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Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Compute a solution for the LP-relaxation.

OPTrelax

Round to obtain an integer solution for Π.

ALG

α

Difficulty: Ensure the feasiblity of the solution.

Approximation factor: ALG/OPTΠ ≤ ALG/OPTrelax.
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LP-Rounding: Approach II

LP-Rounding-Two(U,S , c)
Compute optimal solution x for LP-Relaxation.
Round each xS with xS ≥ 1/ f to 1; remaining to 0.

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Theorem. LP-Rounding-Two is a factor- f approximation
algorithm for SetCover.

Let f be the frequency of (i.e., the number of sets
containing) the most frequent element.
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0

feasible primal solutionsfeasible dual solutions

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd

α

Approximation factor ≤ obj(sΠ)/obj(sd)

Advantage: don’t need LP-“machinery”; possibly faster,
more flexible.

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

sΠ

Compute dual solution sd and integral primal solution sΠ
for Π iteratively:
increase sd according to CS and make sΠ “more feasible”.
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Complementary Slackness

minimize cᵀx
subject to Ax ≥ b

x ≥ 0

maximize bᵀy
subject to Aᵀy ≤ c

y ≥ 0

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be valid solutions
for the primal and dual program (resp.). Then x and y are
optimal if and only if the following conditions are met:

Primal CS:
For each j = 1, . . . , n: xj = 0 or ∑m

i=1 aijyi = cj

Dual CS:
For each i = 1, . . . , m: yi = 0 or ∑n

j=1 aijxj = bi

Theorem.
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Primal–Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...

. . . and simultaneously the obj. value of the dual solution.

Maintain that the primal solution is integer valued.

The feasibility of the primal solution and relaxed CS
condition provide an approximation ratio.

Do so until the relaxed CS conditions are met.
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Relaxed CS for SetCover

maximize ∑
u∈U

yu
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u∈S

yu ≤ cS S ∈ S
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(Unrelaxed) primal CS: xS 6= 0⇒ ∑u∈S yu = cS

Relaxed dual CS: yu 6= 0⇒ 1 ≤ ∑
S3u

xS ≤ f · 1

critical set

trivial for binary x

only chooses critical sets

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S



Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x
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PrimalDualSetCover is a factor- f approximation
algorithm for SetCover. This bound is tight.

Theorem.
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Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution sΠ and infeasible dual solution sd that
completely “pays” for sΠ ,

Scale the dual variables feasible dual solution s̄d.

⇒ Scaling factor α is approximation factor.
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GreedySetCover(U,S , c)
C ← ∅
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price(u)← c(S)
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C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

Combinatorial (greedy) algorithm (see Lecture #2):
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GreedySetCover(U,S , c)
C ← ∅
S ′ ← ∅
while C 6= U do

S← Set from S that minimizes c(S)
|S\C|

foreach u ∈ S \ C do
price(u)← c(S)

|S\C|

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

Reminder: ∑u∈U price(u) completely pays for S ′.

Combinatorial (greedy) algorithm (see Lecture #2):
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Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take ȳu = price(u)/Hk.

The greedy algorithm uses these dual variables as lower
bound for OPT.
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maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
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is a feasible solution for
the dual LP.



Proof. To prove: No set is overpacked by ȳ.
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Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤ c(S)/(`− i + 1).
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Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤ c(S)/(`− i + 1).
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ȳu ≤

≤ Hk ·OPTrelax

≤ Hk ·OPT �

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S|.



Result for Dual Fitting

Proof. ALG = c(S ′) ≤ ∑
u∈U

price(u) =Hk · ∑
u∈U
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Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S|.

Strengthened bound with respect to OPTrelax ≤ OPT.

Dual solution allows a per-instance estimation

. . . which may be stronger than worst-case bound Hk.
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