\right|-1\right)=(i-1)\left|S_{i}\right|+1$
(ii)

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

$$
\text { Proof. (i) }\left|E_{i}\right| \geq \underset{\text { vertex deg }}{i\left|S_{i}\right|}-\underset{\text { counted twice? }}{\left(\left|S_{i}\right|-1\right)}=(i-1)\left|S_{i}\right|+1
$$

(ii)

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

$$
\text { Proof. (i) }\left|E_{i}\right| \geq \underset{\text { vertex deg }}{i\left|S_{i}\right|}-\underset{\text { counted twice? }}{\left(\left|S_{i}\right|-1\right)}=(i-1)\left|S_{i}\right|+1
$$

(ii)

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

$$
\text { Proof. (i) }\left|E_{i}\right| \geq \underset{\text { vertexdeg }}{i\left|S_{i}\right|}-\underset{\text { counted twice? }}{\left(\left|S_{i}\right|-1\right)}=(i-1)\left|S_{i}\right|+1
$$

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

Proof. (i) $\left|E_{i}\right| \geq \underset{\text { vertex-deg }}{i\left|S_{i}\right|}-\underset{\text { counted twice? }}{\left(\left|S_{i}\right|-1\right)}=(i-1)\left|S_{i}\right|+1$

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

Proof. (i) $\left|E_{i}\right| \geq \underset{\text { vertex-deg }}{i\left|S_{i}\right|}-\underset{\text { counted twice? }}{\left(\left|S_{i}\right|-1\right)}=(i-1)\left|S_{i}\right|+1$

More Lemmas

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

$$
\text { Proof. (i) }\left|E_{i}\right| \geq i\left|S_{i}\right|-\left(\left|S_{i}\right|-1\right)=(i-1)\left|S_{i}\right|+1
$$

(ii) Otherwise, there is an improving flip for $v \in S_{i}$.
 Lecture 10:
Minimum-Degree Spanning Tree via Local Search

Part V:
Approximation Factor

Approximation Factor

Approximation Factor

[Fürer \& Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.

Approximation Factor

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.

Approximation Factor

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.
Lemma 1. OPT $\geq k /|S|$ if $k=\mid$ removed edges \mid, S vertex cover.

Approximation Factor

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.
Lemma 1. OPT $\geq k /|S|$ if $k=\mid$ removed edges \mid, S vertex cover.
Lemma 2. There is an $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{\mid}\right|$.

Approximation Factor

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.
Lemma 1. OPT $\geq k /|S|$ if $k=\mid$ removed edges \mid, S vertex cover.
Lemma 2. There is an $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{i}\right|$.
Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)\left|S_{i}\right|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of

Approximation Factor

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.
Lemma 1. OPT $\geq k /|S|$ if $k=\mid$ removed edges \mid, S vertex cover.
Lemma 2. There is an $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{\mid}\right|$.
Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)\left|S_{i}\right|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of
Remove E_{i} for this i !

Approximation Factor

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.
Lemma 1. OPT $\geq k /|S|$ if $k=\mid$ removed edges \mid, S vertex cover.
Lemma 2. There is an $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{\mid}\right|$.
Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of
Remove E_{i} for this $i!\stackrel{\leftrightarrows}{\Rightarrow} S_{i-1}$ covers edges between comp.

Approximation Factor

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.
Lemma 1. OPT $\geq k /|S|$ if $k=\mid$ removed edges \mid, S vertex cover.
Lemma 2. There is an $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{\mid}\right|$.
Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of
Remove E_{i} for this $i!\Rightarrow S_{i-1}$ covers edges between comp.
$\underset{\text { Lemma } 1}{\mathrm{OPT}} \geq \frac{k}{S \mid}=$

Approximation Factor

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.
Lemma 1. OPT $\geq k /|S|$ if $k=\mid$ removed edges \mid, S vertex cover.

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)\left|S_{i}\right|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of
Remove E_{i} for this $i!\Rightarrow S_{i-1}$ covers edges between comp.
$\underset{\text { Lemma } 1}{\mathrm{OPT}} \geq \frac{k}{|S|}=\frac{\left|E_{i}\right|}{\left|S_{i-1}\right|} \geq$

Approximation Factor

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.
Lemma 1. OPT $\geq k /|S|$ if $k=\mid$ removed edges \mid, S vertex cover.

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)\left|S_{i}\right|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of
Remove E_{i} for this $i!\Rightarrow S_{i-1}$ covers edges between comp.
$\underset{\text { Lemma } 1}{\mathrm{OPT}} \geq \frac{k}{|S|}=\frac{\left|E_{i}\right|}{\left|S_{i-1}\right|_{\text {Lemma } 3}} \geq \frac{(i-1)\left|S_{i}\right|+1}{\left|S_{i-1}\right|} \geq$

Approximation Factor

[Fürer \& Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.
Lemma 1. OPT $\geq k /|S|$ if $k=\mid$ removed edges \mid, S vertex cover.
Lemma 2. There is an $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{i}\right|$.
Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of
Remove E_{i} for this $i!\Rightarrow S_{i-1}$ covers edges between comp.
$\underset{\text { Lemma } 1}{\mathrm{OPT}} \geq \frac{k}{|S|}=\frac{\left|E_{i}\right|}{\left|S_{i-1}\right|_{\text {Lemma } 3}} \geq \frac{(i-1)\left|S_{i}\right|+1}{\left|S_{i-1}\right|} \geq \frac{(i-1)\left|S_{i}\right|+1}{2\left|S_{i}\right|}>$

Approximation Factor

[Fürer \& Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.
Lemma 1. OPT $\geq k /|S|$ if $k=\mid$ removed edges \mid, S vertex cover.
Lemma 2. There is an $i \geq \Delta(T)-\ell+1$ with $\left|S_{i-1}\right| \leq 2\left|S_{\mid}\right|$.
Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)|S|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of
Remove E_{i} for this $i!\Rightarrow S_{i-1}$ covers edges between comp.
$\underset{\text { Lemma } 1}{\mathrm{OPT}} \geq \frac{k}{S \mid}=\frac{\left|E_{i}\right|}{\left|S_{i-1}\right|} \geq \frac{(i-1)\left|S_{i}\right|+1}{\left|S_{\text {Lemma }}\right|} \geq \frac{(i-1)\left|S_{i}\right|+1}{2\left|S_{i}\right|}>\frac{(i-1)}{2} \geq$

Approximation Factor

[Fürer \& Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Let S_{i} be the vertices v in T with $\operatorname{deg}_{T}(v) \geq i$. Let E_{i} be the edges in T incident to S_{i}.
Lemma 1. OPT $\geq k /|S|$ if $k=\mid$ removed edges \mid, S vertex cover.

Lemma 3. For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)\left|S_{i}\right|+1$,
(ii) Each edge $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of
Remove E_{i} for this $i!\Rightarrow S_{i-1}$ covers edges between comp.
$\underset{\text { Lemma } 1}{\mathrm{OPT}} \geq \frac{k}{|S|}=\left.\frac{\left|E_{i}\right|}{\left|S_{i-1}\right|}\right|_{\text {Lemma }} \geq \frac{(i-1)\left|S_{i}\right|+1}{\left|S_{i-1}\right|} \geq \frac{(i-1)\left|S_{i}\right|+1}{2\left|S_{i}\right|}>\frac{(i-1)}{2} \geq \frac{\Delta(T)-\ell}{2}$ Lecture 10:
Minimum-Degree Spanning Tree via Local Search

Part VI:
Termination, Running Time \& Extensions

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree efficiently.
Proof.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree efficiently.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

■ Each iteration decreases the potential of a solution.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree efficiently.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

- Each iteration decreases the potential of a solution.
- The function is bounded both from above and below.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree efficiently.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

- Each iteration decreases the potential of a solution.
- The function is bounded both from above and below.

■ Executing $f(n)$ iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

- Each iteration decreases the potential of a solution.
- The function is bounded both from above and below.

■ Executing $f(n)$ iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\quad \Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}$
\square Each iteration decreases the potential of a solution.

- The function is bounded both from above and below.

■ Executing $f(n)$ iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\quad \Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}$
\square Each iteration decreases the potential of a solution.
Lemma. After each flip $T \rightarrow T^{\prime}, \Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.
■ The function is bounded both from above and below.

■ Executing $f(n)$ iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T^{\prime}, \Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.

- The function is bounded both from above and below.

Lemma. For each spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
■ Executing $f(n)$ iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}$
\square Each iteration decreases the potential of a solution.
Lemma. After each flip $T \rightarrow T^{\prime}, \Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.

- The function is bounded both from above and below.

Lemma. For each spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
■ Executing $f(n)$ iterations would exceed the lower bound. How does $\Phi(T)$ change?

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

$$
\Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}
$$

\square Each iteration decreases the potential of a solution.
Lemma. After each flip $T \rightarrow T^{\prime}, \Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.

- The function is bounded both from above and below.

Lemma. For each spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
■ Executing $f(n)$ iterations would exceed the lower bound. How does $\Phi(T)$ change?
$\Phi(T)$ decreases by: $\left(1-\frac{2}{27 n^{3}}\right)^{f(n)} \leq$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

$$
\Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}
$$

\square Each iteration decreases the potential of a solution.
Lemma. After each flip $T \rightarrow T^{\prime}, \Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.

- The function is bounded both from above and below.

Lemma. For each spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
■ Executing $f(n)$ iterations would exceed the lower bound. How does $\Phi(T)$ change?
$\Phi(T)$ decreases by: $\left(1-\frac{2}{27 n^{3}}\right)^{f(n)} \leq$

$$
1+x \leq e^{x}
$$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

$$
\Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}
$$

\square Each iteration decreases the potential of a solution.
Lemma. After each flip $T \rightarrow T^{\prime}, \Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.

- The function is bounded both from above and below.

Lemma. For each spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
■ Executing $f(n)$ iterations would exceed the lower bound. How does $\Phi(T)$ change?
$\Phi(T)$ decreases by: $\left(1-\frac{2}{27 n^{3}}\right)^{f(n)} \leq\left(e^{-\frac{2}{27 n^{3}}}\right)^{f(n)}=$

$$
1+x \leq e^{x}
$$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

$$
\Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}
$$

\square Each iteration decreases the potential of a solution.
Lemma. After each flip $T \rightarrow T^{\prime}, \Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.

- The function is bounded both from above and below.

Lemma. For each spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
■ Executing $f(n)$ iterations would exceed the lower bound. How does $\Phi(T)$ change?
$\Phi(T)$ decreases by: $\left(1-\frac{2}{27 n^{3}}\right)^{f(n)} \leq\left(e^{-\frac{2}{27 n^{3}}}\right)^{f(n)}=$
Goal: After $f(n)$ iterations: $\Phi(T)=n<3 n$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

$$
\Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}
$$

\square Each iteration decreases the potential of a solution.
Lemma. After each flip $T \rightarrow T^{\prime}, \Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.

- The function is bounded both from above and below.

Lemma. For each spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
■ Executing $f(n)$ iterations would exceed the lower bound. Let $f(n)=\frac{27}{2} n^{4} \cdot \ln 3$. How does $\Phi(T)$ change? $\Phi(T)$ decreases by: $\left(1-\frac{2}{27 n^{3}}{ }^{f(n)} \leq\left(e^{-\frac{2}{27 n^{3}}}\right)^{f(n)}=\right.$ Goal: After $f(n)$ iterations: $\Phi(T)=n<3 n$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

$$
\Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}
$$

\square Each iteration decreases the potential of a solution.
Lemma. After each flip $T \rightarrow T^{\prime}, \Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.

- The function is bounded both from above and below.

Lemma. For each spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
■ Executing $f(n)$ iterations would exceed the lower bound. Let $f(n)=\frac{27}{2} n^{4} \cdot \ln 3$. How does $\Phi(T)$ change? $\Phi(T)$ decreases by: $\left(1-\frac{2}{27 n^{3}}\right)^{f(n)} \leq\left(e^{-\frac{2}{27 n^{3}}}\right)^{f(n)}=e^{-n \ln 3}$
Goal: After $f(n)$ iterations: $\Phi(T)=n<3 n$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.
Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

$$
\Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}
$$

\square Each iteration decreases the potential of a solution.
Lemma. After each flip $T \rightarrow T^{\prime}, \Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.

- The function is bounded both from above and below.

Lemma. For each spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
■ Executing $f(n)$ iterations would exceed the lower bound. Let $f(n)=\frac{27}{2} n^{4} \cdot \ln 3$. How does $\Phi(T)$ change?
$\Phi(T)$ decreases by: $\left(1-\frac{2}{27 n^{3}}\right)^{f(n)} \leq\left(e^{-\frac{2}{27 n^{3}}}\right)^{f(n)}=e^{-n \ln 3}=3^{-n}$
Goal: After $f(n)$ iterations: $\Phi(T)=n<3 n$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after $O\left(n^{4}\right)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

$$
\Phi(T)=\sum_{v \in V(G)} 3^{\operatorname{deg}_{T}(v)}
$$

\square Each iteration decreases the potential of a solution.
Lemma. After each flip $T \rightarrow T^{\prime}, \Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.

- The function is bounded both from above and below.

Lemma. For each spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
■ Executing $f(n)$ iterations would exceed the lower bound. Let $f(n)=\frac{27}{2} n^{4} \cdot \ln 3$. How does $\Phi(T)$ change?
$\Phi(T)$ decreases by: $\left(1-\frac{2}{27 n^{3}}\right)^{f(n)} \leq\left(e^{-\frac{2}{27 n^{3}}}\right)^{f(n)}=e^{-n \ln 3}=3^{-n}$
Goal: After $f(n)$ iterations: $\Phi(T)=n<3 n$

Extensions

Corollary. For any constant $b>1$ and $\ell=\left\lceil\log _{b} n\right\rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with

$$
\leq b \cdot \mathrm{OPT}+\left\lceil\log _{b} n\right\rceil .
$$

Extensions

Corollary. For any constant $b>1$ and $\ell=\left\lceil\log _{b} n\right\rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with

$$
\leq b \cdot \mathrm{OPT}+\left\lceil\log _{b} n\right\rceil .
$$

Proof.
Similar to previous pages.
Homework \square

Corollary. For any constant $b>1$ and $\ell=\left\lceil\log _{b} n\right\rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with

$$
\leq b \cdot \mathrm{OPT}+\left\lceil\log _{b} n\right\rceil .
$$

Proof. Similar to previous pages.
Homework \square

Theorem. There is a local search algorithm that runs in $O(E V \alpha(E, V) \log V)$ time and produces a spanning tree T with $\Delta(T) \leq \mathrm{OPT}+1$.

