Approximation Algorithms

 Lecture 8:Approximation Schemes and the Knapsack Problem

Part I:
Knapsack

Knapsack

Given: ■ A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.

KnAPSACK

Given: \quad A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.

- For every object a_{i} a size size $\left(a_{i}\right) \in \mathbb{N}^{+}$

KnApsack
Given: ■ A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.

- For every object a_{i} a size size $\left(a_{i}\right) \in \mathbb{N}^{+}$
- For every object a_{i} a profit profit $\left(a_{i}\right) \in \mathbb{N}^{+}$

Knapsack
Given: ■ A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.

- For every object a_{i} a size size $\left(a_{i}\right) \in \mathbb{N}^{+}$
- For every object a_{i} a profit profit $\left(a_{i}\right) \in \mathbb{N}^{+}$
- A knapsack capacity $B \in \mathbb{N}^{+}$

Knapsack

Given: ■ A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.

- For every object a_{i} a size size $\left(a_{i}\right) \in \mathbb{N}^{+}$

■ For every object a_{i} a profit profit $\left(a_{i}\right) \in \mathbb{N}^{+}$

- A knapsack capacity $B \in \mathbb{N}^{+}$

Task: Find a subset of objects whose total size is at most B and whose total profit is maximum.

Knapsack

Given: \quad A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.

- For every object a_{i} a size size $\left(a_{i}\right) \in \mathbb{N}^{+}$

■ For every object a_{i} a profit profit $\left(a_{i}\right) \in \mathbb{N}^{+}$

- A knapsack capacity $B \in \mathbb{N}^{+}$

Task: Find a subset of objects whose total size is at most B and whose total profit is maximum.

Knapsack

Given: ■ A set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of objects.

- For every object a_{i} a size size $\left(a_{i}\right) \in \mathbb{N}^{+}$

■ For every object a_{i} a profit profit $\left(a_{i}\right) \in \mathbb{N}^{+}$

- A knapsack capacity $B \in \mathbb{N}^{+}$

Task: Find a subset of objects whose total size is at most B and whose total profit is maximum.

Approximation Algorithms

 Lecture 8:Approximation Schemes and the Knapsack Problem Part II:
Pseudo-Polynomial Algorithms and Strong NP-Hardness

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
 encoded in binary.

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
 encoded in binary.

$$
\left(5 \hat{=} 101_{\mathrm{b}} \Rightarrow|/|=3\right)
$$

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
 encoded in binary. $\quad\left(5 \xlongequal[=]{\wedge} 101_{\mathrm{b}} \Rightarrow|/|=3\right)$ $\mid \|_{u}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in unary.

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
 encoded in binary. $\quad\left(5 \xlongequal[=]{\wedge} 101_{\mathrm{b}} \Rightarrow|/|=3\right)$ $\mid \|_{u}$: The size of an instance $I \in D_{\Pi}$, where all numbers in $/$ are encoded in unary.

$$
\left(5 \xlongequal{\left(11111_{u}\right.} \Rightarrow|I|_{u}=5\right)
$$

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
 encoded in binary. $\quad\left(5 \xlongequal[=]{\wedge} 101_{\mathrm{b}} \Rightarrow|/|=3\right)$ $\mid \|_{u}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in unary.

$$
\left(5 \triangleq 11111_{u} \Rightarrow|/|_{u}=5\right)
$$

The running time of a polynomial algorithm for Π is polynomial in $|/|$.

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
 encoded in binary. $\quad\left(5 \triangleq 101_{\mathrm{b}} \Rightarrow|/|=3\right)$
 encoded in unary.

$$
\left(5 \xlongequal{\left(11111_{u}\right.} \Rightarrow|I|_{u}=5\right)
$$

The running time of a polynomial algorithm for Π is polynomial in $|/|$.
The running time of a pseudo-polynomial algorithm is polynomial in $|/|_{u}$.

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).
 encoded in binary. $\quad\left(5 \xlongequal[=]{\wedge} 101_{\mathrm{b}} \Rightarrow|/|=3\right)$ $\mid \|_{u}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in unary.

$$
\left(5 \hat{\wedge} 11111_{u} \Rightarrow|/|_{u}=5\right)
$$

The running time of a polynomial algorithm for Π is polynomial in $|/|$.
The running time of a pseudo-polynomial algorithm is polynomial in $|/|_{u}$.
The running time of a pseudo-polynomial algorithm may not be polynomial in $|/|$.

Strong NP-Hardness

An optimization problem is called strongly NP-hard if it remains NP-hard under unary encoding.

Strong NP-Hardness

An optimization problem is called strongly NP-hard if it remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm.

Strong NP-Hardness

An optimization problem is called strongly NP-hard if it remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm.

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless $P=N P$.

Approximation Algorithms

 Lecture 8:Approximation Schemes and the Knapsack Problem

Part III:
Pseudo-Polynomial Algorithm for Knapsack

Pseudo-Polynomial Alg. for Knapsack

 Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right)$

Pseudo-Polynomial Alg. for Knapsack Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right)$

Pseudo-Polynomial Alg. for Knapsack Let $P:=\max _{i}$ profit $\left(a_{i}\right) \quad \Rightarrow \quad \leq O P T \leq$

Pseudo-Polynomial Alg. for Knapsack Let $P:=\max _{i}$ profit $\left(a_{i}\right) \quad \Rightarrow \quad P \leq O P T \leq n P$

Pseudo-Polynomial Alg. for Knapsack
Let $P:=$ max $_{i}$ profit $\left(a_{i}\right) \quad \Rightarrow \quad P \leq O P T \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$,

Pseudo-Polynomial Alg. for KnAPsACK

Let $P:=$ max $_{i}$ profit $\left(a_{i}\right) \quad \Rightarrow \quad P \leq \mathrm{OPT} \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely p

Pseudo-Polynomial Alg. for KnAPsACK

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \quad \Rightarrow \quad P \leq O P T \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely p

Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \quad \Rightarrow \quad P \leq O P T \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties.

Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \quad \Rightarrow \quad P \leq O P T \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties.

Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \quad \Rightarrow \quad P \leq O P T \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \quad \Rightarrow \quad P \leq O P T \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of $S_{i, p}$ (set $A[i, p]=\infty$ if no such set exists).

Pseudo-Polynomial Alg. for KnAPSACK

Let $P:=$ max $_{i}$ profit $\left(a_{i}\right) \quad \Rightarrow \quad P \leq O P T \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of $S_{i, p}$ (set $A[i, p]=\infty$ if no such set exists).

Pseudo-Polynomial Alg. for Knapsack

Let $P:=$ max $_{i}$ profit $\left(a_{i}\right) \quad \Rightarrow \quad P \leq O P T \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of $S_{i, p}$ (set $A[i, p]=\infty$ if no such set exists).

If all $A[i, p]$ are known, then we can compute
OPT =

Pseudo-Polynomial Alg. for Knapsack

Let $P:=\max _{i} \operatorname{profit}\left(a_{i}\right) \quad \Rightarrow \quad P \leq O P T \leq n P$
For every $i=1, \ldots, n$ and every $p \in\{1, \ldots, n P\}$, let $S_{i, p}$ be a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of $S_{i, p}$ (set $A[i, p]=\infty$ if no such set exists).

If all $A[i, p]$ are known, then we can
 compute
OPT $=\max \{p \mid A[n, p] \leq B\}$.

Pseudo-Polynomial Alg. for Knapsack

 $A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.

Pseudo-Polynomial Alg. for Knapsack $A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$. Set $A[i, p]:=\infty$ for $p<0$ (for convenience).

Pseudo-Polynomial Alg. for KnAPsACK
$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$ (for convenience).
$A[i+1, p]=$

Pseudo-Polynomial Alg. for Knapsack

$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$ (for convenience).
$A[i+1, p]=\min \{$.

Pseudo-Polynomial Alg. for Knapsack

$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$ (for convenience).
$A[i+1, p]=\min \{A[i, p]$,

Pseudo-Polynomial Alg. for Knapsack

$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$ (for convenience).
$A[i+1, p]=\min \left\{A[i, p], \operatorname{size}\left(a_{i+1}\right)+\right.$

Pseudo-Polynomial Alg. for Knapsack

$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$ (for convenience).
$A[i+1, p]=\min \left\{A[i, p], \operatorname{size}\left(a_{i+1}\right)+A\left[i, p-\operatorname{profit}\left(a_{i+1}\right)\right]\right\}$

Pseudo-Polynomial Alg. for Knapsack

$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$ (for convenience).
$A[i+1, p]=\min \left\{A[i, p], \operatorname{size}\left(a_{i+1}\right)+A\left[i, p-\operatorname{profit}\left(a_{i+1}\right)\right]\right\}$
\Rightarrow All values $A[i, p]$ can be computed in total time $O($

Pseudo-Polynomial Alg. for Knapsack

$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$ (for convenience).
$A[i+1, p]=\min \left\{A[i, p], \operatorname{size}\left(a_{i+1}\right)+A\left[i, p-\operatorname{profit}\left(a_{i+1}\right)\right]\right\}$
\Rightarrow All values $A[i, p]$ can be computed in total time $O\left(n^{2} P\right)$.

Pseudo-Polynomial Alg. for Knapsack

$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$ (for convenience).
$A[i+1, p]=\min \left\{A[i, p], \operatorname{size}\left(a_{i+1}\right)+A\left[i, p-\operatorname{profit}\left(a_{i+1}\right)\right]\right\}$
\Rightarrow All values $A[i, p]$ can be computed in total time $O\left(n^{2} P\right)$.
\Rightarrow OPT can be computed in $O\left(n^{2} P\right)$ total time.

Pseudo-Polynomial Alg. for Knapsack

$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$ (for convenience).
$A[i+1, p]=\min \left\{A[i, p]\right.$, size $\left.\left(a_{i+1}\right)+A\left[i, p-\operatorname{profit}\left(a_{i+1}\right)\right]\right\}$
\Rightarrow All values $A[i, p]$ can be computed in total time $O\left(n^{2} P\right)$.
\Rightarrow OPT can be computed in $O\left(n^{2} P\right)$ total time.

Theorem. KnAPSACK can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.

Pseudo-Polynomial Alg. for Knapsack

$A[1, p]$ can be computed for all $p \in\{0, \ldots, n P\}$.
Set $A[i, p]:=\infty$ for $p<0$ (for convenience).
$A[i+1, p]=\min \left\{A[i, p], \operatorname{size}\left(a_{i+1}\right)+A\left[i, p-\operatorname{profit}\left(a_{i+1}\right)\right]\right\}$
\Rightarrow All values $A[i, p]$ can be computed in total time $O\left(n^{2} P\right)$.
\Rightarrow OPT can be computed in $O\left(n^{2} P\right)$ total time.

Theorem. KnAPSACK can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.

Corollary. KnAPSACK is weakly NP-hard.

Pseudo-Polynomial Alg. for Knapsack
Theorem. KnAPSACK can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.

Pseudo-Polynomial Alg. for KnAPSACK

Theorem. KnaPsACK can be solved optimally in pseudo-polynomial time $O\left(n^{2} P\right)$.

Observe. The running time $O\left(n^{2} P\right)$ is polynomial in n if P is polynomial in n.

Approximation Algorithms

 Lecture 8:Approximation Schemes and the Knapsack Problem

Part IV:
Approximation Schemes

Approximation Schemes

Let Π be an optimization problem.

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon>0$, a solution $s \in S_{\Pi}(I)$ such that

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon>0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT if Π is a minimization problem,

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon>0$, a solution $s \in S_{\Pi}(I)$ such that

- obj$\Pi_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT if Π is a minimization problem,
- obj$j_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT if Π is a maximization problem,

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon>0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT if Π is a minimization problem, - $\operatorname{obj}_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in $|/|$ for every fixed $\varepsilon>0$.

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon>0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT if Π is a minimization problem, - obj$\Pi_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in $\mid \|$ for every fixed $\varepsilon>0$.
\mathcal{A} is called fully polynomial-time approximation scheme (FPTAS) if its running time is polynomial in $|/|$ and $1 / \varepsilon$.

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon>0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT if Π is a minimization problem, - $\mathrm{obj}_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in $|/|$ for every fixed $\varepsilon>0$.
\mathcal{A} is called fully polynomial-time approximation scheme (FPTAS) if its running time is polynomial in $|/|$ and $1 / \varepsilon$.

Example running times

- $O\left(n^{1 / \varepsilon}\right) \sim$
- $O\left(n^{3} / \varepsilon^{2}\right) \leadsto$
- $O\left(2^{1 / \varepsilon} n^{4}\right) \sim$

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon>0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT if Π is a minimization problem, - $\mathrm{obj}_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in $|/|$ for every fixed $\varepsilon>0$.
\mathcal{A} is called fully polynomial-time approximation scheme (FPTAS) if its running time is polynomial in $|/|$ and $1 / \varepsilon$.

Example running times

- $O\left(n^{1 / \varepsilon}\right) \leadsto$ PTAS
- $O\left(n^{3} / \varepsilon^{2}\right) \leadsto$
- $O\left(2^{1 / \varepsilon} n^{4}\right) \sim$

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon>0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT if Π is a minimization problem, - $\mathrm{obj}_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in $|/|$ for every fixed $\varepsilon>0$.
\mathcal{A} is called fully polynomial-time approximation scheme (FPTAS) if its running time is polynomial in $|/|$ and $1 / \varepsilon$.

Example running times

- $O\left(n^{1 / \varepsilon}\right) \leadsto$ PTAS
- $O\left(n^{3} / \varepsilon^{2}\right) \leadsto$ FPTAS
- $O\left(2^{1 / \varepsilon} n^{4}\right) \leadsto$

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon>0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I, s) \leq(1+\varepsilon) \cdot$ OPT if Π is a minimization problem, - $\mathrm{obj}_{\Pi}(I, s) \geq(1-\varepsilon) \cdot$ OPT if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in $|/|$ for every fixed $\varepsilon>0$.
\mathcal{A} is called fully polynomial-time approximation scheme (FPTAS) if its running time is polynomial in $|/|$ and $1 / \varepsilon$.

Example running times

- $O\left(n^{1 / \varepsilon}\right) \leadsto$ PTAS
- $O\left(n^{3} / \varepsilon^{2}\right) \leadsto$ FPTAS
- $O\left(2^{1 / \varepsilon} n^{4}\right) \leadsto$ PTAS

Approximation Algorithms

 Lecture 8:Approximation Schemes and the Knapsack Problem

Part V:
FPTAS for Knapsack

An FPTAS for Knapsack via Scaling

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon)$...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon)$...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)

$$
K=\varepsilon P / n
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)

$$
K=\varepsilon P / n
$$

scaling factor

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)

$$
\begin{aligned}
& K=\varepsilon P / n \quad / / \text { scaling factor } \\
& \operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor
\end{aligned}
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)

$$
\begin{aligned}
& K=\varepsilon P / n \quad / / \text { scaling factor } \\
& \operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor
\end{aligned}
$$

Compute optimal solution S^{\prime} for I w.r.t. profit' (\cdot).

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)

$$
\begin{aligned}
& K=\varepsilon P / n \quad / / \text { scaling factor } \\
& \operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor
\end{aligned}
$$

Compute optimal solution S^{\prime} for I w.r.t. profit' (\cdot). return S^{\prime}

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n \quad / /$ scaling factor
$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for I w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon)$...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for I w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon)$...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell, \quad \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.

$$
\begin{array}{cl}
\text { Proof. } & \text { Let } O P T=\left\{o_{1}, \ldots, o_{\ell}\right\} . \\
\text { Obs. 1. } & \text { For } i=1, \ldots, \ell,
\end{array} \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, $\operatorname{profit}\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon)$...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \text { OPT }-\ell K \geq
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-\ell K \geq \mathrm{OPT}-n K=
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-\ell K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P .
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon)$...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, $\operatorname{profit}\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-\ell K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P .
$$

Obs. 2. $\geq K \cdot \sum_{i}$ profit $^{\prime}\left(o_{i}\right)$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter ε)...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, $\operatorname{profit}\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-\ell K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P .
$$

Obs. 2.

$$
\geq K \cdot \operatorname{profit}^{\prime}\left(S^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter ε)...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-\ell K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P .
$$

Obs. 2. $\operatorname{profit}\left(S^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(S^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon) \ldots$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-\ell K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P .
$$

Obs. 2. $\operatorname{profit}\left(S^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(S^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$ $\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon)$...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

profit' $\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.

Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-\ell K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P .
$$

Obs. 2. $\operatorname{profit}\left(S^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(S^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$

$$
\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq O P T-\varepsilon P \geq
$$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon)$...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-\ell K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P .
$$

Obs. 2. $\operatorname{profit}\left(S^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(S^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$ $\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq O P T-\varepsilon P \geq O P T-\varepsilon O P T=$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon)$...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for I w.r.t. profit' (\cdot). return S^{\prime}

Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-\ell K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P .
$$

Obs. 2. $\operatorname{profit}\left(S^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(S^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$ $\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq \mathrm{OPT}-\varepsilon P \geq \mathrm{OPT}-\varepsilon \mathrm{OPT}=(1-\varepsilon) \cdot \mathrm{OPT} \quad \square$

FPTAS idea: Scale profits to polynomial size (as required by the error parameter $\varepsilon)$...

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (.).
return S^{\prime}
Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, profit $\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-\ell K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P .
$$

Obs. 2. $\operatorname{profit}\left(S^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(S^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$

$$
\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq \mathrm{OPT}-\varepsilon P \geq \mathrm{OPT}-\varepsilon \mathrm{OPT}=(1-\varepsilon) \cdot \mathrm{OPT} \quad \square
$$

Theorem. KnapsackScaling is an FPTAS for KnaPSACK with running time $O\left(n^{3} / \varepsilon\right)$

An FPTAS for Knapsack via Scaling

KnapsackScaling (I, ε)
$K=\varepsilon P / n$

scaling factor

$\operatorname{profit}^{\prime}\left(a_{i}\right)=\left\lfloor\operatorname{profit}\left(a_{i}\right) / K\right\rfloor$
Compute optimal solution S^{\prime} for / w.r.t. profit' (.).
return S^{\prime}
Lemma. profit $\left(S^{\prime}\right) \geq(1-\varepsilon) \cdot$ OPT.
Proof. Let OPT $=\left\{o_{1}, \ldots, o_{\ell}\right\}$.
Obs. 1. For $i=1, \ldots, \ell$, $\operatorname{profit}\left(o_{i}\right)-K \leq K \cdot \operatorname{profit}^{\prime}\left(o_{i}\right) \leq \operatorname{profit}\left(o_{i}\right)$

$$
\Rightarrow K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right) \geq \mathrm{OPT}-\ell K \geq \mathrm{OPT}-n K=\mathrm{OPT}-\varepsilon P .
$$

Obs. 2. $\operatorname{profit}\left(S^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}\left(S^{\prime}\right) \geq K \cdot \sum_{i} \operatorname{profit}^{\prime}\left(o_{i}\right)$

$$
\Rightarrow \operatorname{profit}\left(S^{\prime}\right) \geq \mathrm{OPT}-\varepsilon P \geq \mathrm{OPT}-\varepsilon \mathrm{OPT}=(1-\varepsilon) \cdot \mathrm{OPT} \quad \square
$$

Theorem. KnapsackScaling is an FPTAS for KnapsACK with running time $O\left(n^{3} / \varepsilon\right)=O\left(n^{2} \cdot \frac{P}{\varepsilon P / n}\right)$.

Approximation Algorithms

 Lecture 8:Approximation Schemes and the Knapsack Problem

Part VI:
Connections Between the Concepts

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(| | \|_{u}\right)$ for all instances $/$ of Π.

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(| | \|_{u}\right)$ for all instances $/$ of Π. If Π has an FPTAS,

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(| | \|_{u}\right)$ for all instances $/$ of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(| | \|_{u}\right)$ for all instances $/$ of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(| | \|_{u}\right)$ for all instances $/$ of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=$

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(\mid \|_{u}\right)$ for all instances I of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|/|_{u}\right)$.

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(\mid \|_{u}\right)$ for all instances I of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|/|_{u}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon)$ OPT <

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(\mid \|_{u}\right)$ for all instances I of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|/|_{u}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<$

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(\left.| |\right|_{u}\right)$ for all instances I of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|/|_{u}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(\left.| |\right|_{u}\right)=$

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(\mid \|_{u}\right)$ for all instances I of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|/|_{u}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(|/|_{u}\right)=$

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(\mid \|_{u}\right)$ for all instances I of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|/|_{u}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(|/|_{u}\right)=\mathrm{OPT}+1$.

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(\left.| |\right|_{u}\right)$ for all instances $/$ of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|/|_{u}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(\left.| |\right|_{u}\right)=\mathrm{OPT}+1$.
$\Rightarrow A L G=O P T$.

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(\left.| |\right|_{u}\right)$ for all instances I of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|/|_{u}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(\left.| |\right|_{u}\right)=\mathrm{OPT}+1$.
$\Rightarrow A L G=O P T$.
Running time:

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(\left.| |\right|_{u}\right)$ for all instances I of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|/|_{u}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(\mid \|_{u}\right)=\mathrm{OPT}+1$.
$\Rightarrow A L G=O P T$.
Running time: $q\left(\left|\left|\mid, p\left(\left.| |\right|_{u}\right)\right)\right.\right.$

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(|/|_{u}\right)$ for all instances I of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|/|_{u}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(\mid \|_{u}\right)=\mathrm{OPT}+1$.
$\Rightarrow A L G=O P T$.
Running time: $q\left(|/|, p\left(|/|_{u}\right)\right)$, so

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(|/|_{u}\right)$ for all instances I of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Proof.

Assuming there is an FPTAS for Π (in $q(|/|, 1 / \varepsilon)$ time).
Set $\varepsilon=1 / p\left(|/|_{u}\right)$.
$\Rightarrow \mathrm{ALG} \leq(1+\varepsilon) \mathrm{OPT}<\mathrm{OPT}+\varepsilon p\left(\mid \|_{u}\right)=\mathrm{OPT}+1$.
$\Rightarrow A L G=O P T$.
Running time: $\quad q\left(|/|, p\left(|/|_{u}\right)\right)$, so poly $\left(|/|_{u}\right)$.

FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless $P=N P$.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(\mid / \|_{u}\right)$ for all instances $/$ of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless $P=N P$.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT $(I)<p\left(|/|_{u}\right)$ for all instances $/$ of Π. If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π.

Corollary. Let Π be an NP-hard optimization problem that fulfills the restrictions above.
If Π is strongly NP-hard, then there is no FPTAS for Π (unless $P=N P$).

