# Approximation Algorithms

Lecture 9:

An Approximation Scheme for Euclidean TSP

Part I:

The Traveling Salesman Problem

Question: What's the fastest way to deliver all parcels to

their destination?

Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .



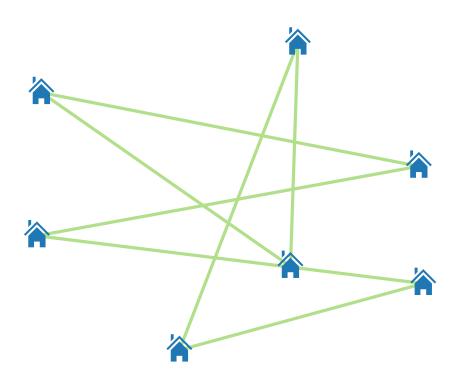


**Question:** What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle)

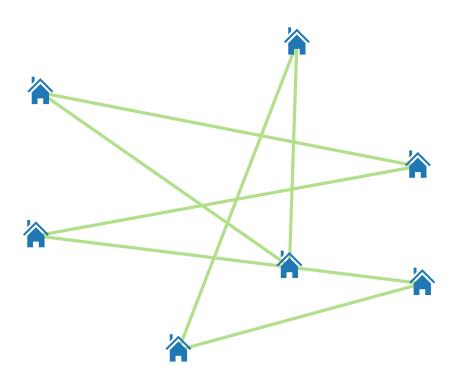


Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle)

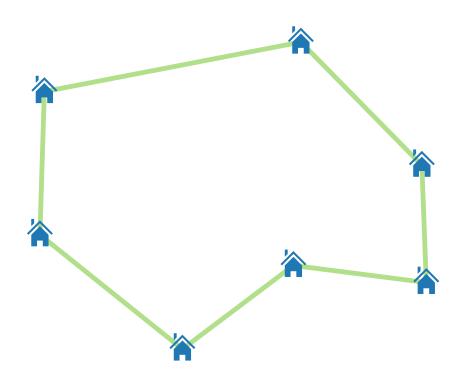


Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

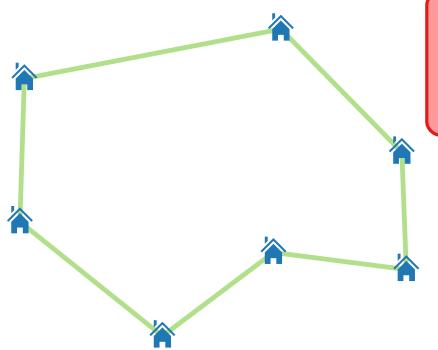


Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.



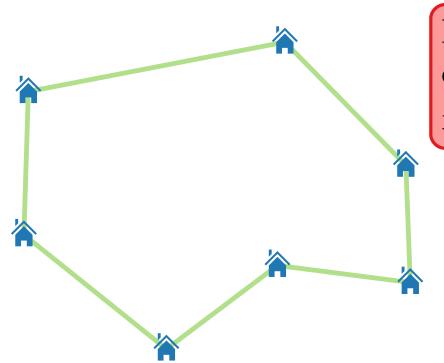
For every polynomial p(n), TSP cannot be approximated within factor (unless P = NP).

Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.



For every polynomial p(n), TSP cannot be approximated within factor  $2^{p(n)}$  (unless P = NP).

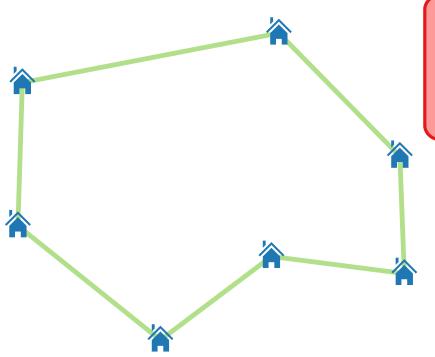
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?



For every polynomial p(n), TSP cannot be approximated within factor  $2^{p(n)}$  (unless P = NP).

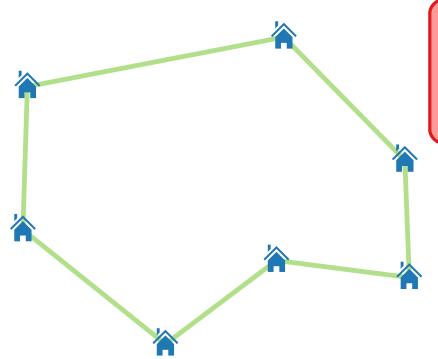
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?



For every polynomial p(n), TSP cannot be approximated within factor  $2^{p(n)}$  (unless P = NP).

There is a 3/2-approximation algorithm for Metric TSP.

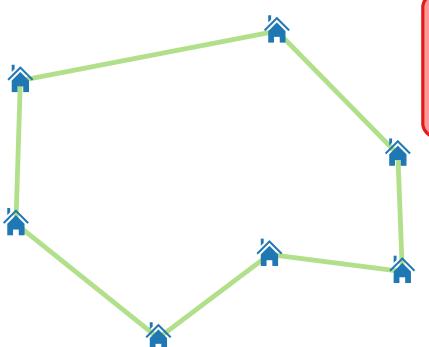
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?



For every polynomial p(n), TSP cannot be approximated within factor  $2^{p(n)}$  (unless P = NP).

There is a 3/2-approximation algorithm for Metric TSP.

METRIC TSP cannot be approximated within factor 123/122 (unless P = NP).

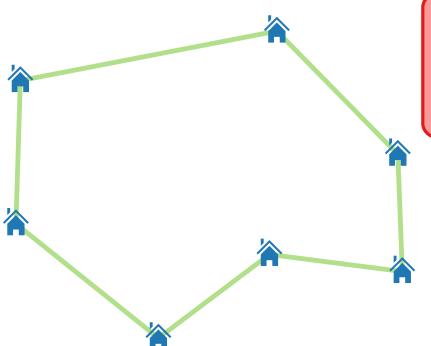
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies  $\Rightarrow$  Euclidean distances.



For every polynomial p(n), TSP cannot be approximated within factor  $2^{p(n)}$  (unless P = NP).

There is a 3/2-approximation algorithm for Metric TSP.

METRIC TSP cannot be approximated within factor 123/122 (unless P = NP).

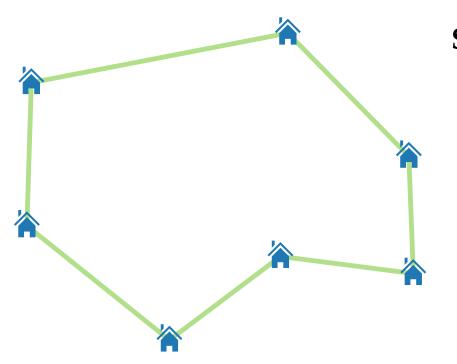
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies  $\Rightarrow$  Euclidean distances.



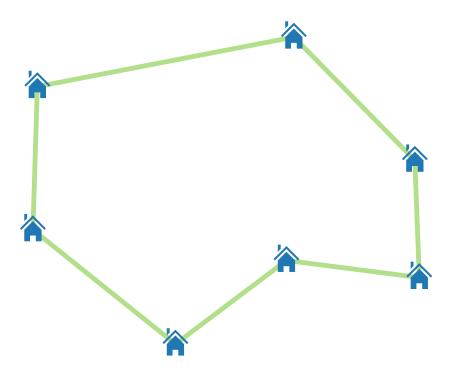
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies  $\Rightarrow$  Euclidean distances.



#### **Simplifying Assumptions**

Houses inside  $(L \times L)$ -square

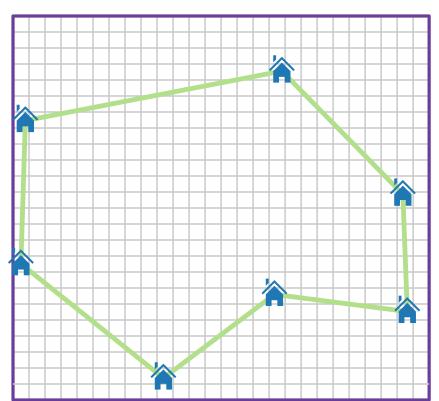
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies  $\Rightarrow$  Euclidean distances.



#### **Simplifying Assumptions**

Houses inside  $(L \times L)$ -square

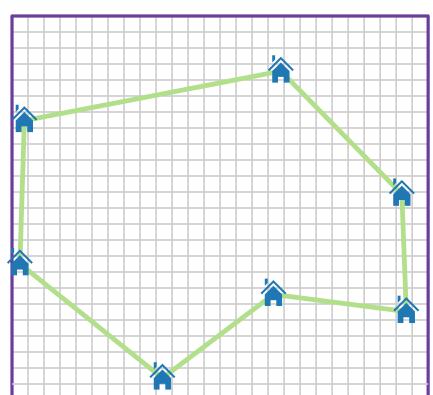
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies  $\Rightarrow$  Euclidean distances.



- Houses inside  $(L \times L)$ -square
- $L := 4n^2$

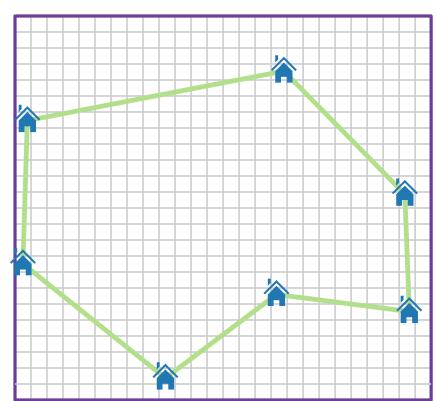
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies  $\Rightarrow$  Euclidean distances.



- Houses inside  $(L \times L)$ -square
- $L := 4n^2 = 2^k;$

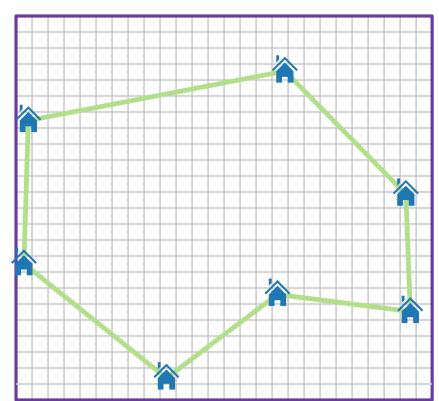
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies  $\Rightarrow$  Euclidean distances.



- Houses inside  $(L \times L)$ -square
- L :=  $4n^2 = 2^k$ ;  $k = 2 + 2\log_2 n$

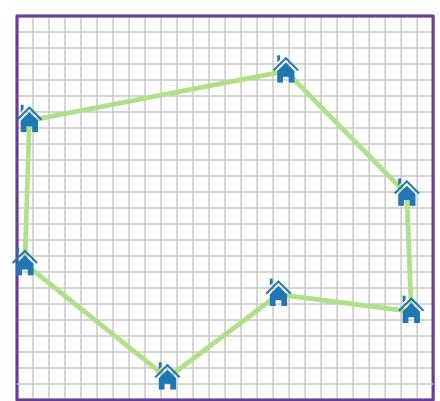
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies  $\Rightarrow$  Euclidean distances.



- Houses inside  $(L \times L)$ -square
- L :=  $4n^2 = 2^k$ ;  $k = 2 + 2\log_2 n$
- integer coordinates

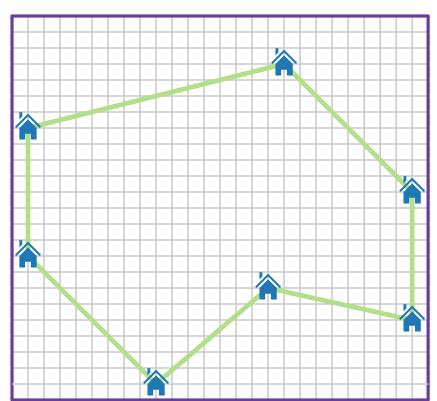
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies  $\Rightarrow$  Euclidean distances.



- Houses inside  $(L \times L)$ -square
- L :=  $4n^2 = 2^k$ ;  $k = 2 + 2\log_2 n$
- integer coordinates

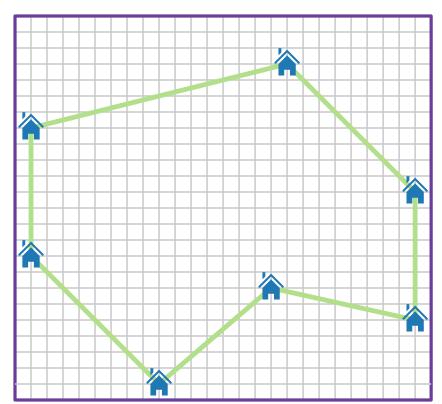
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies  $\Rightarrow$  Euclidean distances.



- Houses inside  $(L \times L)$ -square
- L :=  $4n^2 = 2^k$ ;  $k = 2 + 2\log_2 n$
- integer coordinates
  ("justification": homework)

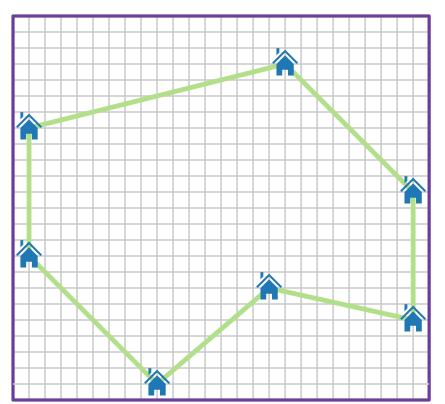
Question: What's the fastest way to deliver all parcels to

their destination?

Given: A set of *n* houses (points) in  $\mathbb{R}^2$ .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies  $\Rightarrow$  Euclidean distances.



#### **Simplifying Assumptions**

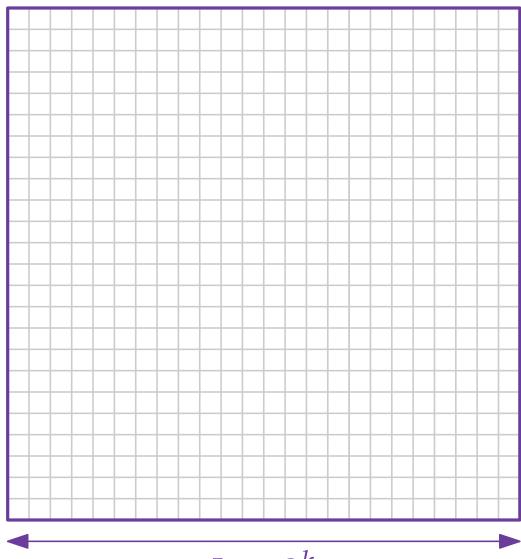
- Houses inside  $(L \times L)$ -square
- L :=  $4n^2 = 2^k$ ;  $k = 2 + 2\log_2 n$
- Goal:  $(1 + \varepsilon)$ -approximation!

integer coordinates
("justification": homework)

# Approximation Algorithms

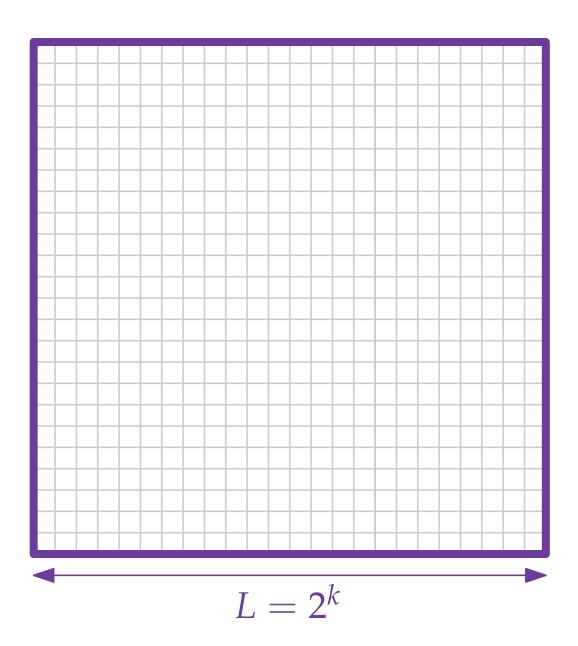
Lecture 9:
A PTAS for Euclidean TSP

Part II:
Dissection

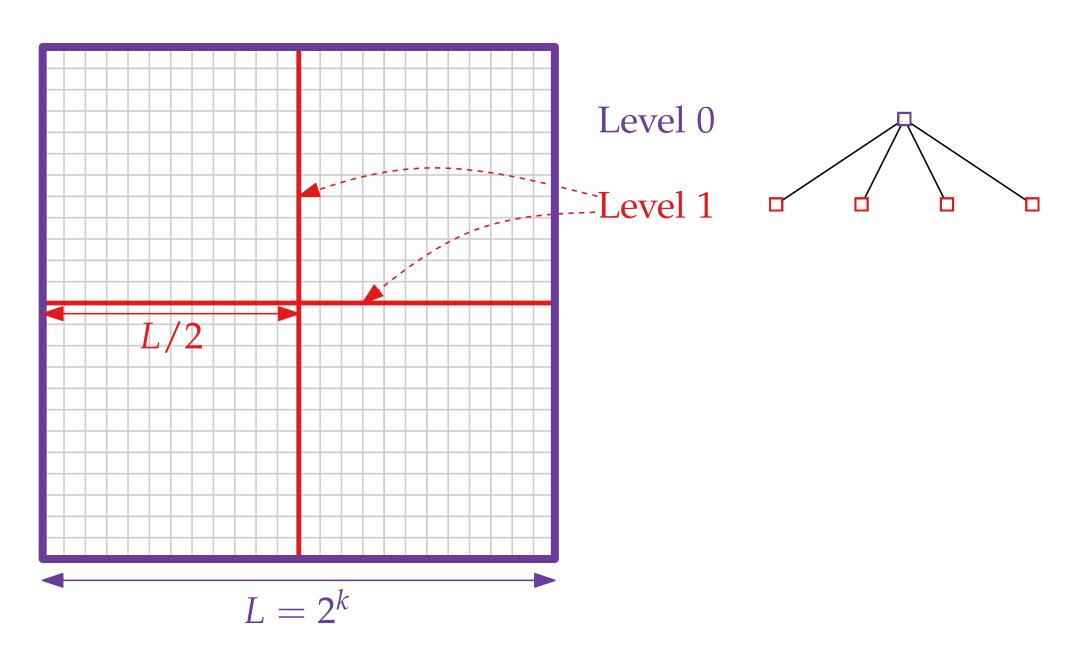


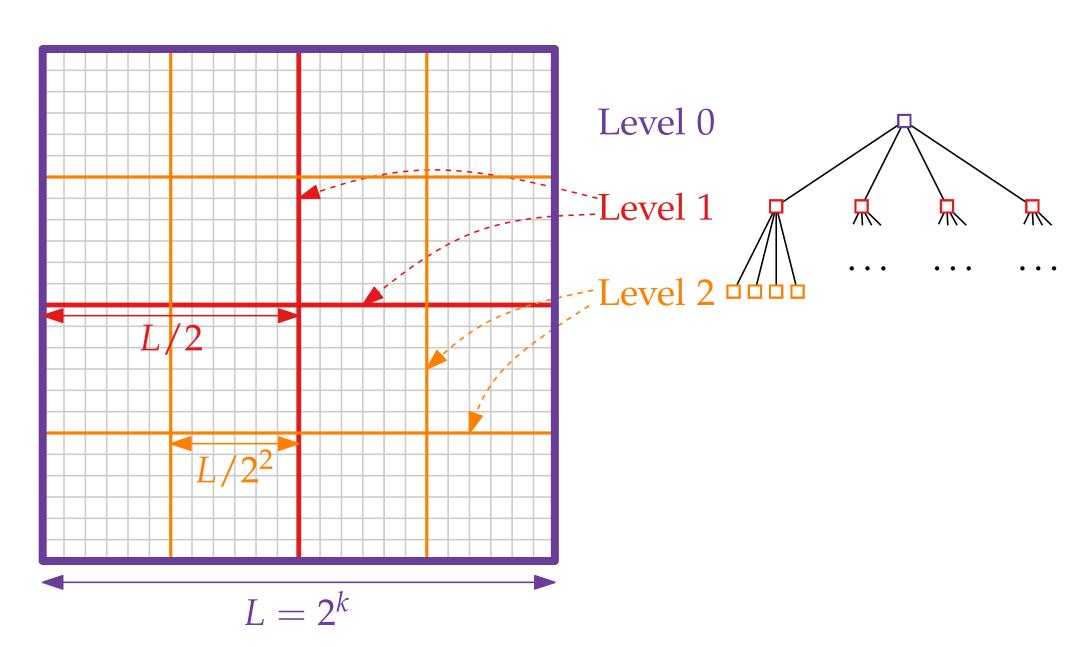
$$L=2^k$$

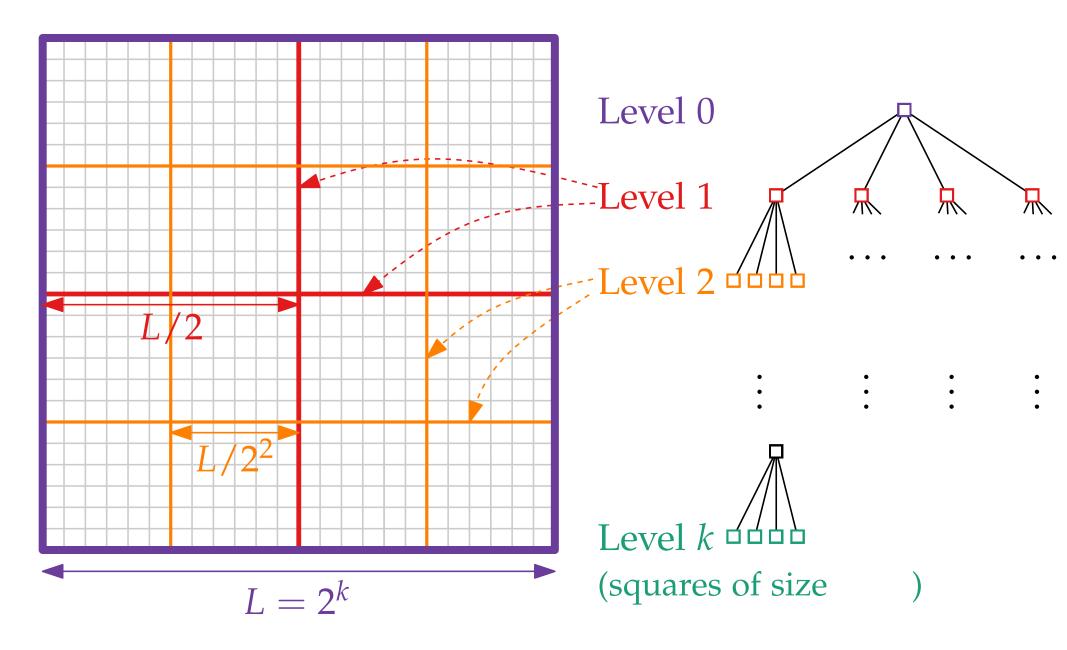
### Basic Dissection

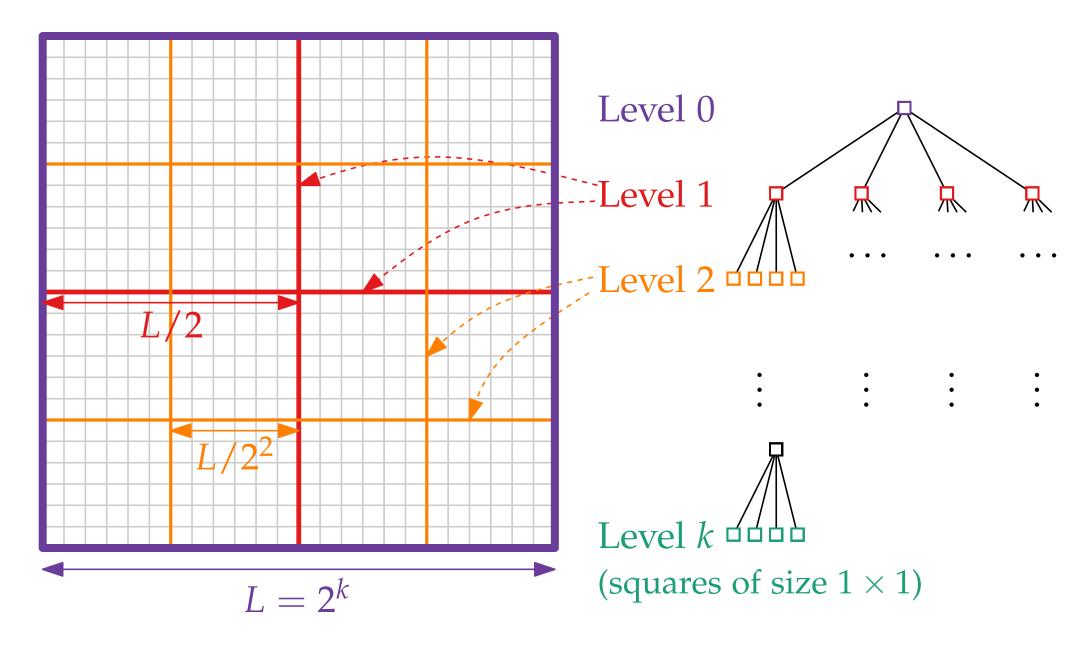


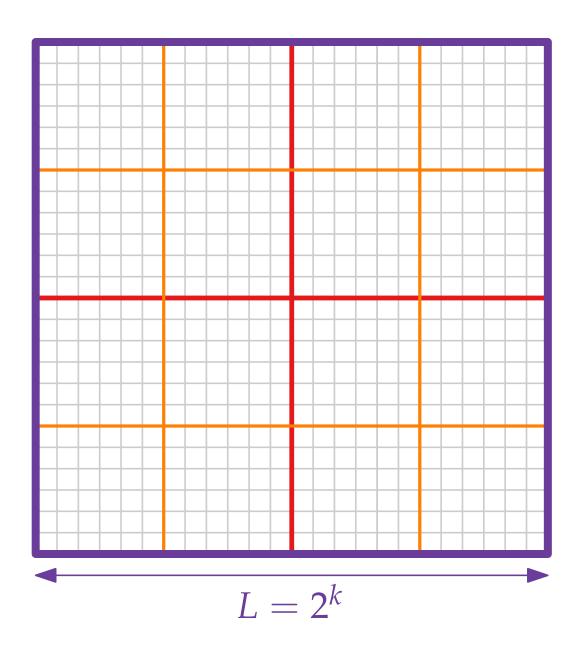
Level 0



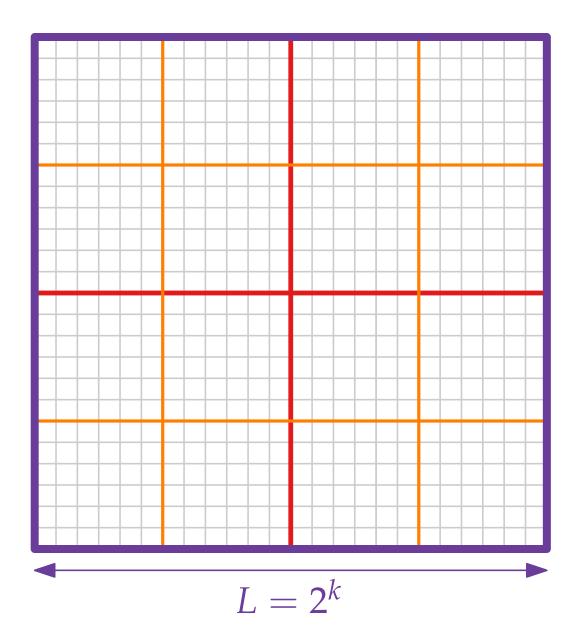






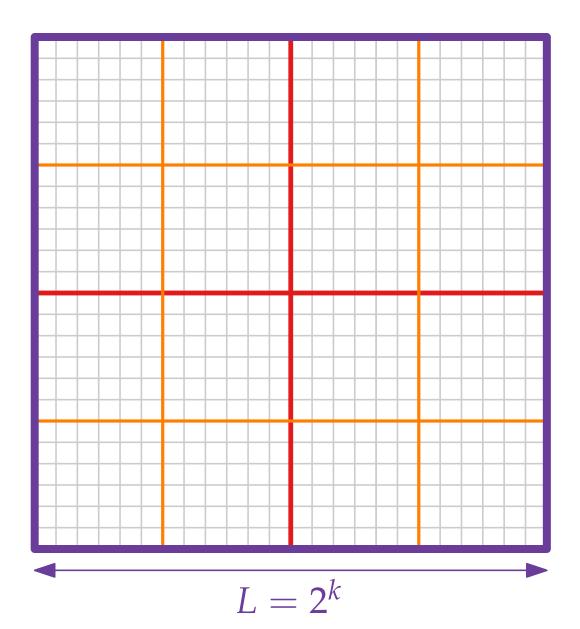


Let m be a power of 2 in the interval  $[k/\varepsilon, 2k/\varepsilon]$ .



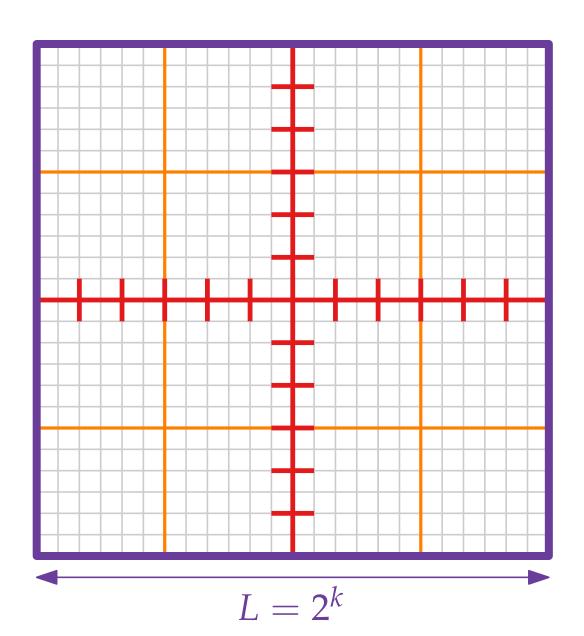
Let m be a power of 2 in the interval  $[k/\epsilon, 2k/\epsilon]$ .

Recall that  $k = 2 + 2 \log_2 n$ .



Let m be a power of 2 in the interval  $[k/\varepsilon, 2k/\varepsilon]$ .

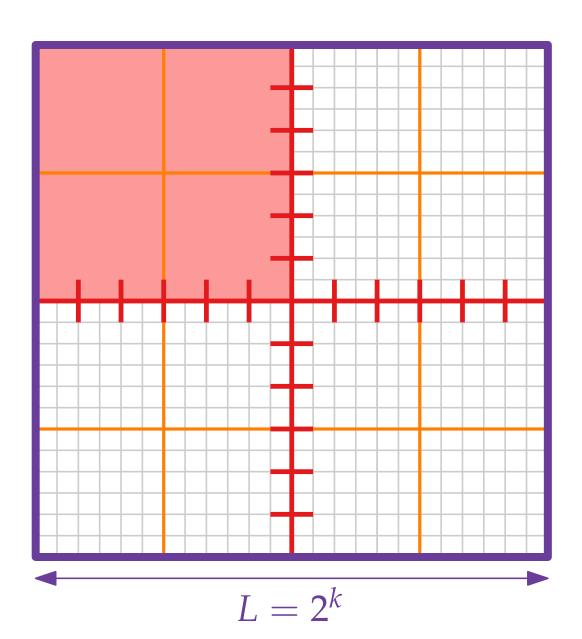
Recall that  $k = 2 + 2 \log_2 n$ .  $\Rightarrow m \in O((\log n)/\varepsilon)$ 



Let m be a power of 2 in the interval  $[k/\varepsilon, 2k/\varepsilon]$ .

Recall that 
$$k = 2 + 2 \log_2 n$$
.  
 $\Rightarrow m \in O((\log n)/\varepsilon)$ 

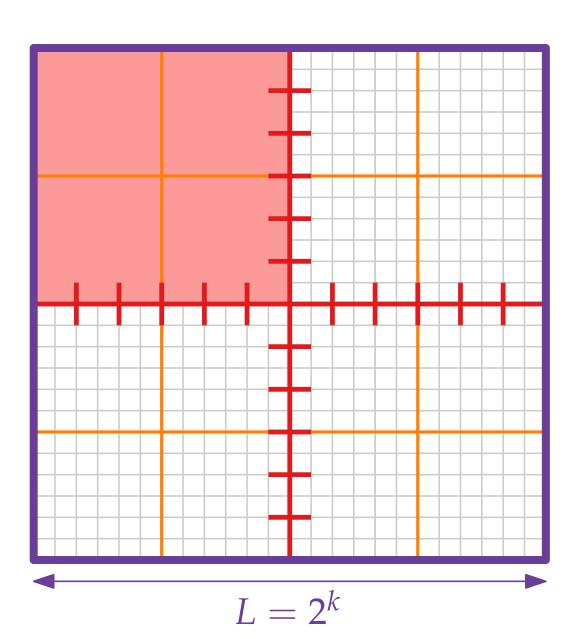
**Portals** on level-*i* line are at a distance of  $L/(2^i m)$ .



Let m be a power of 2 in the interval  $[k/\epsilon, 2k/\epsilon]$ .

Recall that 
$$k = 2 + 2 \log_2 n$$
.  
 $\Rightarrow m \in O((\log n)/\varepsilon)$ 

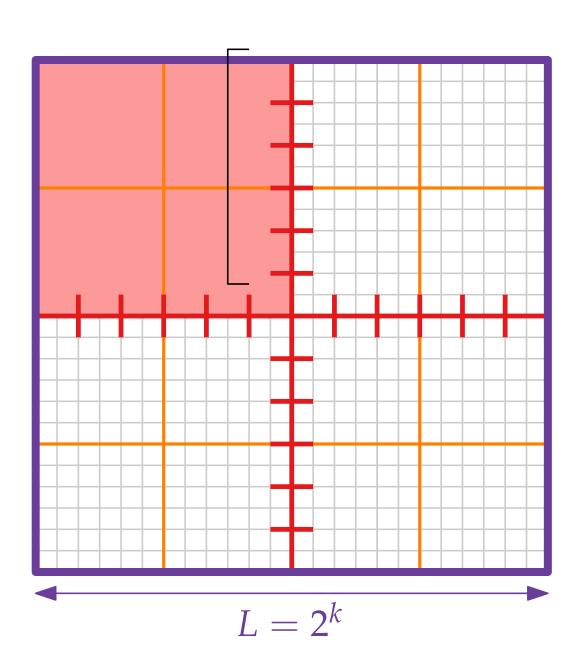
- **Portals** on level-*i* line are at a distance of  $L/(2^i m)$ .
- Every level-*i* square has size



Let m be a power of 2 in the interval  $[k/\epsilon, 2k/\epsilon]$ .

Recall that 
$$k = 2 + 2 \log_2 n$$
.  
 $\Rightarrow m \in O((\log n)/\varepsilon)$ 

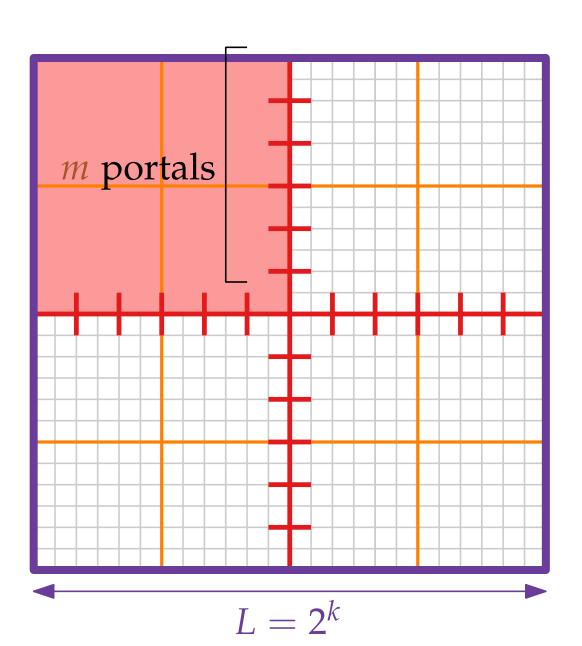
- **Portals** on level-*i* line are at a distance of  $L/(2^i m)$ .
- Every level-*i* square has size  $L/2^i \times L/2^i$ .



Let m be a power of 2 in the interval  $[k/\epsilon, 2k/\epsilon]$ .

Recall that 
$$k = 2 + 2 \log_2 n$$
.  
 $\Rightarrow m \in O((\log n)/\varepsilon)$ 

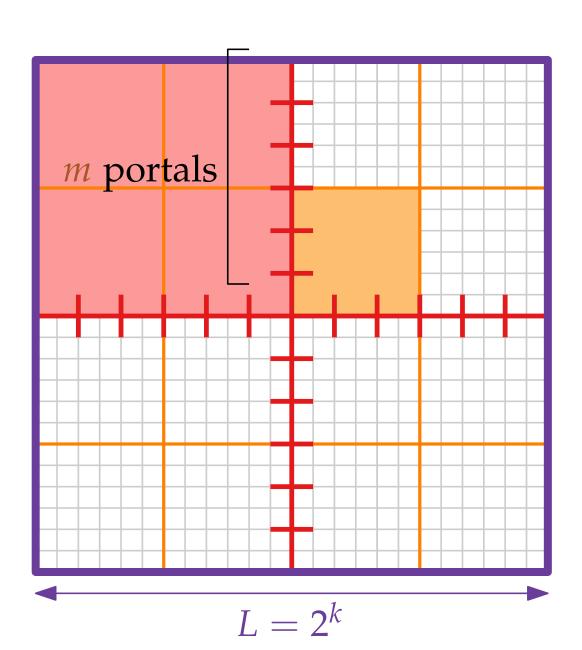
- **Portals** on level-*i* line are at a distance of  $L/(2^i m)$ .
- Every level-*i* square has size  $L/2^i \times L/2^i$ .



Let m be a power of 2 in the interval  $[k/\epsilon, 2k/\epsilon]$ .

Recall that 
$$k = 2 + 2 \log_2 n$$
.  
 $\Rightarrow m \in O((\log n)/\varepsilon)$ 

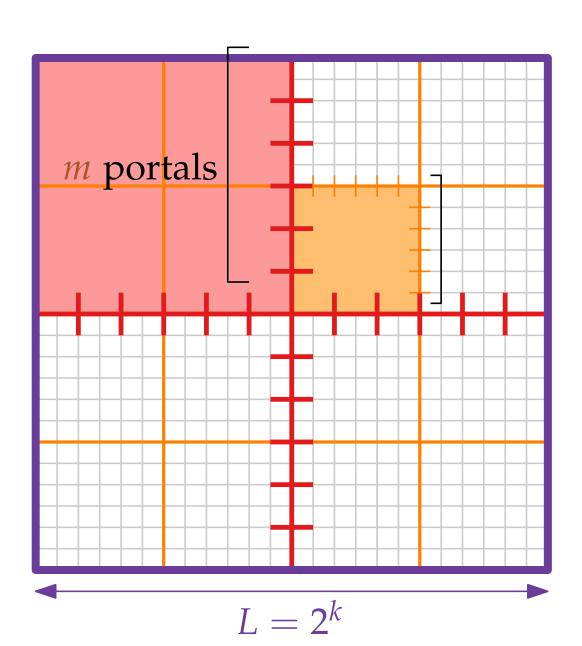
- **Portals** on level-*i* line are at a distance of  $L/(2^i m)$ .
- Every level-*i* square has size  $L/2^i \times L/2^i$ .



Let m be a power of 2 in the interval  $[k/\epsilon, 2k/\epsilon]$ .

Recall that 
$$k = 2 + 2 \log_2 n$$
.  
 $\Rightarrow m \in O((\log n)/\varepsilon)$ 

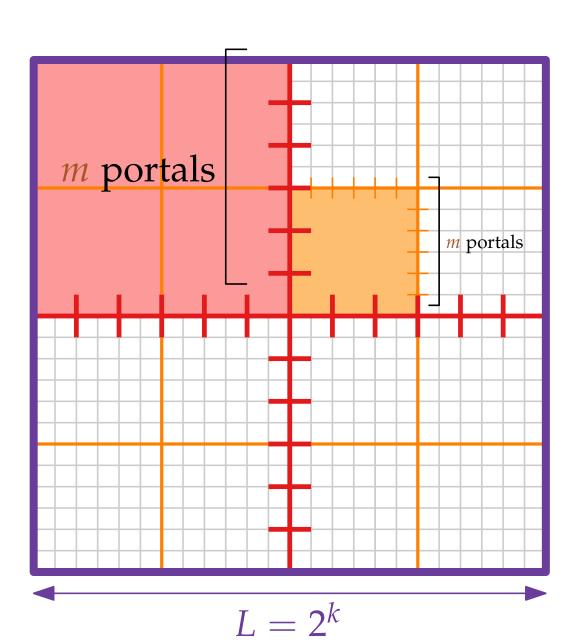
- **Portals** on level-*i* line are at a distance of  $L/(2^i m)$ .
- Every level-*i* square has size  $L/2^i \times L/2^i$ .



Let m be a power of 2 in the interval  $[k/\varepsilon, 2k/\varepsilon]$ .

Recall that 
$$k = 2 + 2 \log_2 n$$
.  
 $\Rightarrow m \in O((\log n)/\varepsilon)$ 

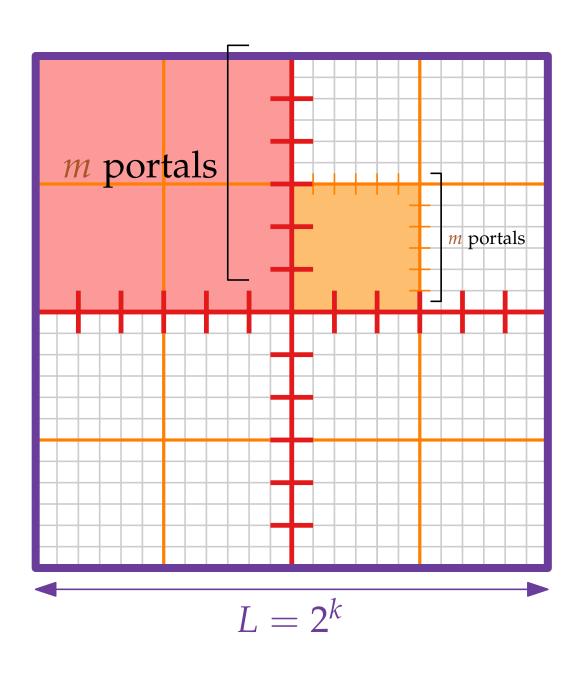
- **Portals** on level-*i* line are at a distance of  $L/(2^i m)$ .
- Every level-*i* square has size  $L/2^i \times L/2^i$ .



Let m be a power of 2 in the interval  $[k/\varepsilon, 2k/\varepsilon]$ .

Recall that 
$$k = 2 + 2 \log_2 n$$
.  
 $\Rightarrow m \in O((\log n)/\varepsilon)$ 

- **Portals** on level-*i* line are at a distance of  $L/(2^i m)$ .
- Every level-*i* square has size  $L/2^i \times L/2^i$ .



Let m be a power of 2 in the interval  $[k/\epsilon, 2k/\epsilon]$ .

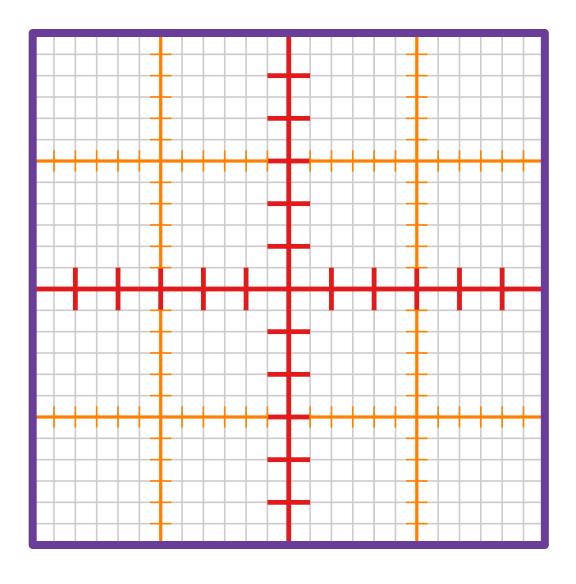
Recall that 
$$k = 2 + 2 \log_2 n$$
.  
 $\Rightarrow m \in O((\log n)/\varepsilon)$ 

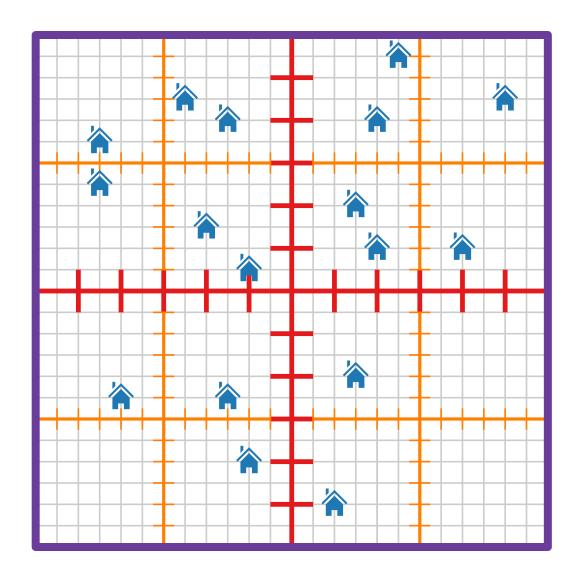
- **Portals** on level-*i* line are at a distance of  $L/(2^i m)$ .
- Every level-*i* square has size  $L/2^i \times L/2^i$ .
- A level-i square has  $\leq 4m$  portals on its boundary.

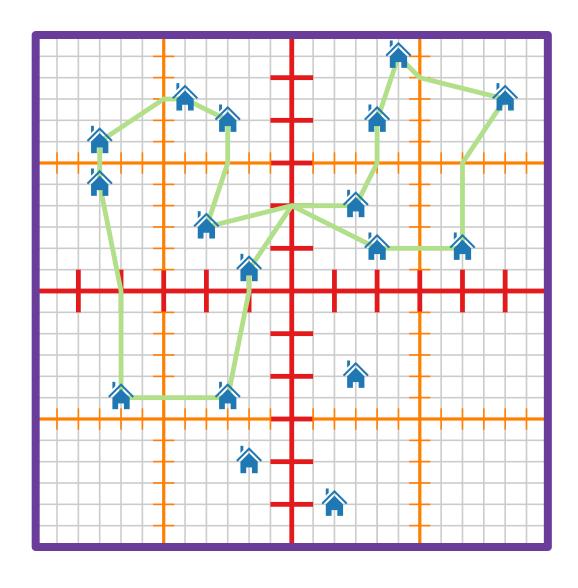
# Approximation Algorithms

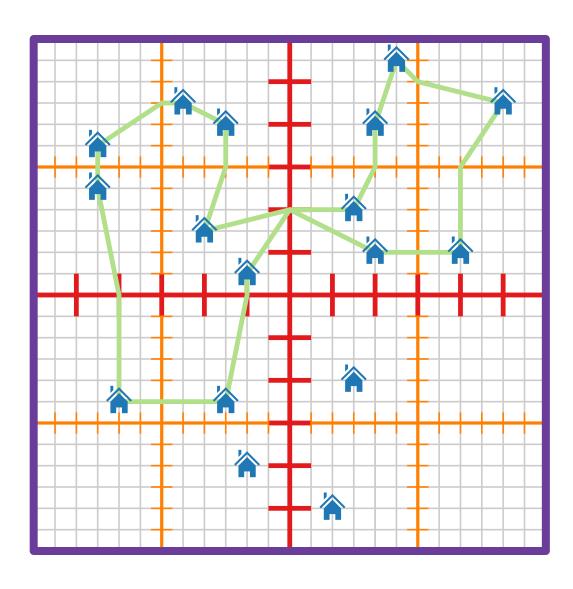
Lecture 9:
A PTAS for Euclidean TSP

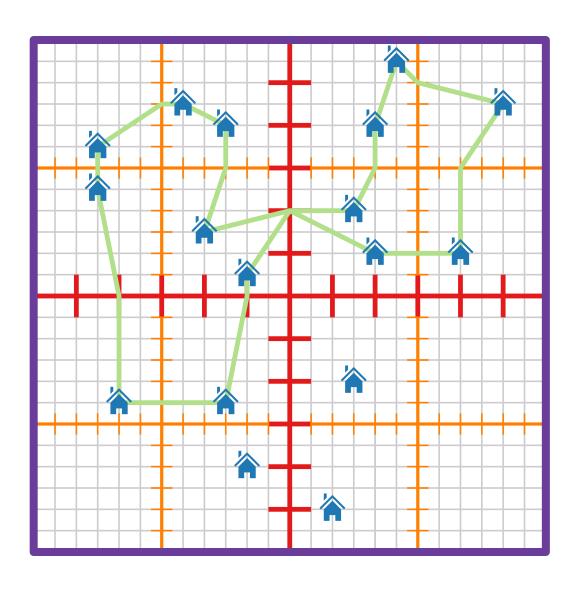
Part III: Well-Behaved Tours





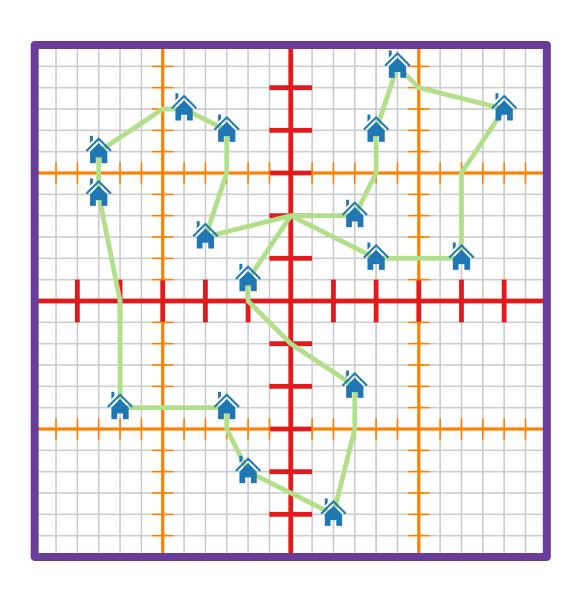






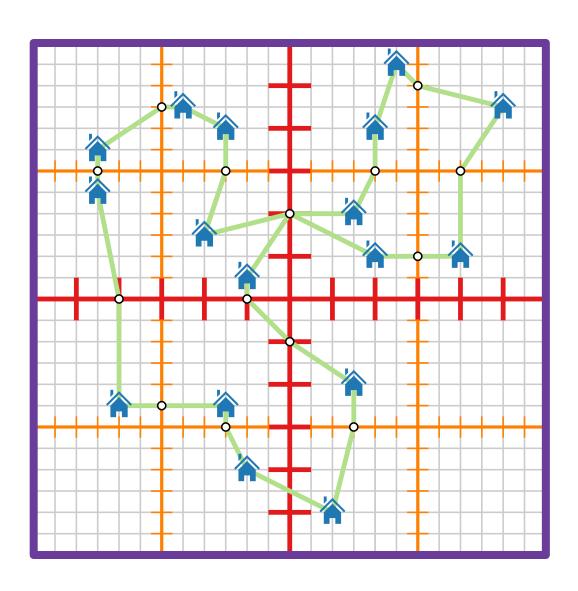
A tour is well-behaved if

it involves all houses



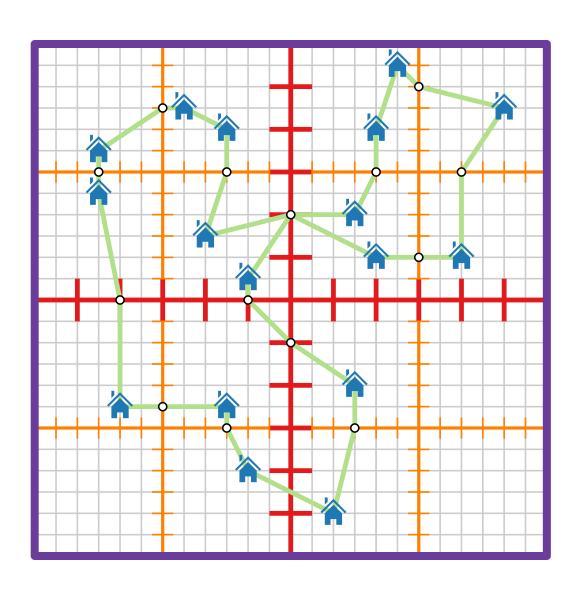
A tour is well-behaved if

it involves all houses

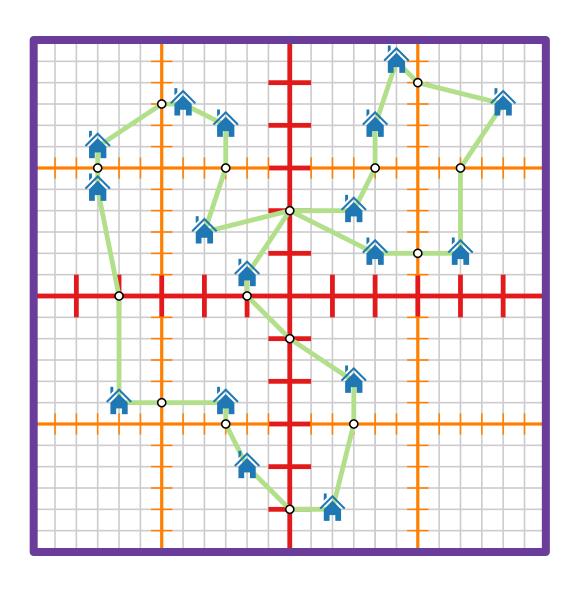


A tour is well-behaved if

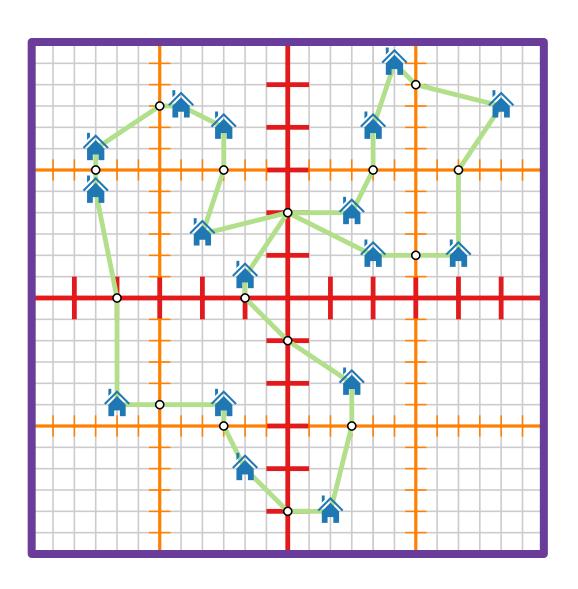
it involves all houses and a subset of the portals,



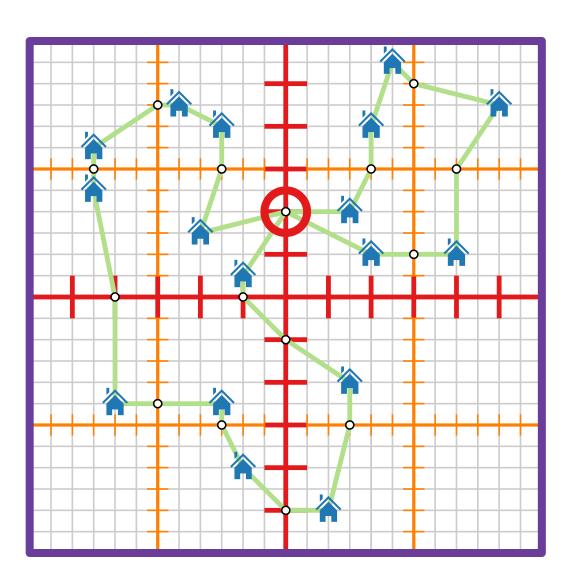
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,



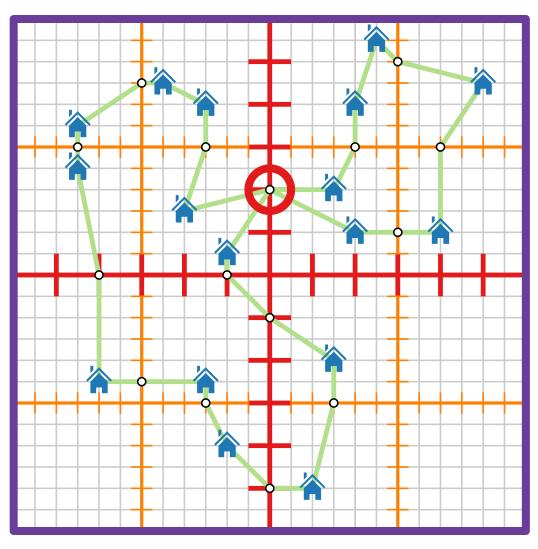
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,



- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.



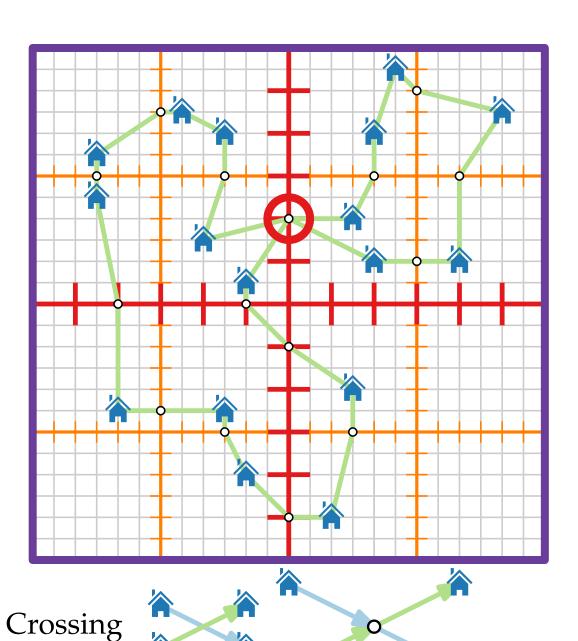
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.



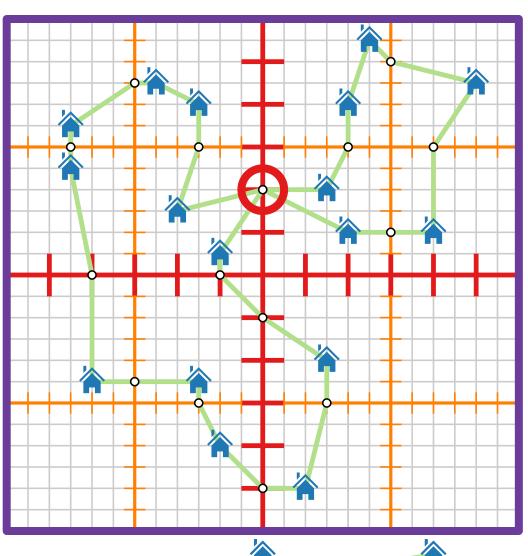
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.







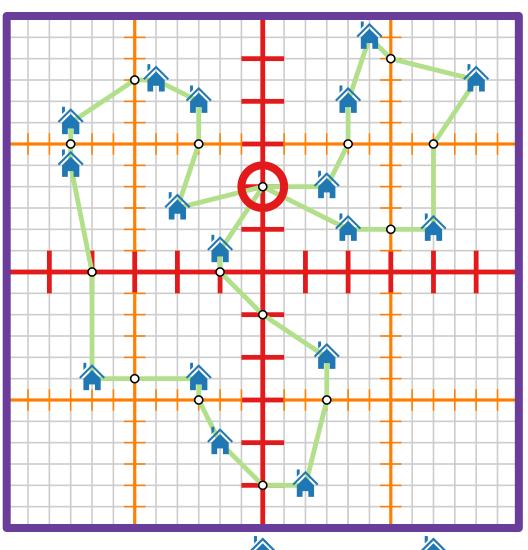
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.



- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.



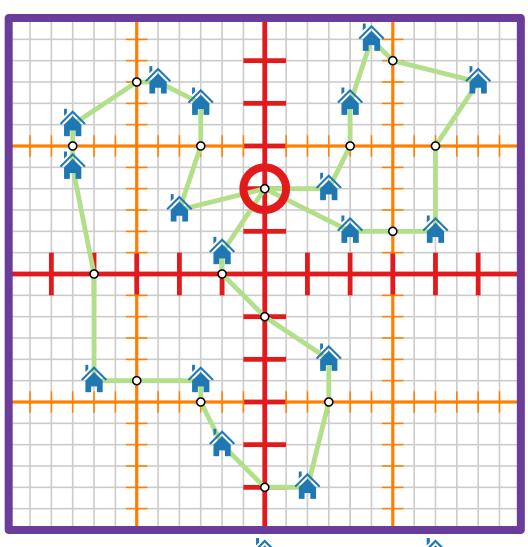




- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.







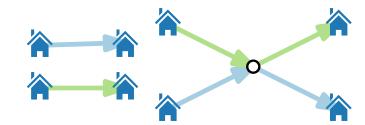
A tour is well-behaved if

- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

W.l.o.g. (homework):
No portal visited more than twice



No crossing



Lemma.

An optimal well-behaved tour can be computed in  $2^{O(m)} = n^{O(1/\epsilon)}$  time.

Lemma.

An optimal well-behaved tour can be computed in  $2^{O(m)} = n^{O(1/\epsilon)}$  time.

Sketch.

Lemma.

An optimal well-behaved tour can be computed in  $2^{O(m)} = n^{O(1/\epsilon)}$  time.

Sketch.

Dynamic programming!

Lemma.

An optimal well-behaved tour can be computed in  $2^{O(m)} = n^{O(1/\epsilon)}$  time.

Sketch.

- Dynamic programming!
- Compute sub-structure of an optimal tour for each square in the dissection tree.

Lemma.

An optimal well-behaved tour can be computed in  $2^{O(m)} = n^{O(1/\epsilon)}$  time.

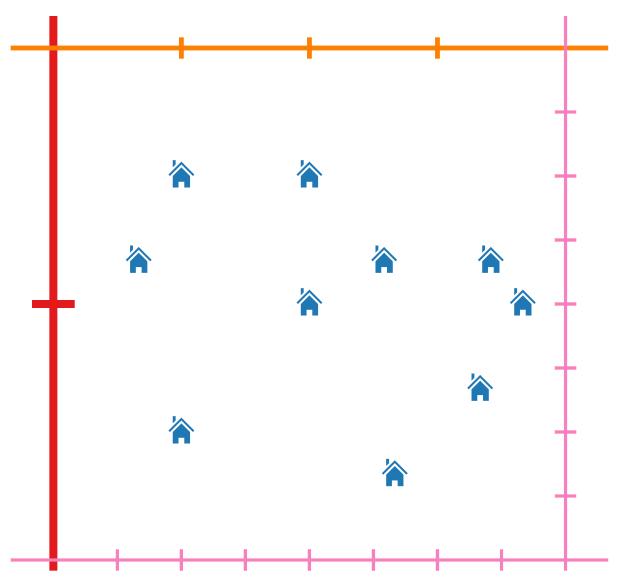
Sketch.

- Dynamic programming!
- Compute sub-structure of an optimal tour for each square in the dissection tree.
- These solutions can be efficiently propagated bottom-up through the dissection tree.

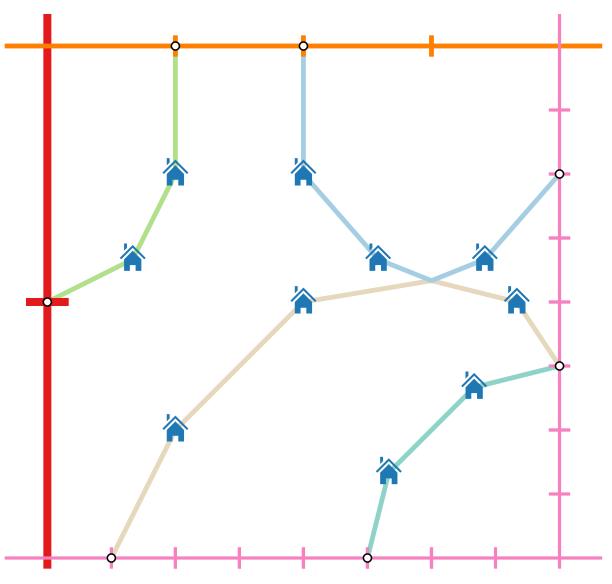
# Approximation Algorithms

Lecture 9:
A PTAS for Euclidean TSP

Part IV: Dynamic Program

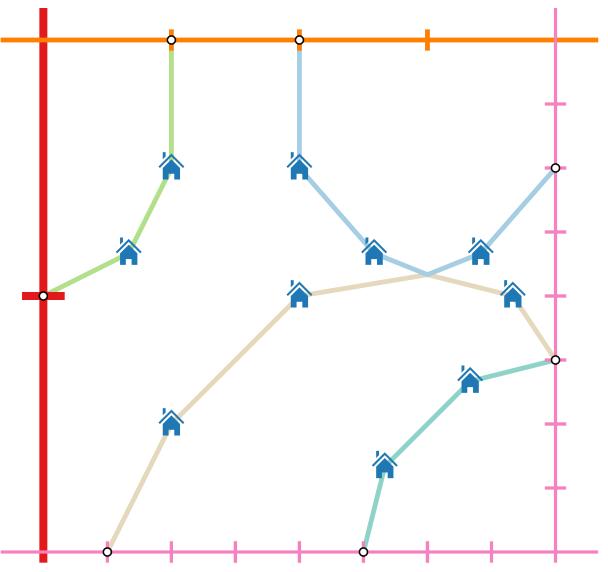


Each well-behaved tour induces the following in each square *Q* of the dissection:



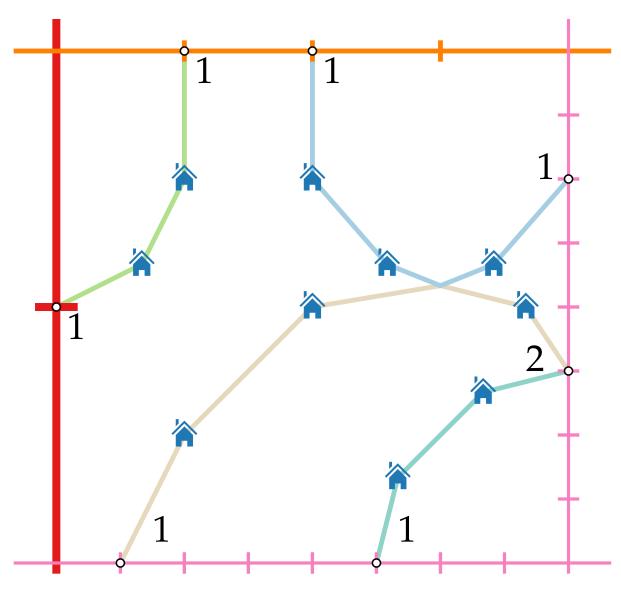
Each well-behaved tour induces the following in each square *Q* of the dissection:

a path cover of the houses in *Q*,



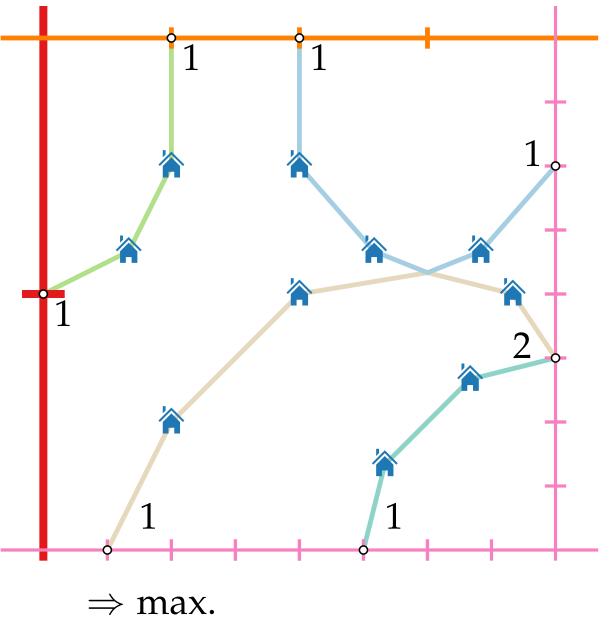
Each well-behaved tour induces the following in each square *Q* of the dissection:

- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,



Each well-behaved tour induces the following in each square *Q* of the dissection:

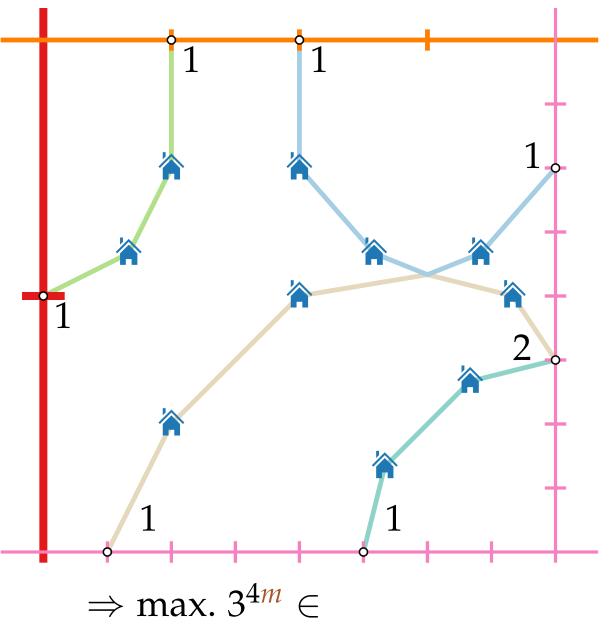
- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,



Each well-behaved tour induces the following in each square *Q* of the dissection:

- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,

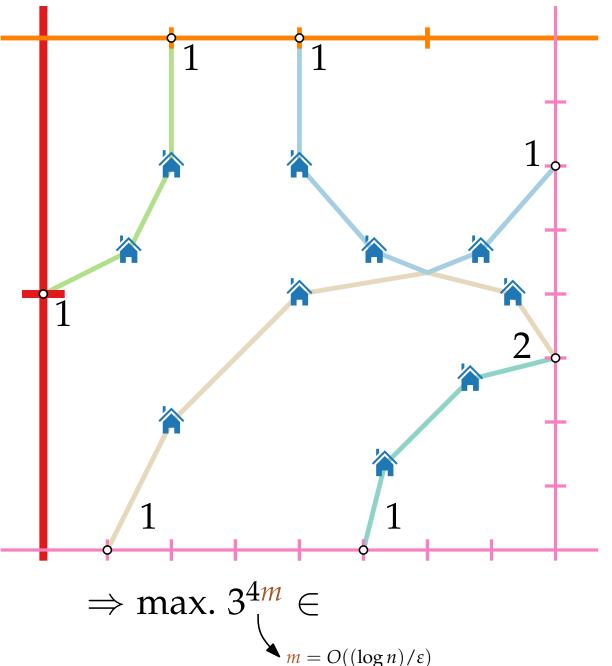
possibilities



Each well-behaved tour induces the following in each square *Q* of the dissection:

- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,

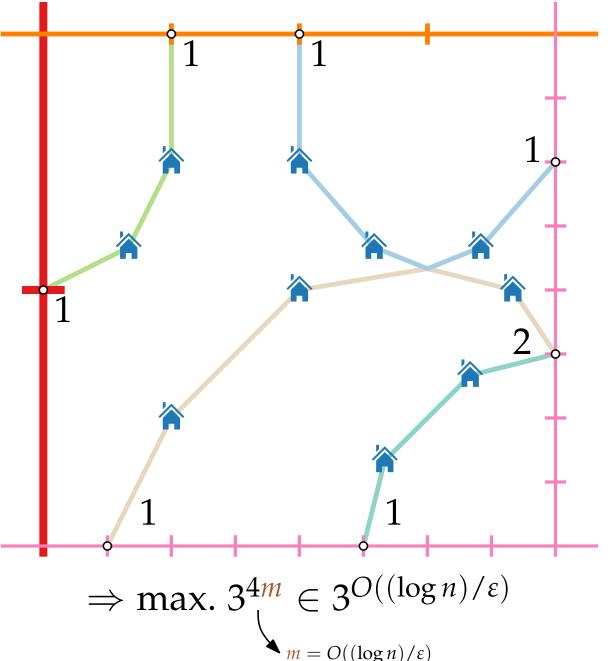
possibilities



Each well-behaved tour induces the following in each square *Q* of the dissection:

- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,

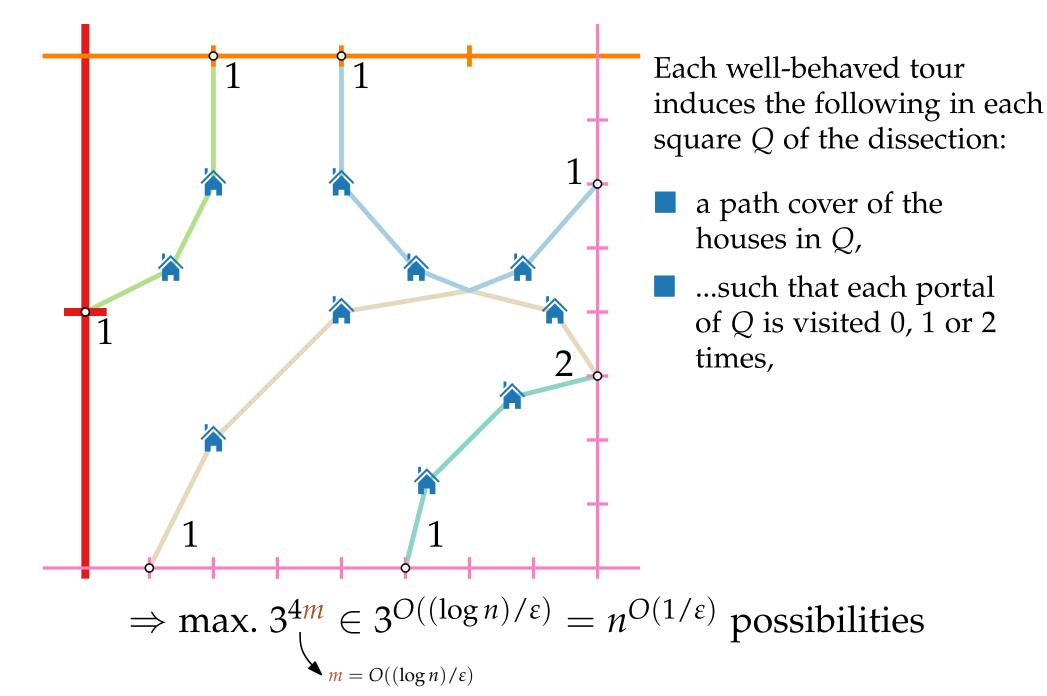
possibilities

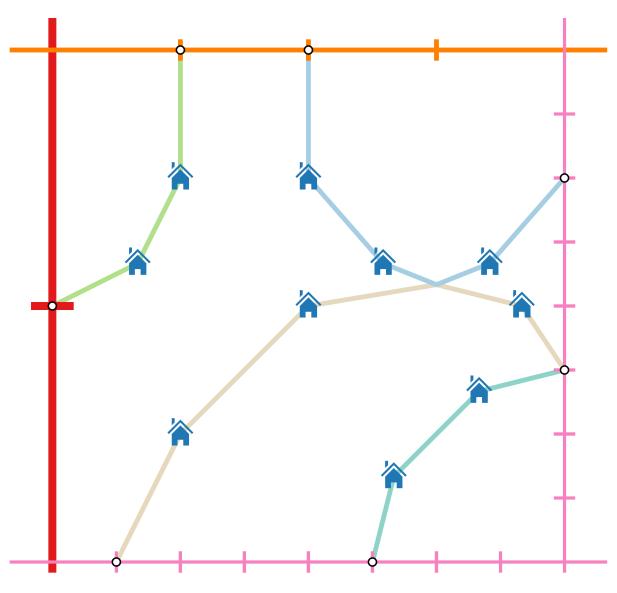


Each well-behaved tour induces the following in each square *Q* of the dissection:

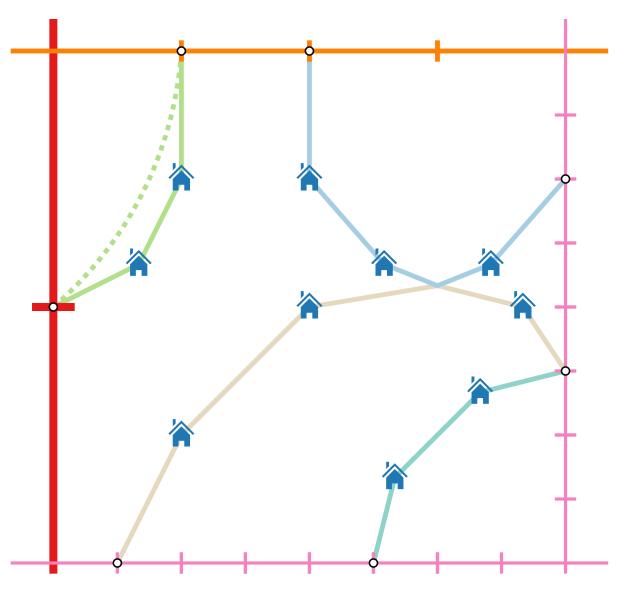
- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,

possibilities

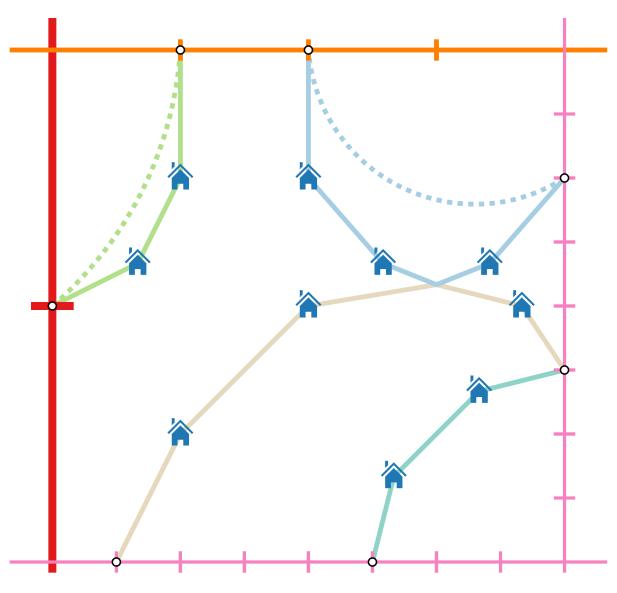




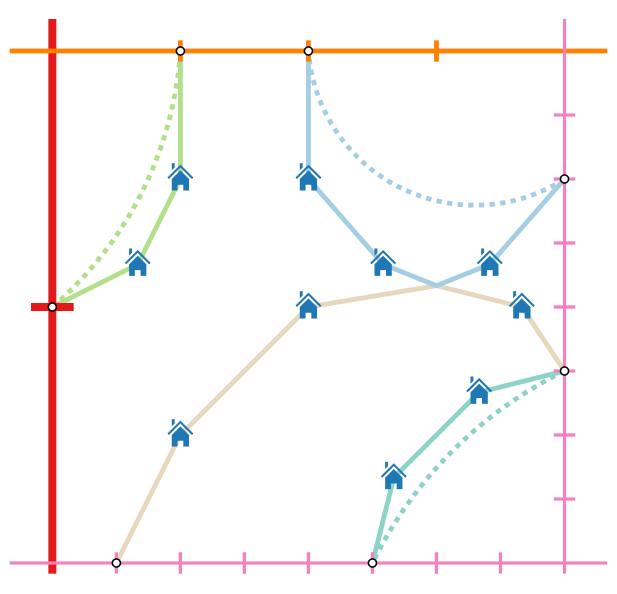
- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a crossing-free pairing of the visited portals.



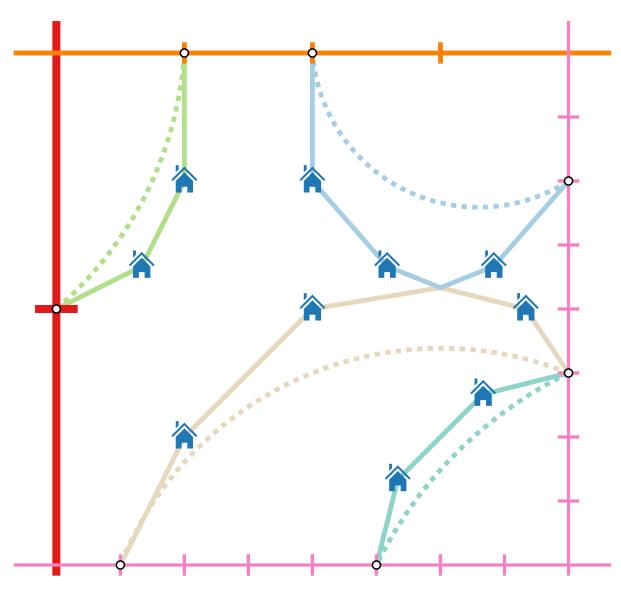
- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a crossing-free pairing of the visited portals.



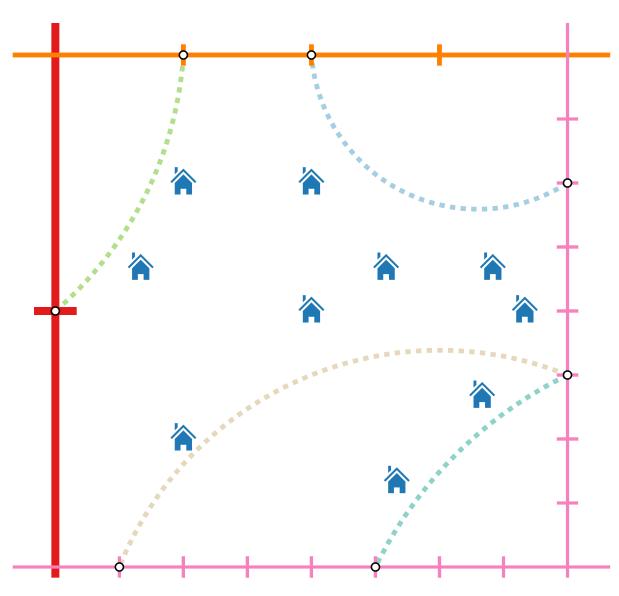
- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a crossing-free pairing of the visited portals.



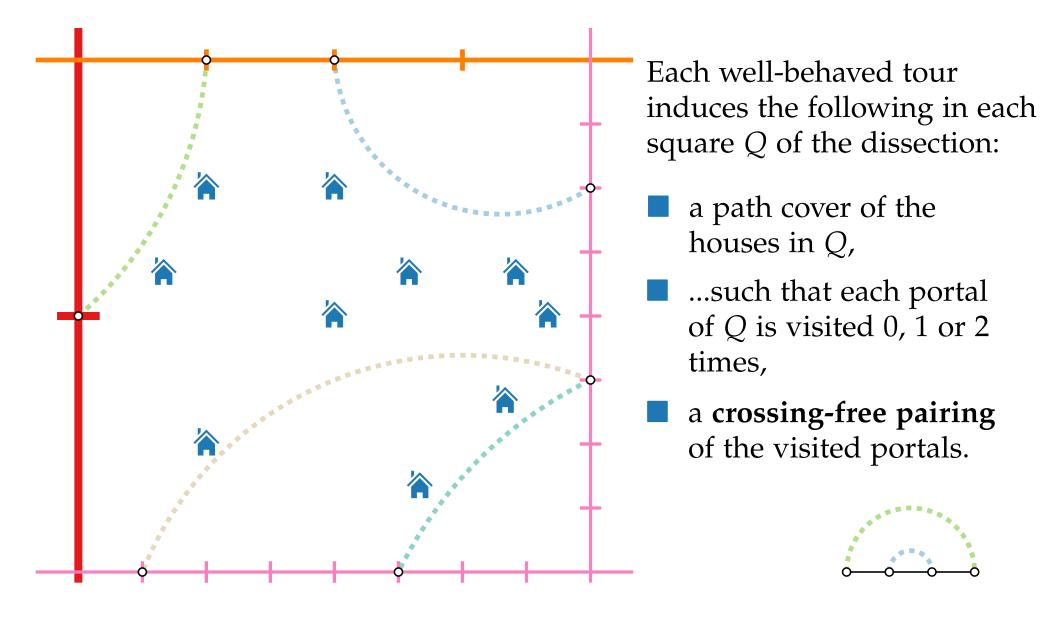
- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a crossing-free pairing of the visited portals.

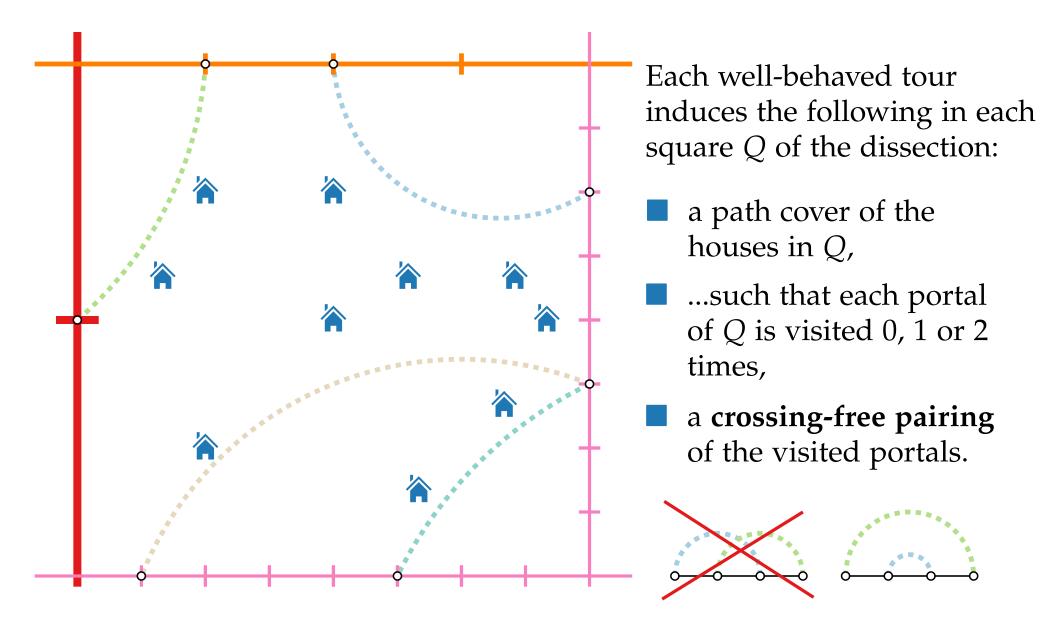


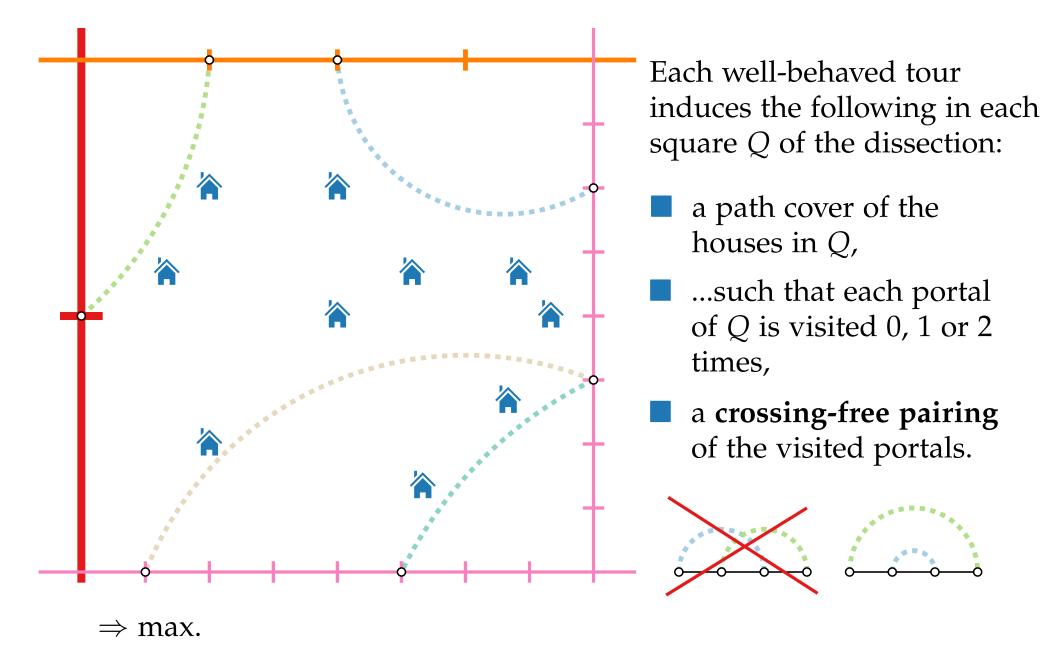
- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a crossing-free pairing of the visited portals.

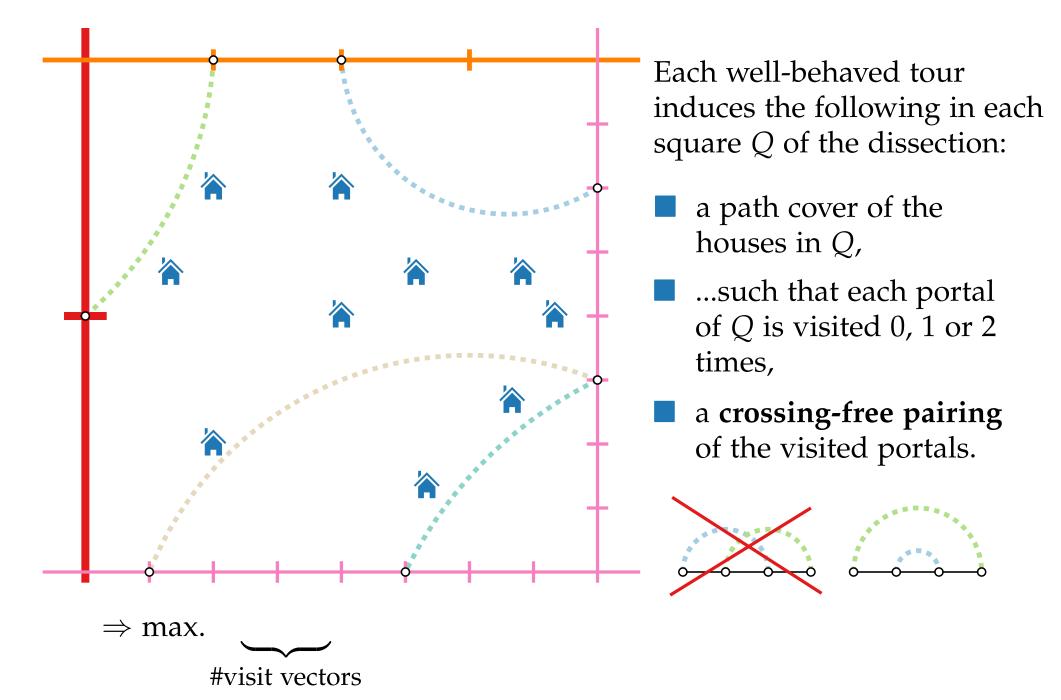


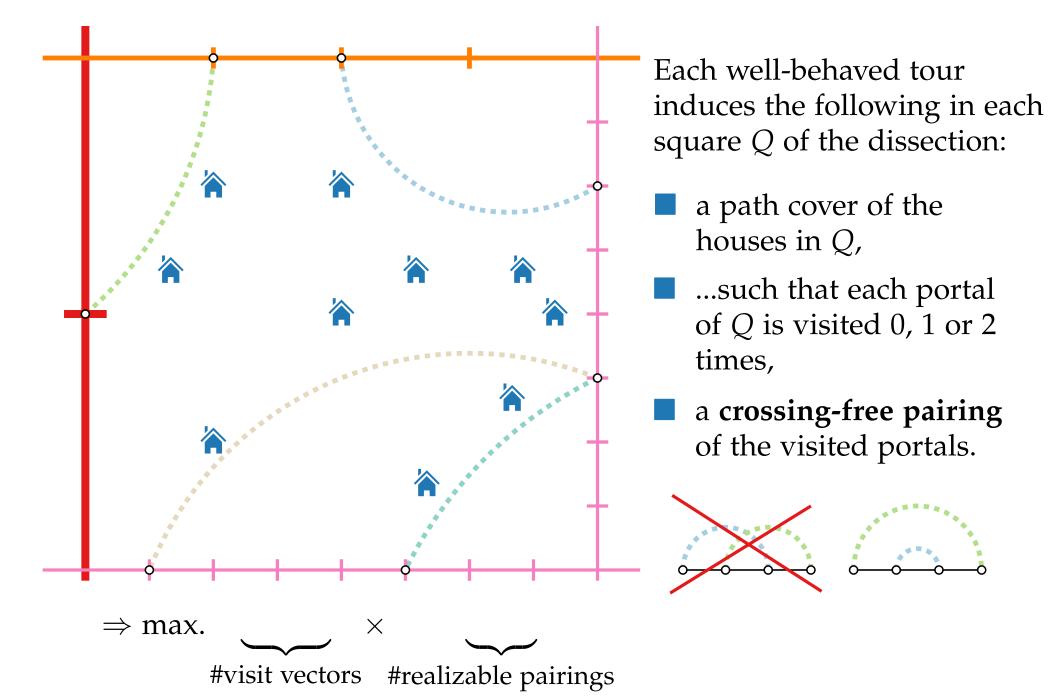
- a path cover of the houses in *Q*,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a crossing-free pairing of the visited portals.

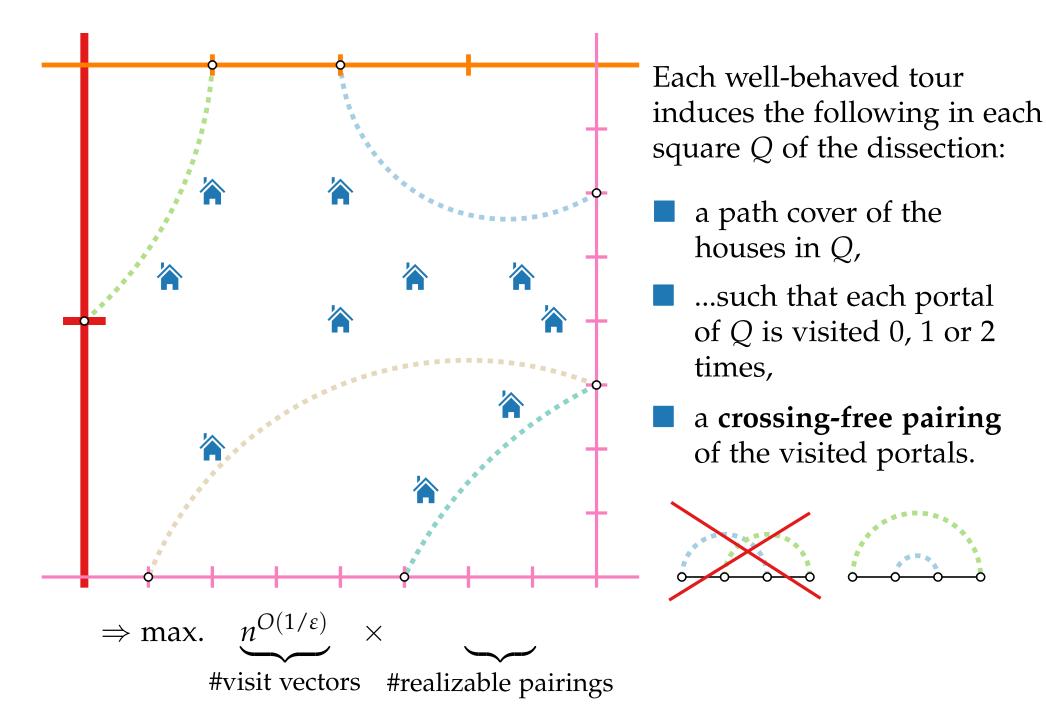


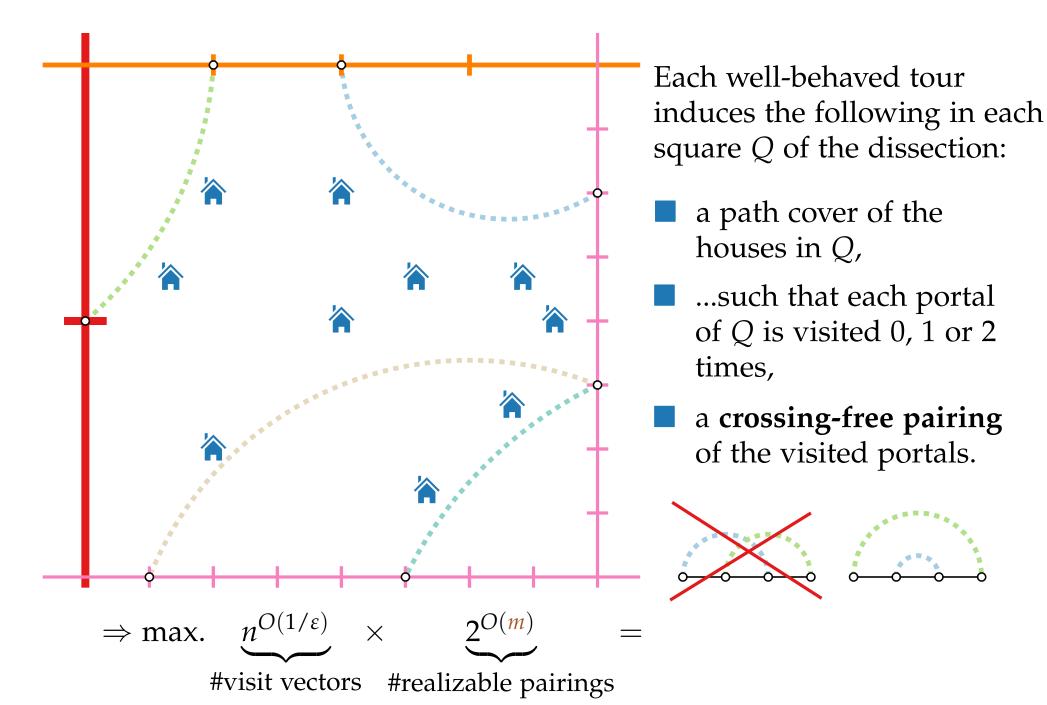


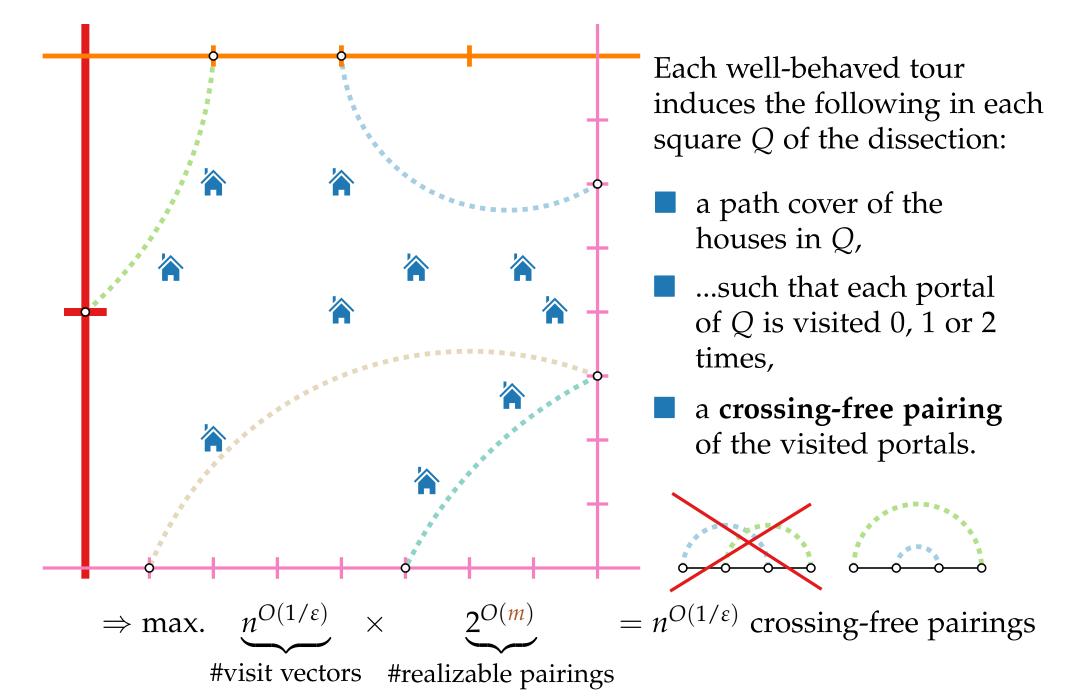


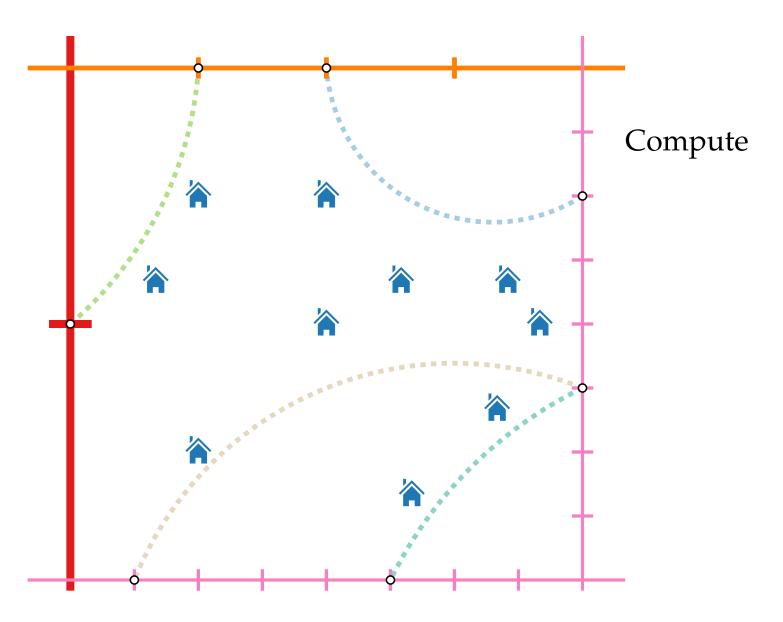


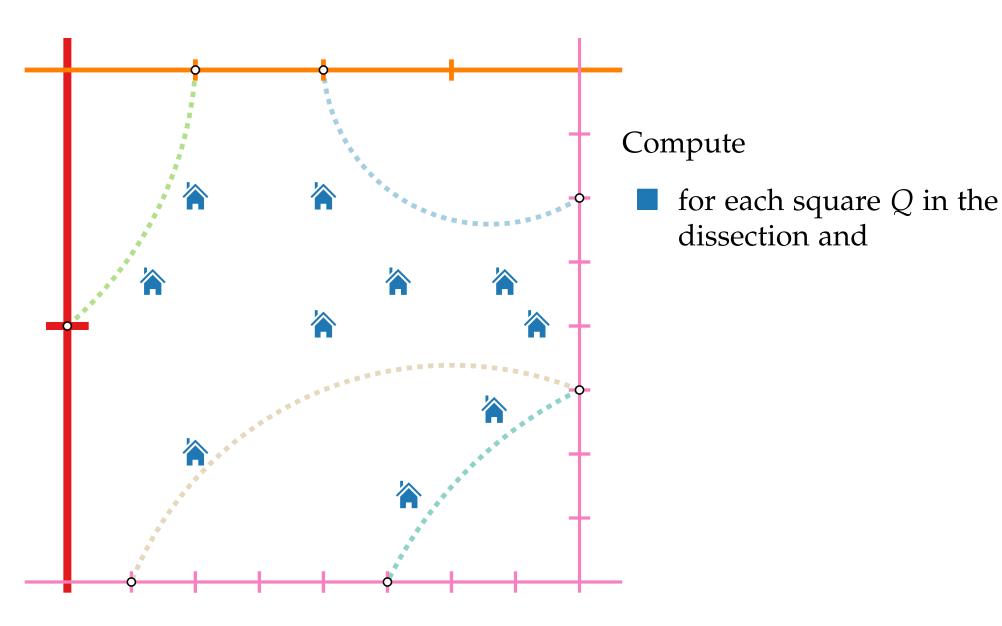


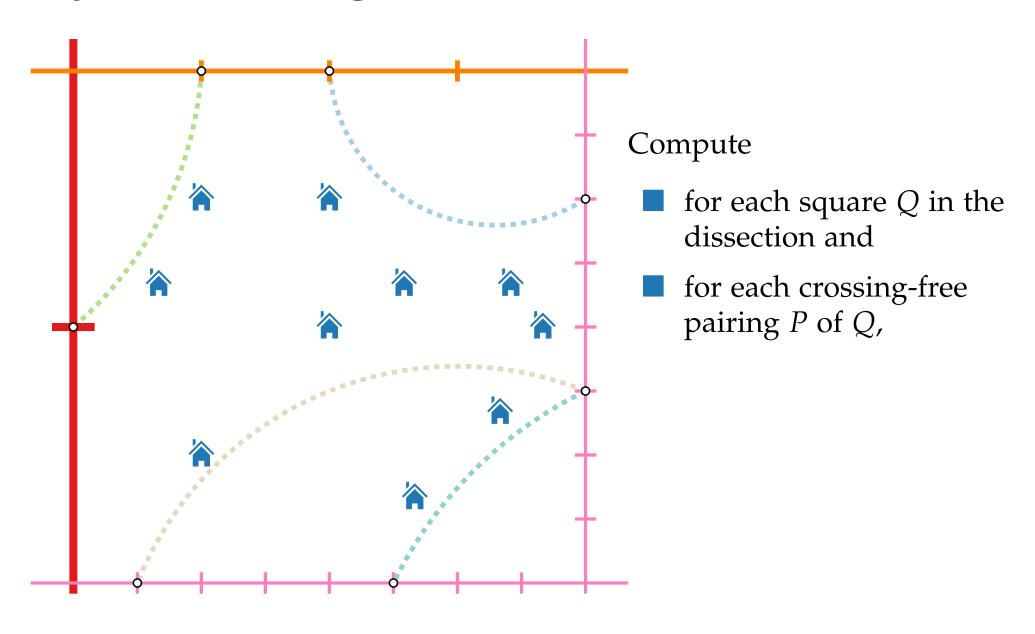


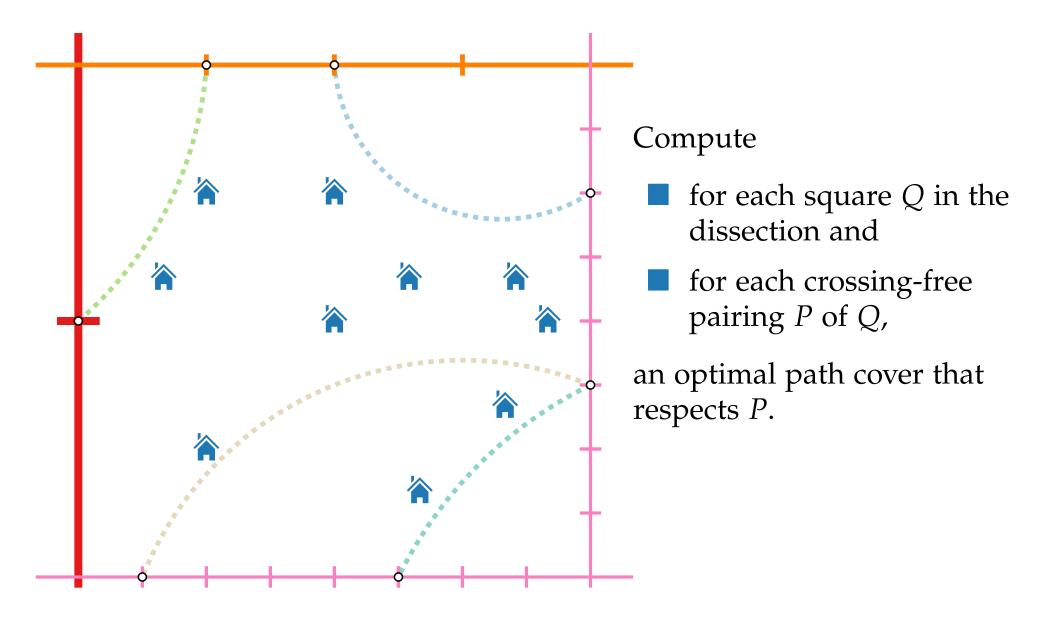


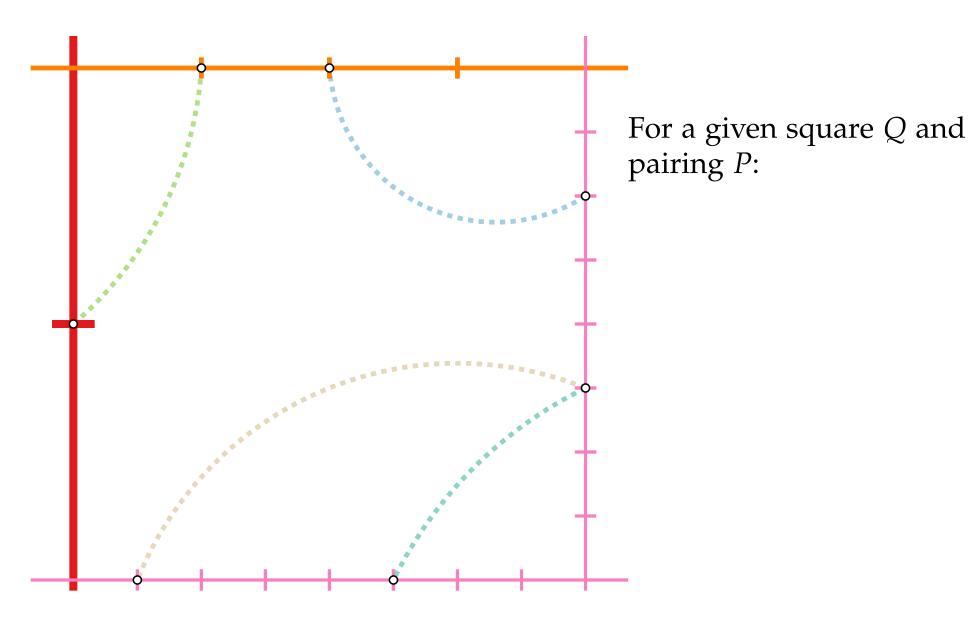


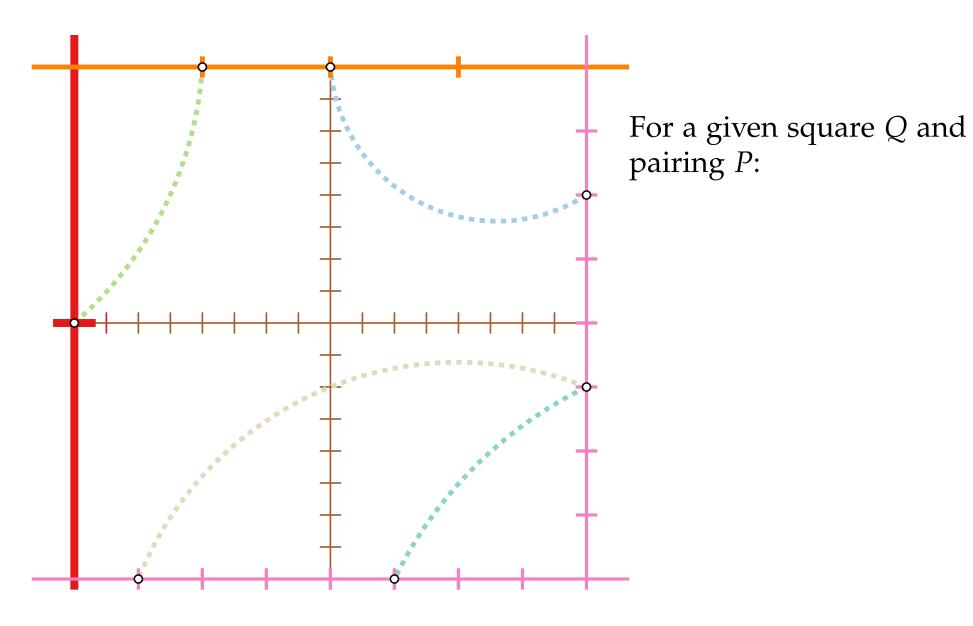


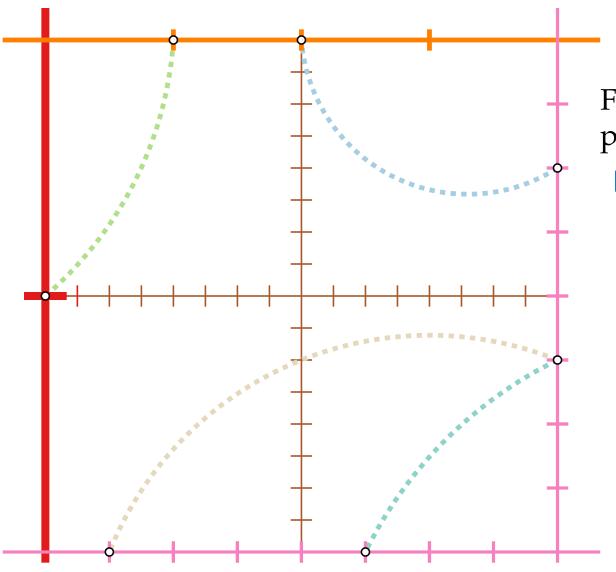








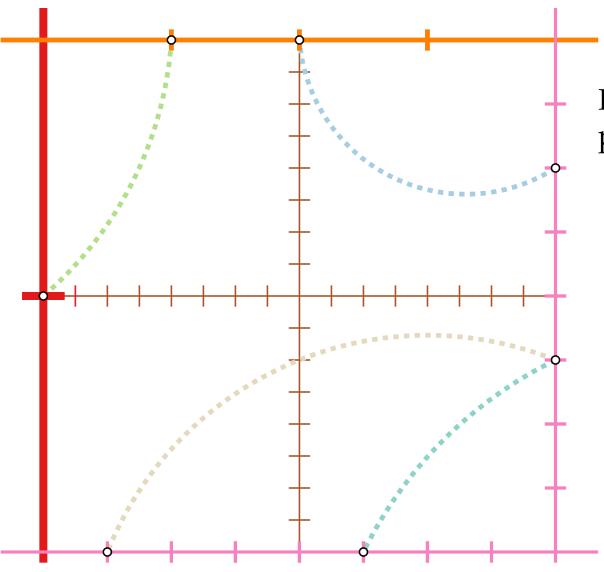




For a given square *Q* and pairing *P*:

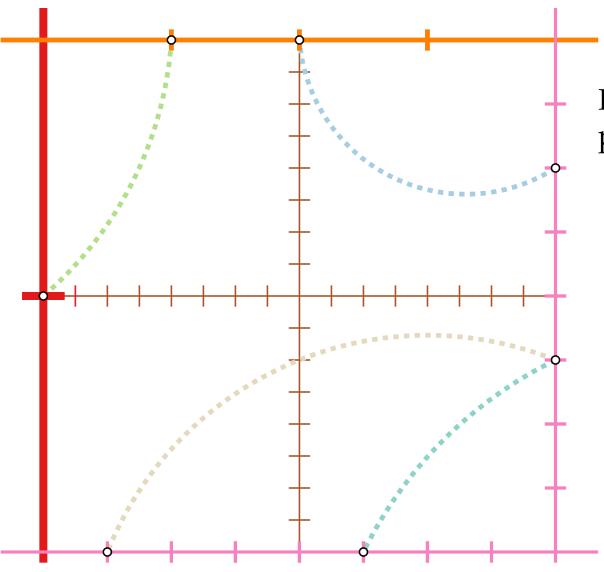
Iterate over all

crossing-free pairings of the child squares.



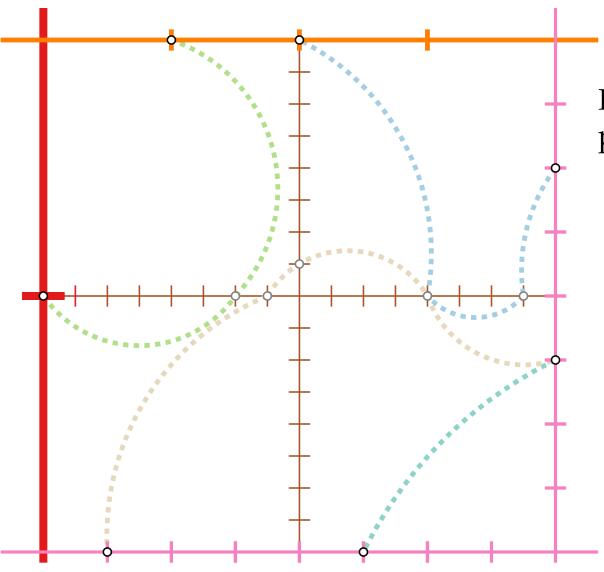
For a given square *Q* and pairing *P*:

Iterate over all  $(n^{O(1/\epsilon)})^4 =$  crossing-free pairings of the child squares.



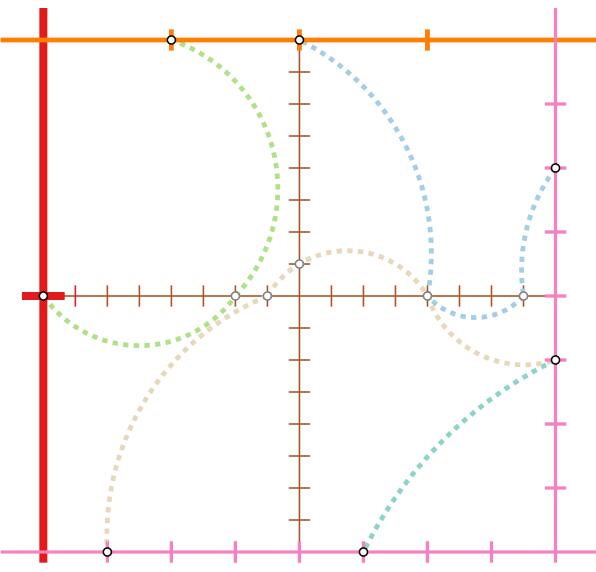
For a given square *Q* and pairing *P*:

Iterate over all  $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$  crossing-free pairings of the child squares.



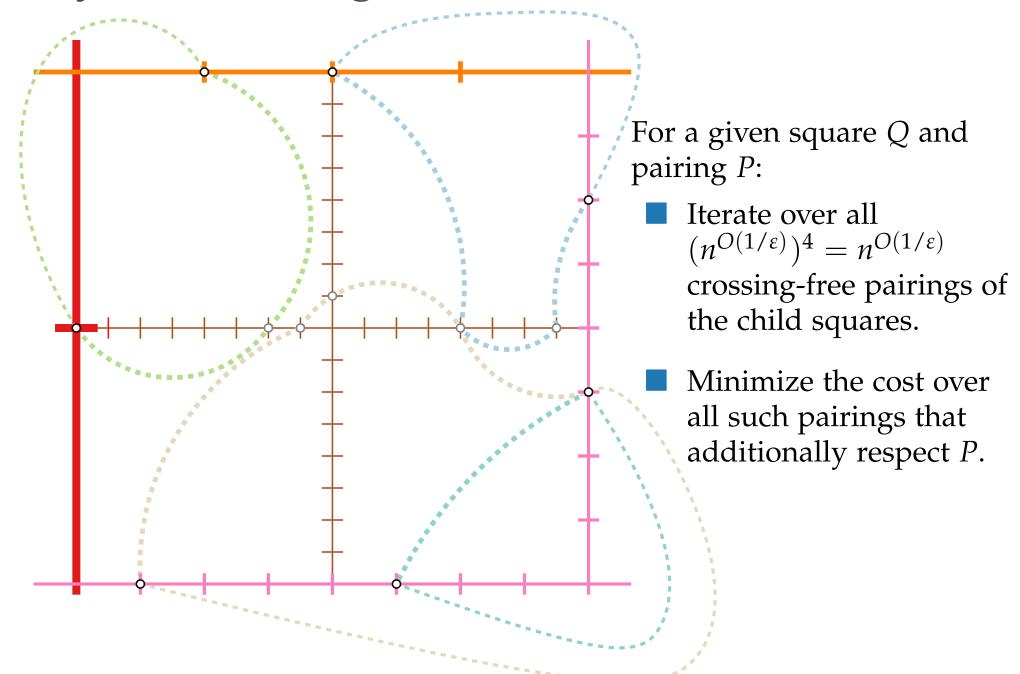
For a given square *Q* and pairing *P*:

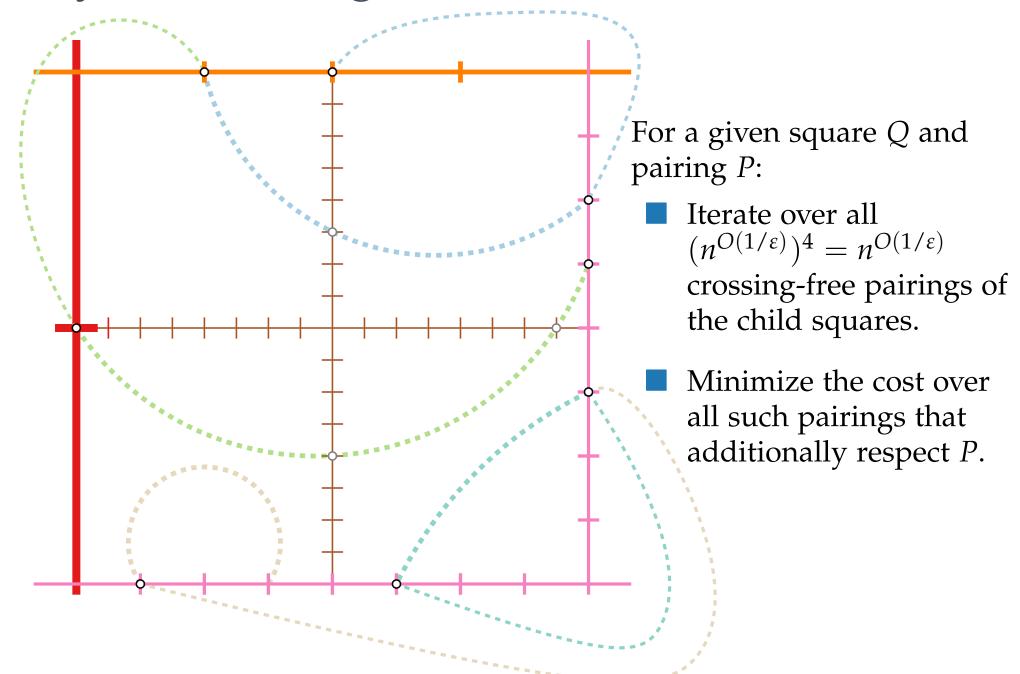
Iterate over all  $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$  crossing-free pairings of the child squares.

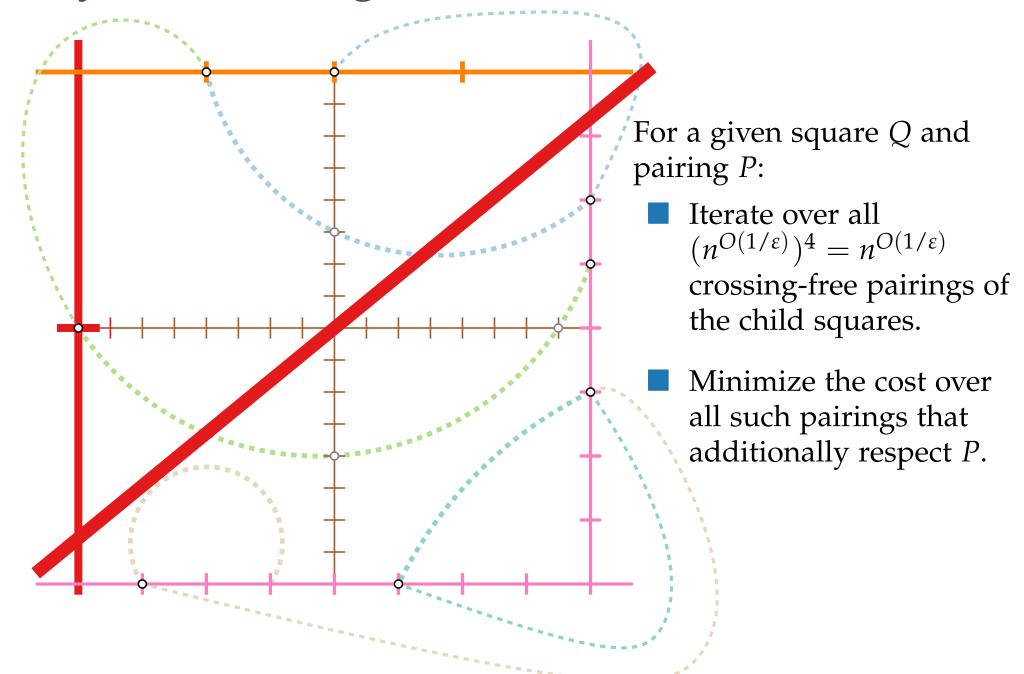


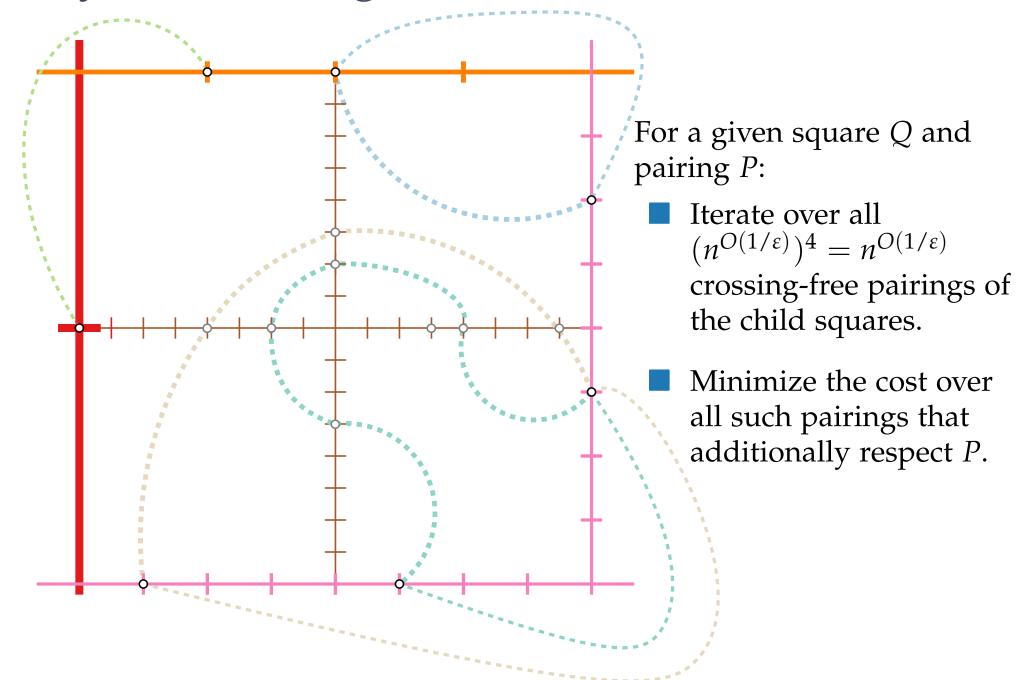
For a given square *Q* and pairing *P*:

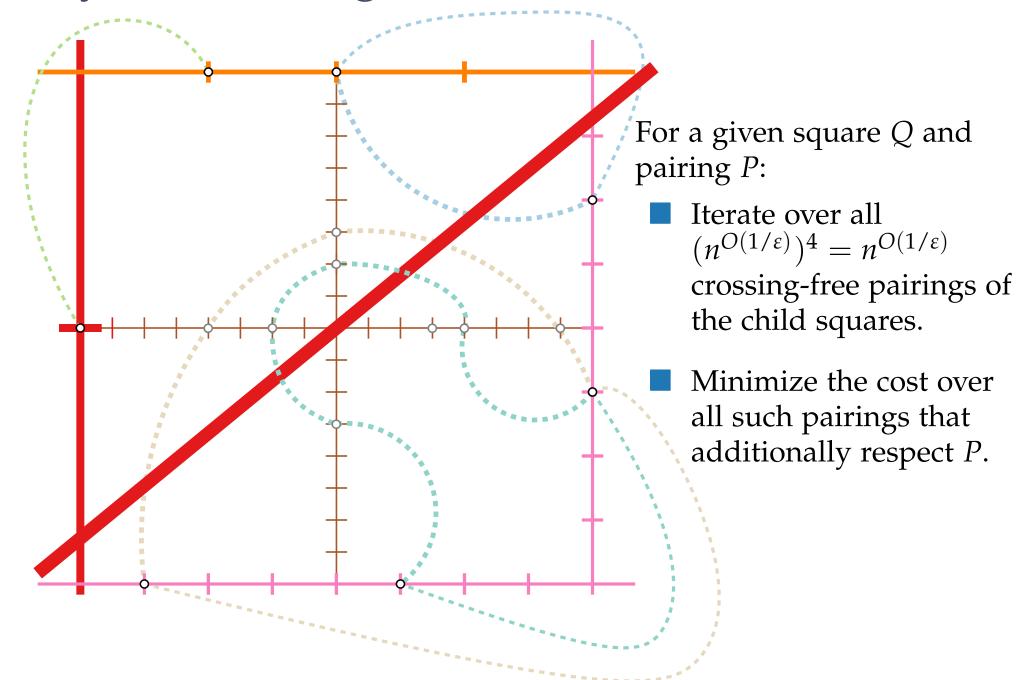
- Iterate over all  $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$  crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P.

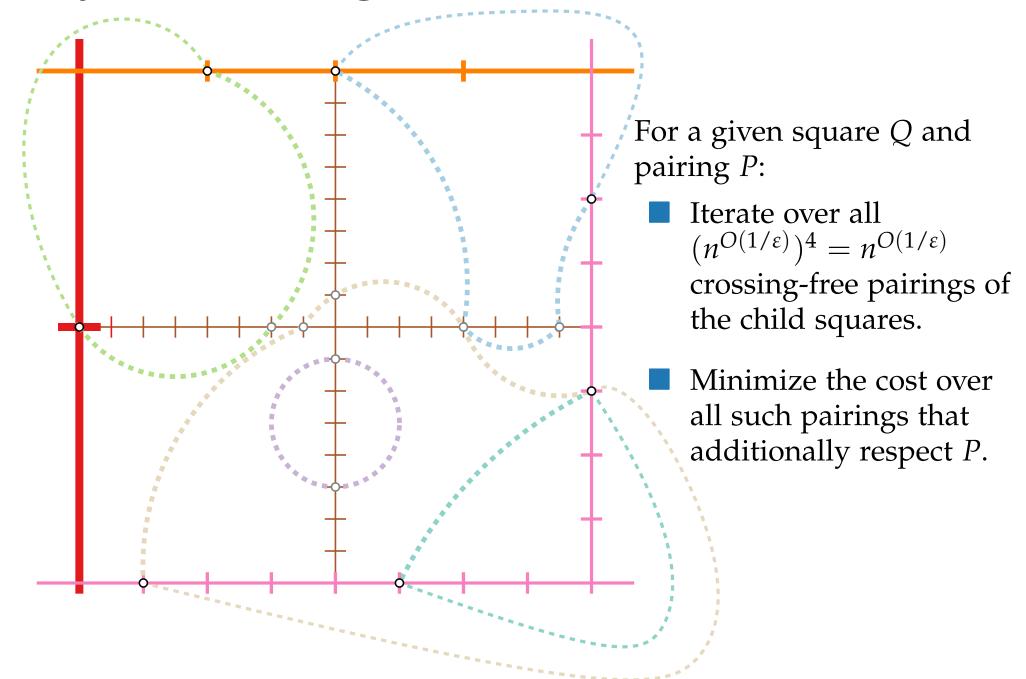


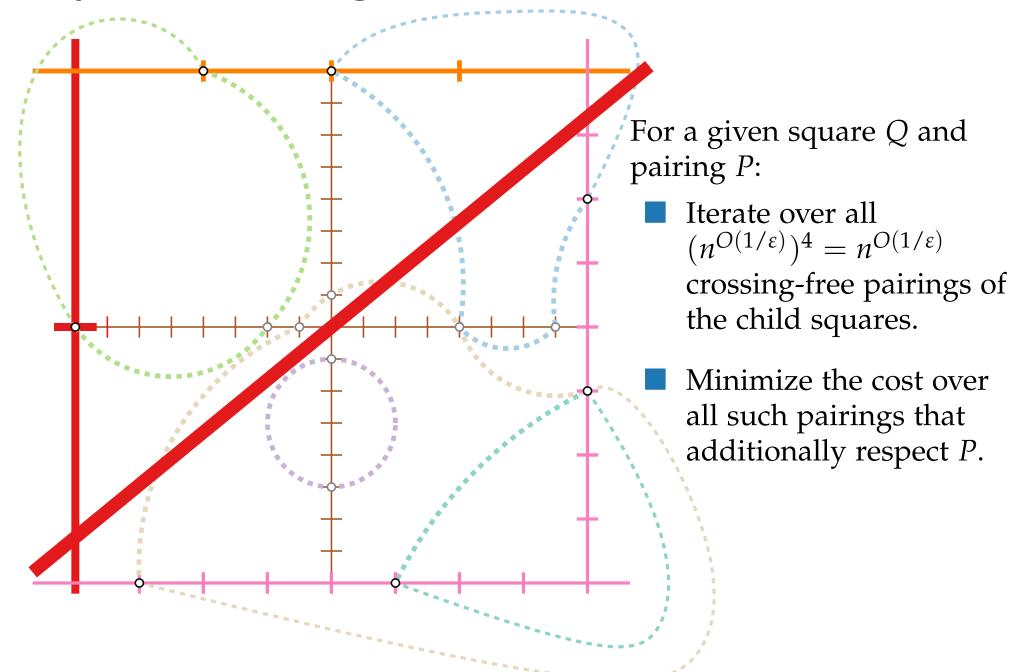


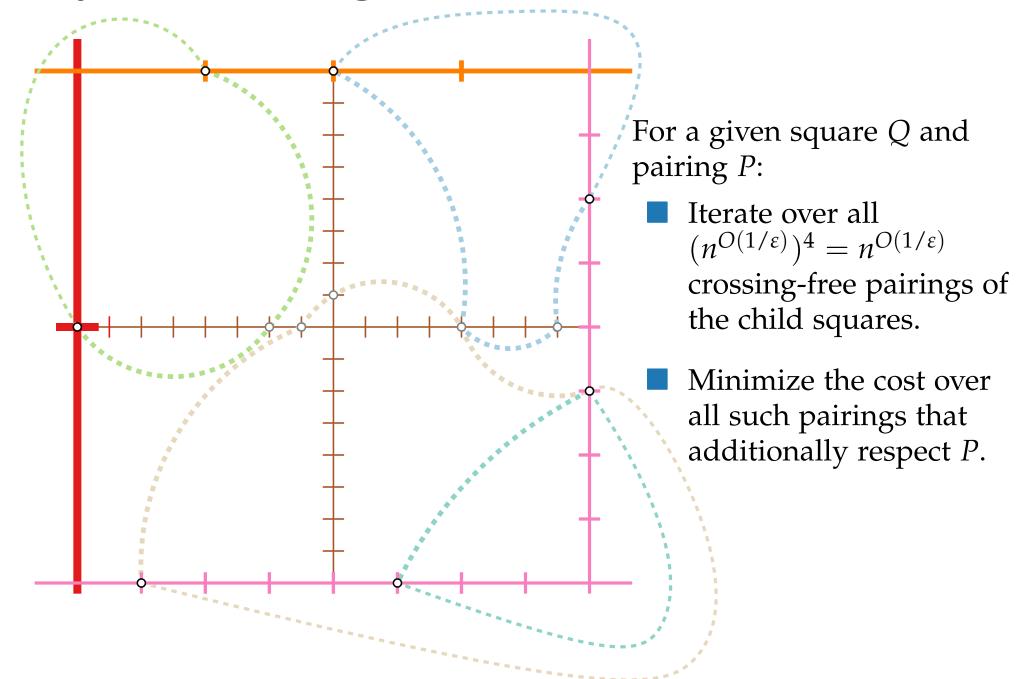


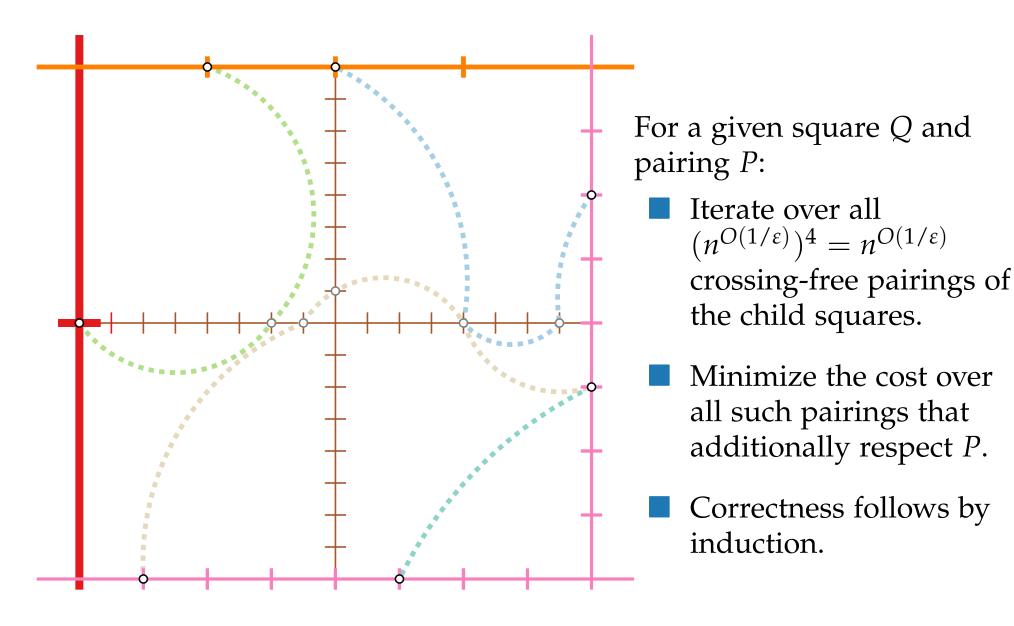




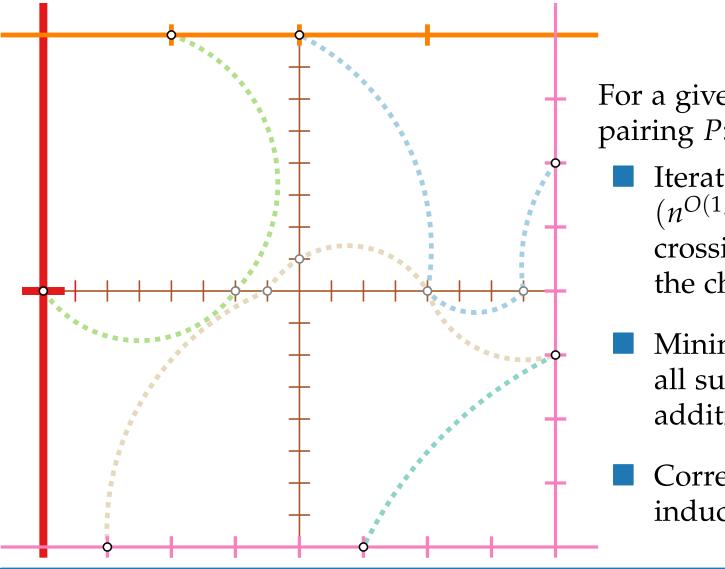








## Dynamic Program (III)



For a given square *Q* and pairing *P*:

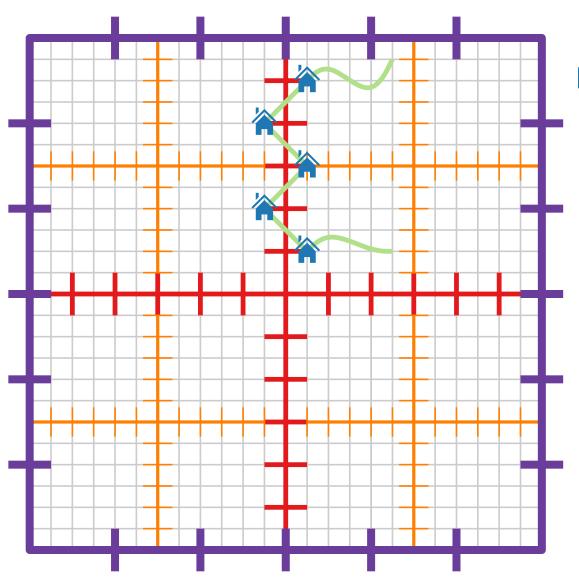
- Iterate over all  $(n^{O(1/\epsilon)})^4 = n^{O(1/\epsilon)}$  crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect *P*.
- Correctness follows by induction.

Lemma. An optimal well-behaved tour can be computed in  $2^{O(m)} = n^{O(1/\epsilon)}$  time.

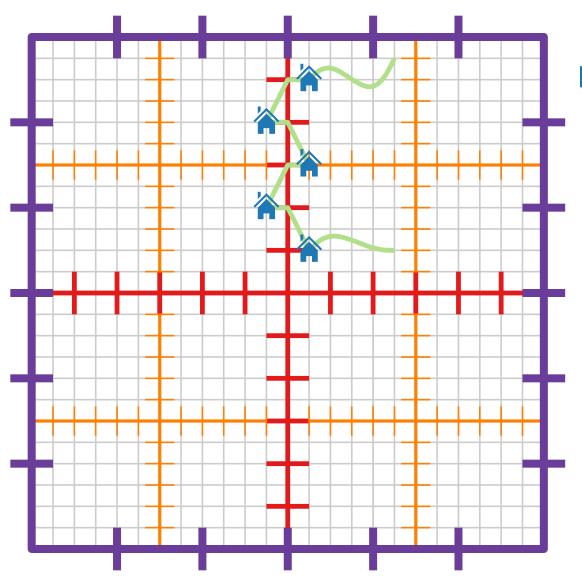
# Approximation Algorithms

Lecture 9:
A PTAS for Euclidean TSP

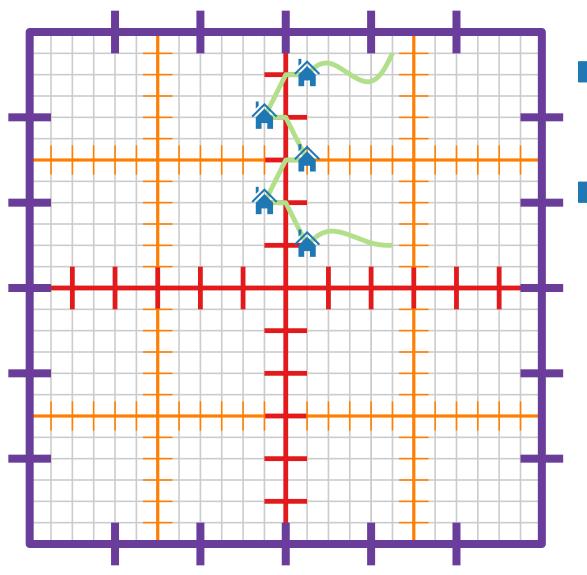
Part V: Shifted Dissections



The best well-behaved tour can be a bad approximation.

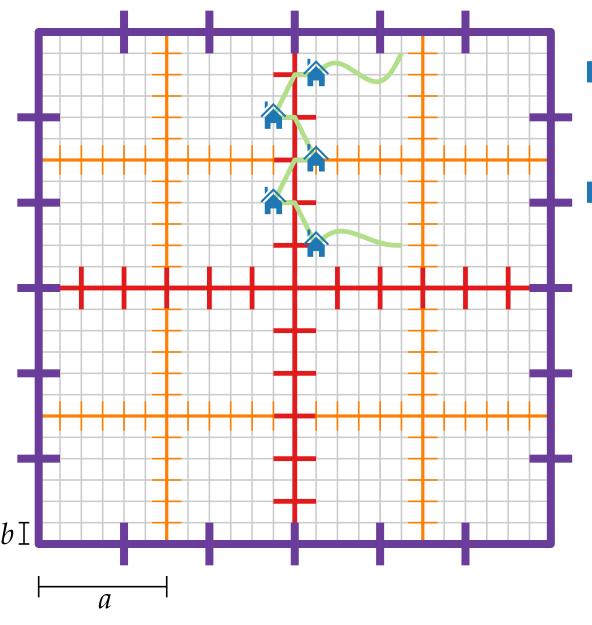


The best well-behaved tour can be a bad approximation.



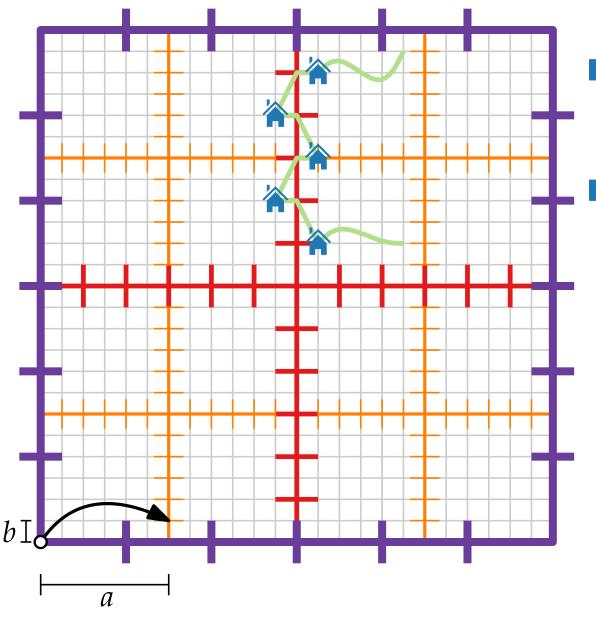
- The best well-behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$
  
 $y \mapsto (y+b) \mod L$ 



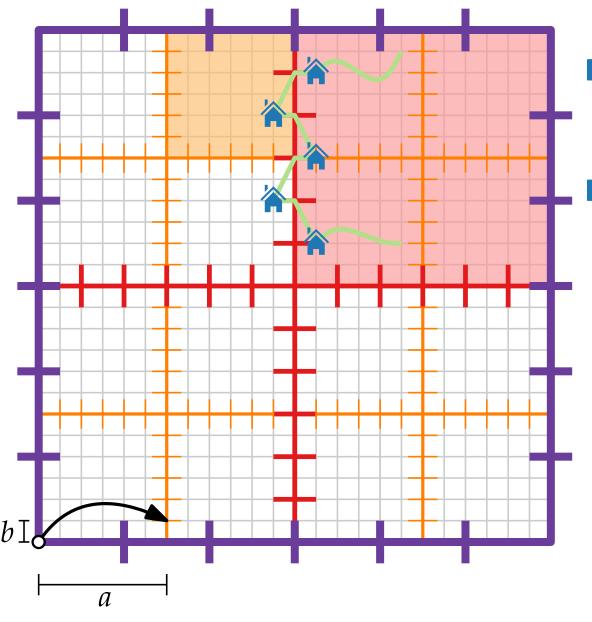
- The best well-behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$
  
 $y \mapsto (y+b) \mod L$ 



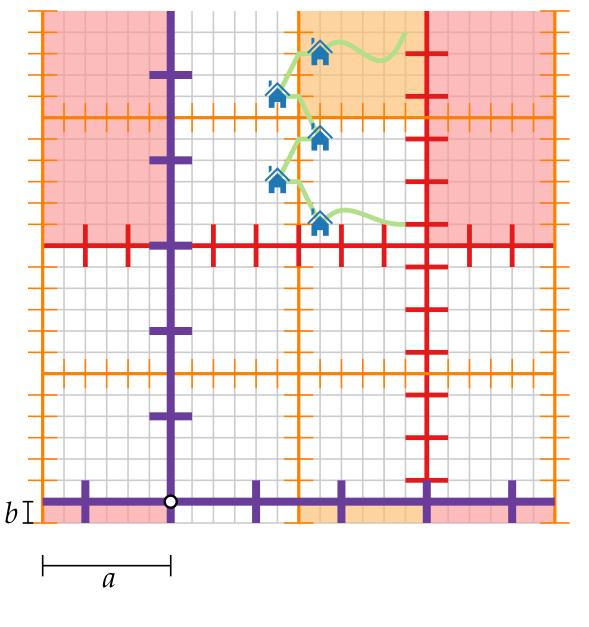
- The best well-behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$
  
 $y \mapsto (y+b) \mod L$ 



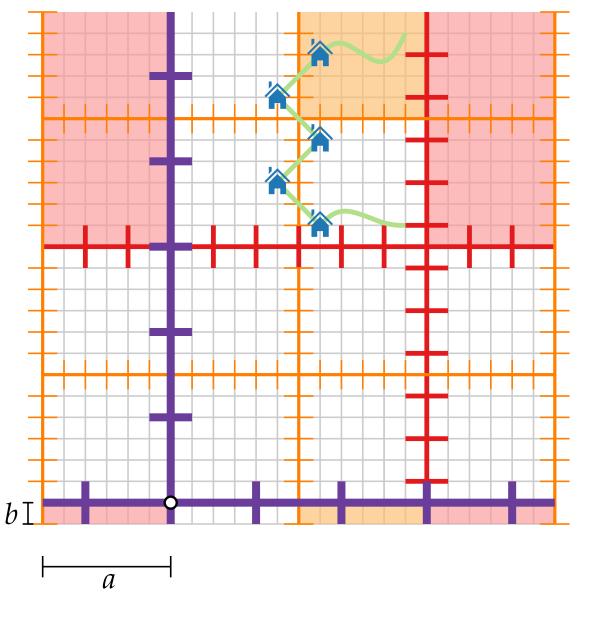
- The best well-behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$
  
 $y \mapsto (y+b) \mod L$ 



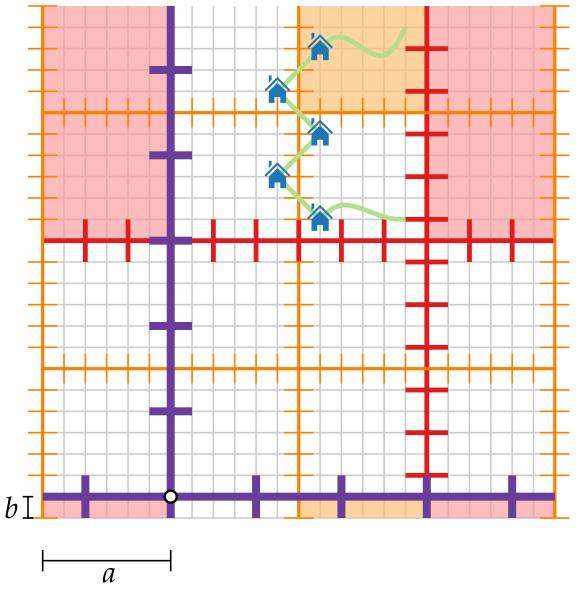
- The best well-behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$
  
 $y \mapsto (y+b) \mod L$ 



- The best well-behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

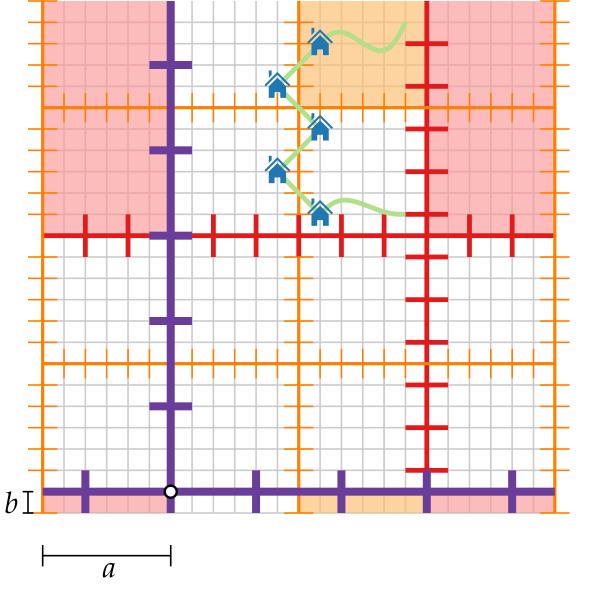
$$x \mapsto (x+a) \mod L$$
  
 $y \mapsto (y+b) \mod L$ 



- The best well-behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$
  
 $y \mapsto (y+b) \mod L$ 

Squares in the dissection tree are "wrapped around".



- The best well-behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$x \mapsto (x+a) \mod L$$
  
 $y \mapsto (y+b) \mod L$ 

- Squares in the dissection tree are "wrapped around".
- Dynamic program must be modified accordingly.

Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid.

Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

Proof.

Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

Proof.

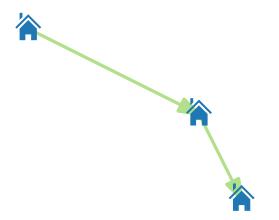


Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

Proof.

Consider a tour as an ordered cyclic sequence.

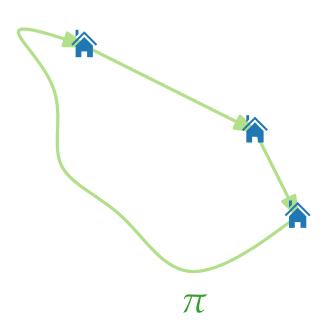


 $\mathcal{\Pi}$ 

Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

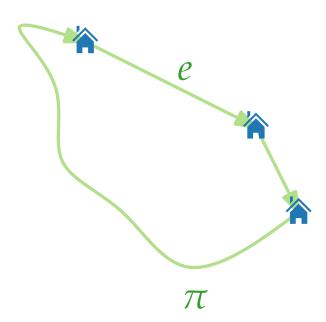
Proof.



Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

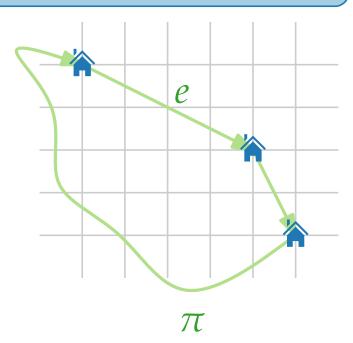
Proof.



Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

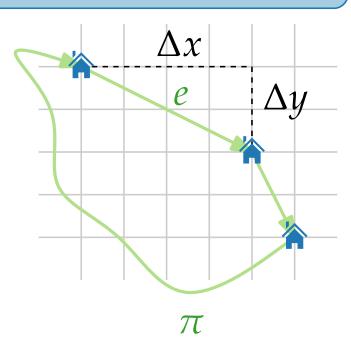
Proof.



Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

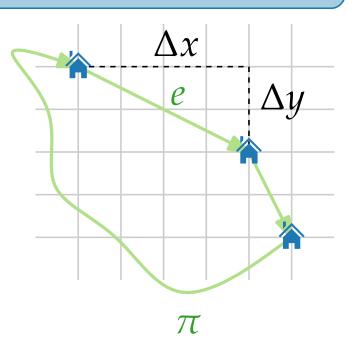
Proof.



Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

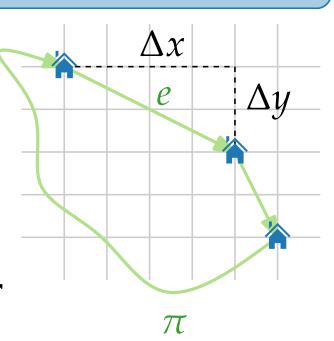
- Consider a tour as an ordered cyclic sequence.
- Each edge e generates  $N_e \leq \Delta x + \Delta y$  crossings.



Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates  $N_e \leq \Delta x + \Delta y$  crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

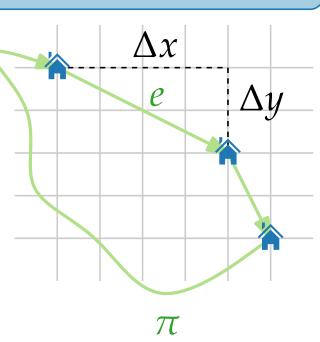


Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates  $N_e \leq \Delta x + \Delta y$  crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

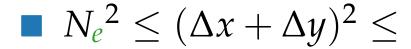


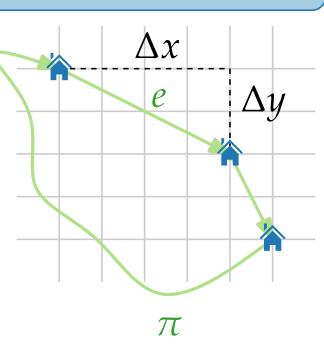


Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates  $N_e \leq \Delta x + \Delta y$  crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

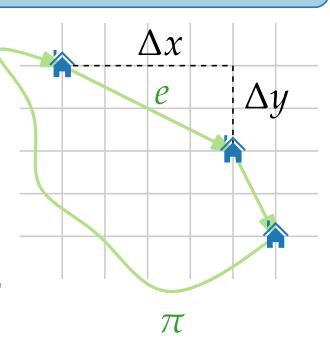




Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates  $N_e \leq \Delta x + \Delta y$  crossings.
- Crossings at the endpoint of an edge are counted for the next edge.  $0 \le (\Delta x \Delta y)^2$
- $N_e^2 \le (\Delta x + \Delta y)^2 \le$

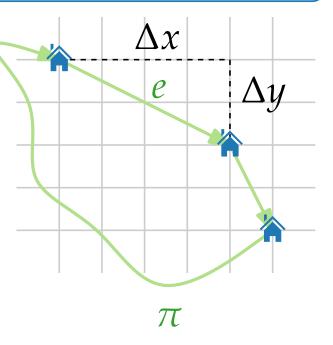


Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates  $N_e \leq \Delta x + \Delta y$  crossings.
- Crossings at the endpoint of an edge are counted for the next edge.  $0 \le (\Delta x \Delta y)^2$



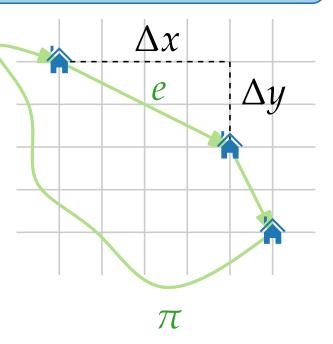
 $N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) =$ 

Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates  $N_e \leq \Delta x + \Delta y$  crossings.
- Crossings at the endpoint of an edge are counted for the next edge.  $0 \le (\Delta x \Delta y)^2$

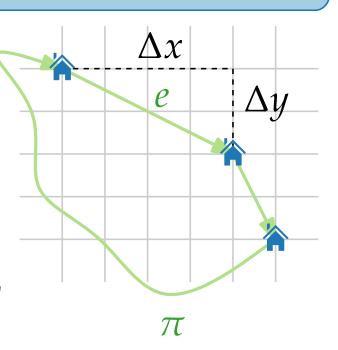


 $N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$ 

Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates  $N_e \leq \Delta x + \Delta y$  crossings.
- Crossings at the endpoint of an edge are counted for the next edge.  $0 \le (\Delta x \Delta y)^2$



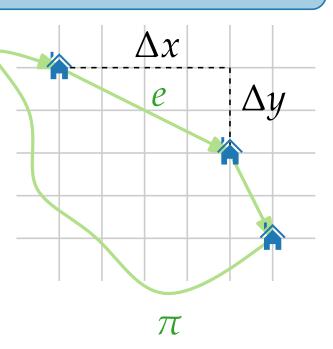
$$N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$$

$$N(\pi) =$$

Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates  $N_e \leq \Delta x + \Delta y$  crossings.
- Crossings at the endpoint of an edge are counted for the next edge.  $0 \le (\Delta x \Delta y)^2$



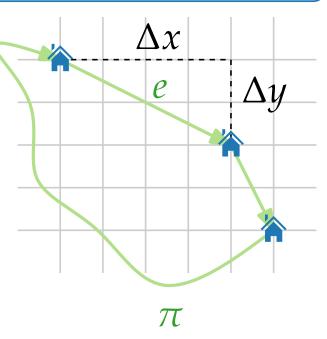
$$N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$$

$$N(\pi) = \sum_{e \in \pi} N_e \le$$

Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates  $N_e \leq \Delta x + \Delta y$  crossings.
- Crossings at the endpoint of an edge are counted for the next edge.  $0 \le (\Delta x \Delta y)^2$



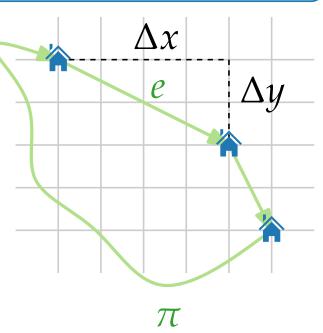
$$N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$$

$$N(\pi) = \sum_{e \in \pi} N_e \le \sum_{e \in \pi} \sqrt{2|e|^2}$$

Lemma.

Let  $\pi$  be an optimal tour, and let  $N(\pi)$  be the number of crossings of  $\pi$  with the lines of the  $(L \times L)$ -grid. Then we have  $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$ .

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates  $N_e \leq \Delta x + \Delta y$  crossings.
- Crossings at the endpoint of an edge are counted for the next edge.  $0 \le (\Delta x \Delta y)^2$



$$N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$$

$$N(\pi) = \sum_{e \in \pi} N_e \le \sum_{e \in \pi} \sqrt{2|e|^2} = \sqrt{2} \cdot \text{OPT}.$$

# Approximation Algorithms

Lecture 9:
A PTAS for Euclidean TSP

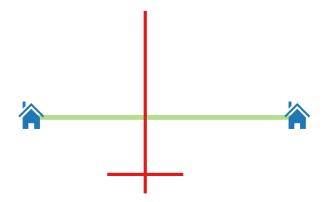
Part VI:
Approximation Factor

**Theorem.** Let  $a, b \in [0, L-1]$  be chosen independently and uniformly at random.

**Theorem.** Let  $a, b \in [0, L-1]$  be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b)-shifted dissection is  $\leq (1 + 2\sqrt{2}\varepsilon)$ OPT.

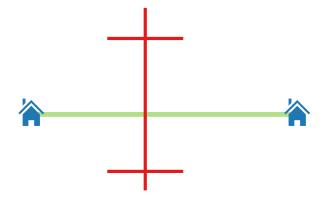
**Theorem.** Let  $a, b \in [0, L-1]$  be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b)-shifted dissection is  $\leq (1 + 2\sqrt{2}\varepsilon)$ OPT.

**Proof.** Consider optimal tour  $\pi$ .



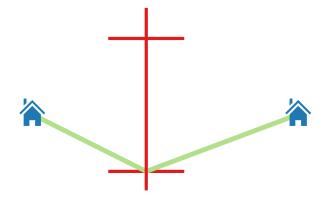
**Theorem.** Let  $a, b \in [0, L-1]$  be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a,b)-shifted dissection is  $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

**Proof.** Consider optimal tour  $\pi$ . Make  $\pi$  well-behaved by moving each intersection point with the  $(L \times L)$ -grid to the nearest portal.



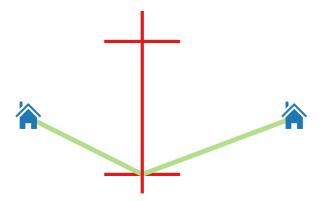
**Theorem.** Let  $a, b \in [0, L-1]$  be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a,b)-shifted dissection is  $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

**Proof.** Consider optimal tour  $\pi$ . Make  $\pi$  well-behaved by moving each intersection point with the  $(L \times L)$ -grid to the nearest portal.



**Theorem.** Let  $a, b \in [0, L-1]$  be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a,b)-shifted dissection is  $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

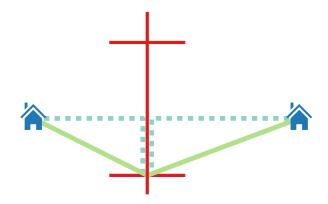
**Proof.** Consider optimal tour  $\pi$ . Make  $\pi$  well-behaved by moving each intersection point with the  $(L \times L)$ -grid to the nearest portal.



Detour per intersection  $\leq$  inter-portal distance.

**Theorem.** Let  $a, b \in [0, L-1]$  be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a,b)-shifted dissection is  $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

**Proof.** Consider optimal tour  $\pi$ . Make  $\pi$  well-behaved by moving each intersection point with the  $(L \times L)$ -grid to the nearest portal.



Detour per intersection  $\leq$  inter-portal distance.

Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most , the line l is a level-i line.

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most  $2^i/L$ , the line l is a level-i line.

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most  $2^i/L$ , the line l is a level-i line.  $\Rightarrow$  Increase in tour length  $\leq$  (inter-portal distance).

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most  $2^i/L$ , the line l is a level-i line.  $\Rightarrow$  Increase in tour length  $\leq L/(2^i m)$  (inter-portal distance).

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most  $2^i/L$ , the line l is a level-i line.  $\Rightarrow$  Increase in tour length  $\leq L/(2^i m)$  (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most  $2^i/L$ , the line l is a level-i line.  $\Rightarrow$  Increase in tour length  $\leq L/(2^i m)$  (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k}$$

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most  $2^i/L$ , the line l is a level-i line.  $\Rightarrow$  Increase in tour length  $\leq L/(2^i m)$  (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k} \frac{2^i}{L} \cdot$$

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most  $2^i/L$ , the line l is a level-i line.  $\Rightarrow$  Increase in tour length  $\leq L/(2^i m)$  (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k} \frac{2^i}{L} \cdot \frac{L}{2^i m} \le$$

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most  $2^i/L$ , the line l is a level-i line.  $\Rightarrow$  Increase in tour length  $\leq L/(2^i m)$  (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k} \frac{2^i}{L} \cdot \frac{L}{2^i m} \le \frac{k+1}{m} \le$$

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most  $2^i/L$ , the line l is a level-i line.  $\Rightarrow$  Increase in tour length  $\leq L/(2^i m)$  (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:  $m \in [k/\epsilon, 2k/\epsilon]$

$$\sum_{i=0}^{k} \frac{2^i}{L} \cdot \frac{L}{2^i m} \le \frac{k+1}{m} \le$$

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most  $2^i/L$ , the line l is a level-i line.  $\Rightarrow$  Increase in tour length  $\leq L/(2^i m)$  (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:  $m \in [k/\epsilon, 2k/\epsilon]$

$$\sum_{i=0}^{k} \frac{2^i}{L} \cdot \frac{L}{2^i m} \leq \frac{k+1}{m} \leq 2\varepsilon.$$

- Consider an intersection point between  $\pi$  and a line l of the  $(L \times L)$ -grid.
- With probability at most  $2^i/L$ , the line l is a level-i line.  $\Rightarrow$  Increase in tour length  $\leq L/(2^i m)$  (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:  $m \in [k/\epsilon, 2k/\epsilon]$

$$\sum_{i=0}^{k} \frac{2^i}{L} \cdot \frac{L}{2^i m} \leq \frac{k+1}{m} \leq 2\varepsilon.$$

Summing over all  $N(\pi) \le \sqrt{2} \cdot \text{OPT}$  intersection points and applying linearity of expectation yields the claim.

**Theorem.** Let  $a, b \in [0, L-1]$  be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b)-shifted dissection is  $\leq (1 + 2\sqrt{2}\varepsilon)$ OPT.

**Theorem.** Let  $a, b \in [0, L-1]$  be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a,b)-shifted dissection is  $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

**Theorem.** There is a *deterministic* algorithm (PTAS) for EUCLIDEAN TSP that provides, for every  $\varepsilon > 0$ , a  $(1 + \varepsilon)$ -approximation in  $n^{O(1/\varepsilon)}$  time.

**Theorem.** Let  $a, b \in [0, L-1]$  be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b)-shifted dissection is  $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

**Theorem.** There is a *deterministic* algorithm (PTAS) for EUCLIDEAN TSP that provides, for every  $\varepsilon > 0$ , a  $(1 + \varepsilon)$ -approximation in  $n^{O(1/\varepsilon)}$  time.

**Proof.** Try all  $L^2$  many (a, b)-shifted dissections.

**Theorem.** Let  $a, b \in [0, L-1]$  be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a,b)-shifted dissection is  $\leq (1+2\sqrt{2}\varepsilon)$ OPT.

**Theorem.** There is a *deterministic* algorithm (PTAS) for EUCLIDEAN TSP that provides, for every  $\varepsilon > 0$ , a  $(1 + \varepsilon)$ -approximation in  $n^{O(1/\varepsilon)}$  time.

**Proof.** Try all  $L^2$  many (a,b)-shifted dissections. By the previous theorem and the pigeon-hole principle, one of them is good enough.

■ William J. Cook: Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation.

Princeton University Press, 2011.

- William J. Cook: Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, 2011.
- Sanjeev Arora: Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems. J. ACM, 45(5):753–782, 1998.
- Joseph S. B. Mitchell: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, *k*-MST, and Related Problems. SIAM J. Comput., 28(4):1298–1309, 1999.

- William J. Cook: Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, 2011.
- Sanjeev Arora: Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems. J. ACM, 45(5):753–782, 1998.
- Joseph S. B. Mitchell: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, *k*-MST, and Related Problems. SIAM J. Comput., 28(4):1298–1309, 1999.
- Sanjeev Arora: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems.

Network Design 1–2, 1997

- William J. Cook: Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, 2011.
- Sanjeev Arora: Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems. J. ACM, 45(5):753–782, 1998.
- Joseph S. B. Mitchell: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, *k*-MST, and Related Problems. SIAM J. Comput., 28(4):1298–1309, 1999.
- Sanjeev Arora: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems.

Network Design 1–2, 1997 Randomized,  $O(n(\log n)^{O(1/\epsilon)})$  time

# Literature (cont'd)

Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, Andrzej Woloszyn: Polynomial time approximation scheme for Weighted Planar Graph TSP. Proc. SIAM-ACM SODA, p. 33–41, 1998.

# Literature (cont'd)

Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, Andrzej Woloszyn: Polynomial time approximation scheme for Weighted Planar Graph TSP. Proc. SIAM-ACM SODA, p. 33–41, 1998.

Runtime  $O\left(n^{O(1/\varepsilon^2)}\right)$