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Technique I) LP-Rounding

|
0 OPT, 1y OPTp ALG

Consider a minimization problem I in ILP form.
Compute a solution for the LIP’-relaxation.

Round to obtain an integer solution for I1.
Difficulty: Ensure the feasiblity of the solution.
Approximation factor: ALG/OPT < ALG/OPT ¢ax-



SETCOVER — LP-Relaxation

minimize Z C5Xg
Ses

subject to Z x¢>1 wuel
Sou

xg >0 Ses




SETCOVER — LP-Relaxation

minimize Z C5Xg
Ses

subject to Z x¢>1 wuel
Sou

xg >0 Ses

Optimal?



SETCOVER — LP-Relaxation

minimize Z C5Xg
Ses

subject to Z x¢>1 wuel
Sou

xg >0 Ses

Optimal?



SETCOVER — LP-Relaxation

minimize

subject to

Optimal?




SETCOVER — LP-Relaxation

minimize

subject to

Optimal?

Gl .
1



SETCOVER — LP-Relaxation

minimize

subject to

Optimal?

OO

1 1




SETCOVER — LP-Relaxation

minimize

subject to

Optimal?

G 1 /o G ia/e
1 1 1 1

x 1 x0

integer: 2



SETCOVER — LP-Relaxation

minimize

subject to

Optimal?
G 1 /9 Giaje G id/e
1 1 1 1 1 1

% L

N—

x1 %0 X

integer: 2 fractional: %



LP-Rounding: Approach I

minimize

subject to




LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.



LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution.



LP-Rounding: Approach I

minimize Z X
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution.
— Scaling factor arbitrarily large.



LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. *
— Scaling factor arbitrarily large.



LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. *
— Scaling factor arbitrarily large.




LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. *
— Scaling factor arbitrarily large.




LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. Q\@
— Scaling factor arbitrarily large. N




LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. Q\@ .
— Scaling factor arbitrarily large. \/Q
Co \koj °

o o



LP-Rounding: Approach I

minimize

subject to

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

: . o9
— Generates a valid solution. <'\ - /9
— Scaling factor arbitrarily large. D




LP-Rounding: Approach I

minimize

subject to

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. C’j
— Scaling factor arbitrarily large. M>\\'§ -




LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution.
— Scaling factor arbitrarily large.




LP-Rounding: Approach I

minimize

subject to

LP-Rounding-One(L], S, )

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution.
— Scaling factor arbitrarily large.

Use frequency f




LP-Rounding: Approach II

minimize Z X
Ses
subject to Z x¢>1 uel

S5ou
xg >0 seds

LP-Rounding-Two (U, S, ¢)

Compute optimal solution x for LP-Relaxation.
Round each xg with xg¢ > 1/ to 1; remaining to 0.

Let / be the frequency of (i.e., the number of sets
containing) the most frequent element.



LP-Rounding: Approach II

minimize 2 X
Ses
subject to Z x¢>1 uel

S5ou
xg >0 seds

LP-Rounding-Two (U, S, ¢)

Compute optimal solution x for LP-Relaxation.
Round each xg with xg¢ > 1/ to 1; remaining to 0.

Let / be the frequency of (i.e., the number of sets
containing) the most frequent element.

Theorem. LP-Rounding-Two is a factor- approximation
algorithm for SETCOVER.
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Technique II) Primal-Dual Approach

OPTqual = OPTprimal OPI
feasible dual solutions feasible primal solutions
| —ble | i >
0 >d o
| |

Consider a minimization problem I in ILP form.

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

Compute dual solution s4 and integral primal solution s

for I1 iteratively:
increase sy according to CS and make s, “more feasible”.

I1

Approximation factor < obj(s,,)/obj(sq)

Advantage: don’t need LP-“machinery”; possibly faster,
more flexible.
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Complementary Slackness

minimize maximize bTy
subjectto Ax subjectto ATy < ¢
y = 0

Theorem. Let x = (xq,...,x,) and y = (y1,.. .,V ) be valid solutions
for the primal and dual program (resp.). Then x and y are
optimal if and only if the following conditions are met:

Primal CS:
Foreachj=1,...,n: x; =0 or Y/°;a;y; = ¢

Dual CS:
Foreachi=1,...,m: y; =0 or Z?_l a;ixj = b
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- Dual CS: Relaxed Dual CS
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Primal-Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...
...and simultaneously the obj. value of the dual solution.
Do so until the relaxed CS conditions are met.

Maintain that the primal solution is integer valued.

The feasibility of the primal solution and relaxed CS
condition provide an approximation ratio.
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Relaxed CS for SETCOVER

minimize maximize

subject to u € U] |subject to
Sou

xg >0 S5es

critical set =--,

(Unrelaxed) primal CS: x5 #0 =) ,c5yy = C:S

~»only chooses critical sets

trivial for binary x <-------. .

Relaxed dual CS: vy, #0 =1 < Z Xg § -1
Sou
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PrimalDualSetCover(L, S, )

x <0,y <0

repeat

Select an uncovered element 1.
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PrimalDualSetCover(L, S, )

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.
return x

_____________________________________________________________________________________________

Theorem. PrimalDualSetCover is a factor- approximation
algorithm for SETCoVER. This bound is tight.
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Consider a minimization problem I in ILP form.

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s, and infeasible dual solution s4 that
completely “pays” for s,,, i.e., obj(s; ) < obj(sq).
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Dual Fitting for SETCOVER

Combinatorial (greedy) algorithm (see Lecture #2):

GreedySetCover(LI, S, )
- C«+Q

S'+

while C # LI do

S <« Set from S that minimizes |CS(\53|
foreach 1z € 5\ C do
: . c(S)
t price(u) < 5y
C+ CUS
S+ S'U{Ss} .
return &' // Cover of LI

___________________________________________________________________________________

Reminder: Y, o price(u) completely pays for S'.
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Result for Dual Fitting

Theorem. GreedySetCover is a factor-7/; approximation
algorithm for SETCOVER, where k = maxgcs |5|.

Proof. ALG = < Z price(u) = Hy - Z Vy <
ucl ucl

< /Hk ' OPTrelax
< 7, -OPT

Strengthened bound with respect to OPT 1. < OPT.
Dual solution allows a per-instance estimation

... which may be stronger than worst-case bound Hy.
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