Approximation Algorithms

Lecture 5:
LP-based Approximation Algorithms
for SETCOVER

Part I:
SETCOVER as an ILP

Alexander Wollftf Winter 2022/23

SETCOVER as an ILP

Ground set U

SETCOVER as an ILP

Ground set U
Family S C 2Y with S = U

SETCOVER as an ILP

Ground set U
Family S C 2Y with S = U
Costsc: & — OF

SETCOVER as an ILP

Ground set U
Family S C 2Y with S = U
Costsc: & — OF

1
Find cover
° o [o o \o . " S’ C S of U with
3 - 4)\ 6 | D minimum cost.
® | | ® 4 @ : ®

SETCOVER as an ILP

minimize

subject to

Ground set U
Family S C 2Y with S = U
Costsc: & — OF

1
| | | | Find cover
° o [o o \o . " S’ C S of U with
3 /- 4)\ 6 | 2 minimum cost.
o ’ | o o ®

SETCOVER as an ILP

minimize

subject to

Ground set U
Family S C 2Y with S = U
Costsc: & — OF

1
Find cover
° o [o o \o . " S’ C S of U with
3 |\ 4)\ 6 5 minimum cost.
o ’ | o 4 o \ o

SETCOVER as an ILP
minimize

subject to

XSE{O,l} seds

Ground set U
Family S C 2Y with S = U
Costsc: & — OF

1
| | | | Find cover
° o [o o \o . " S’ C S of U with
3 /- 4)\ 6 | 2 minimum cost.
o ’ | o o ®

SETCOVER as an ILP

minimize Z CgXg
5eS
subject to

XSE{O,l} seds

Ground set U
Family S C 2Y with S = U
Costsc: & — OF

1
| | | | Find cover
° o [o o \o . " S’ C S of U with
3 /- 4)\ 6 | 2 minimum cost.
o ’ | o o ®

SETCOVER as an ILP

minimize Z CgXg
Ses

subject to Z xs>1 ueld
Sou

XSE{O,l} seds

Ground set U
Family S C 2Y with S = U
Costsc: & — OF

1
| | | | Find cover
° o [o o \o . " S’ C S of U with
3 /- 4)\ 6 | 2 minimum cost.
o ’ | o o ®

Approximation Algorithms

Lecture 5:
LP-based Approximation Algorithms
for SETCOVER

Part II.
LP-Rounding

Alexander Wollftf Winter 2022/23

Technique I) LP-Rounding

0 OPTy;

Consider a minimization problem II in ILP form.

Technique I) LP-Rounding

0 OPT, 1y OPTY

Consider a minimization problem II in ILP form.

Compute a solution for the LIP’-relaxation.

Technique I) LP-Rounding

|
0 OPT, 1y OPTp ALG

Consider a minimization problem II in ILP form.
Compute a solution for the LIP’-relaxation.

Round to obtain an integer solution for I1.

Technique I) LP-Rounding

|
0 OPT, 1y OPTp ALG

Consider a minimization problem II in ILP form.
Compute a solution for the LIP’-relaxation.
Round to obtain an integer solution for 1.

Difficulty: Ensure the feasiblity of the solution.

Technique I) LP-Rounding

|
0 OPT, 1y OPTp ALG

Consider a minimization problem I in ILP form.
Compute a solution for the LIP’-relaxation.

Round to obtain an integer solution for I1.
Difficulty: Ensure the feasiblity of the solution.
Approximation factor: ALG/OPT < ALG/OPT ¢ax-

SETCOVER — LP-Relaxation

minimize Z C5Xg
Ses

subject to Z x¢>1 wuel
Sou

xg >0 Ses

SETCOVER — LP-Relaxation

minimize Z C5Xg
Ses

subject to Z x¢>1 wuel
Sou

xg >0 Ses

Optimal?

SETCOVER — LP-Relaxation

minimize Z C5Xg
Ses

subject to Z x¢>1 wuel
Sou

xg >0 Ses

Optimal?

SETCOVER — LP-Relaxation

minimize

subject to

Optimal?

SETCOVER — LP-Relaxation

minimize

subject to

Optimal?

Gl .
1

SETCOVER — LP-Relaxation

minimize

subject to

Optimal?

OO

1 1

SETCOVER — LP-Relaxation

minimize

subject to

Optimal?

G 1 /o G ia/e
1 1 1 1

x 1 x0

integer: 2

SETCOVER — LP-Relaxation

minimize

subject to

Optimal?
G 1 /9 Giaje G id/e
1 1 1 1 1 1

% L

N—

x1 %0 X

integer: 2 fractional: %

LP-Rounding: Approach I

minimize

subject to

LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution.

LP-Rounding: Approach I

minimize Z X
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution.
— Scaling factor arbitrarily large.

LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. *
— Scaling factor arbitrarily large.

LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. *
— Scaling factor arbitrarily large.

LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. *
— Scaling factor arbitrarily large.

LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. Q\@
— Scaling factor arbitrarily large. N

LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. Q\@ .
— Scaling factor arbitrarily large. \/Q
Co \koj °

o o

LP-Rounding: Approach I

minimize

subject to

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

: . o9
— Generates a valid solution. <'\ - /9
— Scaling factor arbitrarily large. D

LP-Rounding: Approach I

minimize

subject to

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution. C’j
— Scaling factor arbitrarily large. M>\\'§ -

LP-Rounding: Approach I

minimize Z CgXg
SeS
subject to Z xs>1 uel

S5ou
xg >0 seds

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution.
— Scaling factor arbitrarily large.

LP-Rounding: Approach I

minimize

subject to

LP-Rounding-One(L], S,)

Compute optimal solution x for LP-relaxation.
Round each x5 with x¢ > 0 to 1.

— Generates a valid solution.
— Scaling factor arbitrarily large.

Use frequency f

LP-Rounding: Approach II

minimize Z X
Ses
subject to Z x¢>1 uel

S5ou
xg >0 seds

LP-Rounding-Two (U, S, ¢)

Compute optimal solution x for LP-Relaxation.
Round each xg with xg¢ > 1/ to 1; remaining to 0.

Let / be the frequency of (i.e., the number of sets
containing) the most frequent element.

LP-Rounding: Approach II

minimize 2 X
Ses
subject to Z x¢>1 uel

S5ou
xg >0 seds

LP-Rounding-Two (U, S, ¢)

Compute optimal solution x for LP-Relaxation.
Round each xg with xg¢ > 1/ to 1; remaining to 0.

Let / be the frequency of (i.e., the number of sets
containing) the most frequent element.

Theorem. LP-Rounding-Two is a factor- approximation
algorithm for SETCOVER.

Approximation Algorithms

Lecture 5:
LP-based Approximation Algorithms
for SETCOVER

Part I1I:
The Primal-Dual Schema

Alexander Wollftf Winter 2022/23

Technique II) Primal-Dual Approach

OPTgyal = OPTprimal OPTyg
feasible dual solutions feasible primal solutions
| >l | >
0

Consider a minimization problem I in ILP form.

Technique II) Primal-Dual Approach

OPTgyal = OPTprimal OPTyg
S feasible dual solutions feasible primal solutions

IT§ g | =
SdO

Consider a minimization problem I in ILP form.

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

Technique II) Primal-Dual Approach

OPTqual = OPTprimal OPI
feasible dual solutions feasible primal solutions
—1 i >l ! >
0 °d o1

Consider a minimization problem I in ILP form.

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

Technique II) Primal-Dual Approach

OPTqual = OPTprimal OPI
feasible dual solutions feasible primal solutions
— i >l ! >
0 °d o1

Consider a minimization problem I in ILP form.

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

Compute dual solution s4 and integral primal solution s
for I1 iteratively:
increase sy according to CS and make s, “more feasible”.

Technique II) Primal-Dual Approach

OPTqual = OPTprimal OPI
feasible dual solutions feasible primal solutions
| —ble | i >
0 >d o

Consider a minimization problem I in ILP form.

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

Compute dual solution s4 and integral primal solution s
for I1 iteratively:
increase sy according to CS and make s, “more feasible”.

Technique II) Primal-Dual Approach

OPTqual = OPTprimal OPI
feasible dual solutions feasible primal solutions
| —ble | i >
0 >d o
| |

Consider a minimization problem I in ILP form.

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

Compute dual solution sy and integral primal solution s
for I1 iteratively:
increase sy according to CS and make s, “more feasible”.

I1

Approximation factor < obj(s,,)/obj(sq)

Technique II) Primal-Dual Approach

OPTqual = OPTprimal OPI
feasible dual solutions feasible primal solutions
| —ble | i >
0 >d o
| |

Consider a minimization problem I in ILP form.

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

Compute dual solution s4 and integral primal solution s

for I1 iteratively:
increase sy according to CS and make s, “more feasible”.

I1

Approximation factor < obj(s,,)/obj(sq)

Advantage: don’t need LP-“machinery”; possibly faster,
more flexible.

SETCOVER — Dual LP

minimize Z C5Xg
Ses

subject to Z x¢>1 wuel
Sou

xg >0 Ses

SETCOVER — Dual LP

subject to

maximize

subject to

SETCOVER — Dual LP

subject to

maximize

subject to

SETCOVER — Dual LP

subject to

maximize

subject to

SETCOVER — Dual LP

subject to

maximize

subject to

Complementary Slackness

minimize maximize bTy
subjectto Ax subjectto ATy < ¢
y = 0

Theorem. Let x = (xq,...,x,) and y = (y1,.. .,V) be valid solutions
for the primal and dual program (resp.). Then x and y are
optimal if and only if the following conditions are met:

Primal CS:
Foreachj=1,...,n: x; =0 or Y/°;a;y; = ¢

Dual CS:
Foreachi=1,...,m: y; =0 or Z?_l a;ixj = b

Relaxing Complementary Slackness

minimize c¢Tx maximize bTy

subjectto Ax subjectto ATy
4 Y

Primal CS:
Foreachj=1,...,m: x; =0 or Y., a;y; = c;

Dual CS:
Foreachi=1,...,m: y; =0 or 2;7:1 ajjxj = b

n m
<~ ZC]'X]' — Z biyi
j=1 i—1

Relaxing Complementary Slackness

minimize c¢Tx maximize bTy

subjectto Ax subjectto ATy

PeratCST . Relaxed Primal CS

; — . — m
Foreachj=1,...,n: x; =0 or) 1]1—]-

/“<Zz 1 4ijYi =

Dual CS:
Foreachi=1,...,m: y; =0 or Z" 1 84jX; = b;

n m
= ZC]'X]' — Z biyi
j=1 i—1

Relaxing Complementary Slackness

minimize c¢Tx maximize bTy

subjectto Ax subjectto ATy

PeratCST . Relaxed Primal CS

; — . - m
Foreachj=1,...,n: x; =0 or)} =pay77=T;

/“<Zz 1 ijYi < €

- Dual CS: Relaxed Dual CS
Foreachi=1,...,m: y; =0 or Y =rarx ="

b; <Z”1a1]]<16 b;

n m
= ZC]'X]' — Z bi}/i
j=1 i—1

Relaxing Complementary Slackness

minimize c¢Tx maximize bTy

subjectto Ax subjectto ATy

PeratCST . Relaxed Primal CS

; — . - m
Foreachj=1,...,n: x; =0 or)} =pay77=T;

/“<Zz 1 ijYi < €

- Dual CS: Relaxed Dual CS
Foreachi=1,...,m: y; =0 or Y =rarx ="

b<2”1a1]]<16 b;

n m
&) o=y by = Zc]]_zxﬁZblyl < aB-OPTyp

1=1 1=1

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...

...and simultaneously the obj. value of the dual solution.

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...
...and simultaneously the obj. value of the dual solution.

Do so until the relaxed CS conditions are met.

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...
...and simultaneously the obj. value of the dual solution.
Do so until the relaxed CS conditions are met.

Maintain that the primal solution is integer valued.

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...
...and simultaneously the obj. value of the dual solution.
Do so until the relaxed CS conditions are met.

Maintain that the primal solution is integer valued.

The feasibility of the primal solution and relaxed CS
condition provide an approximation ratio.

Relaxed CS for SETCOVER

minimize

subject to

maximize

Y. Yu

uel

Z]/uSCS

UES
Yy =0

ses

uel

Relaxed CS for SETCOVER

minimize maximize Z Yy
ucl
subject to u € Ul|subjectto Y y, <cs SeS

Sou ues

xg >0 S5es v, >0 uel

(Unrelaxed) primal CS:

Relaxed CS for SETCOVER

minimize maximize Z Yy
ucl
subject to u € Ul|subjectto Y y, <cs SeS

Sou ues

xg >0 S5es v, >0 uel

/

(Unrelaxed) primal CS: x5 # 0 =

Relaxed CS for SETCOVER

minimize maximize Z Yy
uel
subject to u € U||subjectto Yy, < cs

Sou ues

xg >0 ses v, >0

/

(Unrelaxed) primal CS: xg #0 =} ,c5 Yy = Cg

Relaxed CS for SETCOVER

minimize maximize

subject to u € U] |subject to
S3u

xg >0 ses

critical set =--,

/

(Unrelaxed) primal CS: xg #0 =) ,cqyy = C:S

Relaxed CS for SETCOVER

minimize maximize Z Yu
ucl

subject to > Y yu<cs Ses

ues
Yy =0 ueld

critical set=--,

(Unrelaxed) primal CS: x5 #0 =) ,c5yy = C:S

~»only chooses critical sets

Relaxed CS for SETCOVER

minimize maximize

subject to u € U] |subject to
Sou

xg >0 ses

critical set =--,

(Unrelaxed) primal CS: x5 #0 =) ,c5yy = C:S

~»only chooses critical sets

Relaxed dual CS:

Relaxed CS for SETCOVER

minimize maximize Z Yy
uel
subject to u € Ul|subjectto Y y, <cs SeS

Sou ues

xg >0 S5es v, >0 uel

critical set =--,

(Unrelaxed) primal CS: x5 #0 =) ,c5yy = C:S

“»only chooses critical sets

Relaxed dual CS: vy, # 0 =

Relaxed CS for SETCOVER

minimize maximize Z Yy
uel
subject to u € Ul|subjectto Y y, <cs SeS

Sou ues

xg >0 S5es v, >0 uel

critical set =--,

(Unrelaxed) primal CS: x5 #0 =) ,c5yy = C:S

~»only chooses critical sets

Relaxed dual CS: i, #0=1<) x5 <
S55u

Relaxed CS for SETCOVER

minimize maximize Z Yy
uel
subject to u € Ul|subjectto Y y, <cs SeS

Sou ues

xg >0 S5es v, >0 uel

critical set =--,

(Unrelaxed) primal CS: x5 #0 =) ,c5yy = C:S

~»only chooses critical sets

Relaxed dual CS: vy, #0 =1 < Z xg < f -1
Sou

Relaxed CS for SETCOVER

minimize maximize

subject to u € U] |subject to
Sou

xg >0 S5es

critical set =--,

(Unrelaxed) primal CS: x5 #0 =) ,c5yy = C:S

~»only chooses critical sets

trivial for binary x <-------. .

Relaxed dual CS: vy, #0 =1 < Z Xg § -1
Sou

Primal-Dual Schema for SETCOVER

Primal-Dual Schema for SETCOVER

Primal-Dual Schema for SETCOVER

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (}_,/cq v, = c2).
Select all critical sets and update x.

until all elements are covered.
return x

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.
return x

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

returmx
0 0 0 0
o o o .O @ .O o

o) 0e 0® 0®

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

returmx
3 0 0 0
o o o .O @ .O o

o) 0e 0® 0®

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

returmx
3 0 0 0
o o o .O @ .O o

@ 0e 0@ 0®

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

returmx
3 0 0 0
o o o .O @ .O o

®(0e 0@ 0®

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

returmx
3 0 0 1
o o o .O @ .O o

®(0e 0@ 0®

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

returmx
3 0 0 1
o o o .O o .O o

®(0e 0@ 0®

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

- returnx
3 0 0 1
o o o .O o .O o

®(0e 0@ 0®

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

- returnx
3 0 0 1
o o o .O o .O o

®(0e 4@ 0®

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

- returnx
3 0 0 1
o o o .O o .O o

®0 0® 4@ 0@

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

- returnx
3 0 0 1
o o o .O o .1 o

®0 0® 4@ 0@

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

- returnx
3 0 0 1
o o o .O o .1 o

®(0e 4@ 0®

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

returnx
3 0 0 1
3
o o o .O o .1 ® .

®(0e 4@ 0®

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

returnx
3 0 0 1
3
o o o .4 o .1 ® .

®(0e 4@ 0®

Primal-Dual Schema for SETCOVER

PrimalDualSetCover(L, S,)

x <0,y <0

repeat

Select an uncovered element 1.

Increase 1, until a set S is critical (), cq v,y = 2).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.
return x

Theorem. PrimalDualSetCover is a factor- approximation
algorithm for SETCoVER. This bound is tight.

®(0e 4@ 0®

Tight Example

Tight Example

Tight Example

N\

J

D

C
X

)

TN

€

Tight Example

)

¢
N

N

C.H

Tight Example

)

L
R

(o)
p—
o
0
o
o
2

)

C.H

Tight Example

)

L
R

(01 NeX 1e]
N
.1 1.
1
®)
- 1+e¢

Integrality Gap

OPTgyal = OPTprimal OPTyg
feasible dual solutions feasible primal solutions
| >l | >
0

Consider a minimization problem I in ILP form.

Integrality Gap

OPTgyal = OPTprimal OPTyg
feasible dual solutions feasible primal solutions
| >l | >
0

Consider a minimization problem I in ILP form.

Dual methods (without outside help) are limited by the
integrality gap of the LP-relaxation

Integrality Gap

OPTgyal = OPTprimal OPTyg
feasible dual solutions feasible primal solutions
| >l | >
0

Consider a minimization problem I in ILP form.

Dual methods (without outside help) are limited by the
integrality gap of the LP-relaxation

oy OPTn(D)
I P OPTprimal (I)

Integrality Gap

OPTgyal = OPTprimal OPTyg
feasible dual solutions feasible primal solutions
| >l | >
0

X

Consider a minimization problem I in ILP form.

Dual methods (without outside help) are limited by the
integrality gap of the LP-relaxation

oy OPTn(D)
I P OPTprimal (I)

o>

Approximation Algorithms

Lecture 5:
LP-based Approximation Algorithms
for SETCOVER

Part 1V:
Dual Fitting

Alexander Wollftf Winter 2022/23

Technique III) Dual Fitting

OPTqyal = OPTprimal OPIp

feasible dual solutions feasible primal solutions
| >l | i [>
0 St 5d

Consider a minimization problem I in ILP form.

Technique III) Dual Fitting

OPTqyal = OPTprimal OPIp

feasible dual solutions feasible primal solutions
| >l | i [>
0 St 5d

Consider a minimization problem I in ILP form.

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s, and infeasible dual solution s4 that
completely “pays” for s,

Technique III) Dual Fitting

OPTqyal = OPTprimal OPIp

feasible dual solutions feasible primal solutions
| >l | i [>
0 St 5d

Consider a minimization problem I in ILP form.

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s, and infeasible dual solution s4 that
completely “pays” for s,,, i.e., obj(s;) < obj(sq).

Technique III) Dual Fitting

OPTqyal = OPTprimal OPIp

feasible dual solutions feasible primal solutions
| >l | i [>
0 51 5d
A |

Consider a minimization problem I in ILP form.

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s, and infeasible dual solution s4 that
completely “pays” for s,,, i.e., obj(s;) < obj(sq).

Scale the dual variables ~~ feasible dual solution

Technique III) Dual Fitting

OPTqyal = OPTprimal OPIp

feasible dual solutions feasible primal solutions
| >l | i [>
0 51 5d
A |

Consider a minimization problem I in ILP form.

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s, and infeasible dual solution s4 that
completely “pays” for s,,, i.e., obj(s;) < obj(sq).

Scale the dual variables ~~ feasible dual solution
— < OPTdual < OPTp

Technique III) Dual Fitting

OPTqyal = OPTprimal OPIp

feasible dual solutions feasible primal solutions
| >l | i [>
0 St 5d
A |

Consider a minimization problem I in ILP form.

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s, and infeasible dual solution s4 that
completely “pays” for s,,, i.e., obj(s;) < obj(sq).

Scale the dual variables ~~ feasible dual solution
= Obj(Sd) / = S OPTdual S OPTH

Technique III) Dual Fitting

OPTqyal = OPTprimal OPIp

feasible dual solutions feasible primal solutions
| >l | i [>
0 St 5d
A |

Consider a minimization problem I in ILP form.

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s, and infeasible dual solution s4 that
completely “pays” for s,,, i.e., obj(s;) < obj(sq).

Scale the dual variables ~~ feasible dual solution
= Obj(SH)/ S Obj(Sd)/ = S OPTdual S OPTH

Technique III) Dual Fitting

OPTqyal = OPTprimal OPIp

feasible dual solutions feasible primal solutions
| >l | i [>
0 51 5d
A |

Consider a minimization problem I in ILP form.

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s, and infeasible dual solution s4 that
completely “pays” for s,,, i.e., obj(s;) < obj(sq).

Scale the dual variables ~~ feasible dual solution
— obj(s;,) /& < obj(sa) /o = < OPTyy < OPTy;
= Scaling factor « is approximation factor.

Dual Fitting for SETCOVER

Combinatorial (greedy) algorithm (see Lecture #2):

Dual Fitting for SETCOVER

Combinatorial (greedy) algorithm (see Lecture #2):

Reminder:), ; price(u)

Dual Fitting for SETCOVER

Combinatorial (greedy) algorithm (see Lecture #2):

GreedySetCover(LI, S,)
- C«+Q

S'+

while C # LI do

S <« Set from S that minimizes |CS(\53|
foreach 1z € 5\ C do
: . c(S)
t price(u) < 5y
C+ CUS
S+ S'U{Ss} .
return &' // Cover of LI

Reminder: Y, o price(u) completely pays for S'.

New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable

New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable

maximize

subject to

New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable

] maximize

o% (03 3 og SllbjECt to

New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable
But this dual solution is in general not feasible.

1 maximize

o% (03 3 og subject to

New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable
But this dual solution is in general not feasible.

Homework exercise: Construct instance where some S are “overpacked” by factor ~ H S|

1 maximize

o% (03 3 og SllbjECt to

New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable
But this dual solution is in general not feasible.

Homework exercise: Construct instance where some S are “overpacked” by factor ~ H S|
Dual-fitting trick:
Scale dual variables such that no set is overpacked.

1 maximize

o% (03 3 og subject to

New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable
But this dual solution is in general not feasible.

Homework exercise: Construct instance where some S are “overpacked” by factor ~ H S|
Dual-fitting trick:
Scale dual variables such that no set is overpacked.

Take gu —
1 maximize
(0,0
. 1] ' o .
. . 30\ [o3 , o (o3 03 ;o3 subject to
2
—)
.% 0§ 4 0% / %’

New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable
But this dual solution is in general not feasible.

Homework exercise: Construct instance where some S are “overpacked” by factor ~ Hg).
Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take i, = price(u)/

1 maximize

o% (03 3 og subject to

New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable
But this dual solution is in general not feasible.

Homework exercise: Construct instance where some S are “overpacked” by factor ~ Hg).
Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take i, = price(u)/Hy. (k = cardinality of largest set in S.)

1 maximize

o% (03 3 og subject to

New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable
But this dual solution is in general not feasible.

Homework exercise: Construct instance where some S are “overpacked” by factor ~ Hg).
Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take i, = price(u)/Hy. (k = cardinality of largest set in S.)

The greedy algorithm uses these dual variables as lower
bound for OPT.

maximize Z Yy
e ucl

, 1 -
%. e o3 o 4\(e3 3 og SllbjECt to 2 yu S S ~ S
]\ ues

Yy >0 uel

New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable
But this dual solution is in general not feasible.

Homework exercise: Construct instance where some S are “overpacked” by factor ~ Hg).
Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take i, = price(u)/Hy. (k = cardinality of largest set in S.)

The greedy algorithm uses these dual variables as lower
bound for OPT.

/Lemma. A maximize Z Yy

The vector i7 = (/) ,cu uel

is a feasible solution for subjectto) yy < §€s
‘the dual LP. ues

d Yy >0 uel

Proof.

,
Lemma.

The vector 7 = (1/,,),cu
is a feasible solution for
\the dual LP.

maximize Z Yu
ucl

subject to 2 Yu < Cg
ueS

Yy =0

SeS

uel

Proof. To prove: No set is overpacked by 7.

(. .
Lemma. maximize

The vector 7 = (1/,,),cu
is a feasible solution for
\the dual LP.

subject to

J

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

(. .
Lemma. maximize

The vector 7 = (1/,,),cu
is a feasible solution for
\the dual LP.

subject to

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

Let u1,...,uy be the elements of S —

maximize Z Yy
ucl

p
Lemma.

The vector 7 = (1/,,),cu
is a feasible solution for
\the dual LP.

subject to 2 Yy < ses

ues
g Yy =0 uel

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

Let u1,...,uy be the elements of S —
in the order in which they are covered by greedy.

/Lemma. A maximize Z Yy

The vector i7 = (/) ,cu uel

is a feasible solution for subjectto) yy < §€s
‘the dual LP. nes

g Yy =0 ueld

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

Let u1,...,uy be the elements of S —
in the order in which they are covered by greedy.

Consider the iteration in which 1u; is covered.

/Lemma. A maximize Z Yy

The vector 7 = (1/,,),cu uel

is a feasible solution for subjectto) yy < §€s
‘the dual LP. ues

g Yy =0 ueld

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

Let u1,...,uy be the elements of S —
in the order in which they are covered by greedy.

Consider the iteration in which 1u; is covered.
Before that, > ¢/ — i + 1 elem. of S are uncovered.

/Lemma. A maximize Z Yy

The vector 7 = (1/,,),cu uel

is a feasible solution for subjectto) yy < §es
‘the dual LP. ues

g Yy =0 ueld

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

Let u4,...,u,; be the elements of S —

in the order in which they are covered by greedy.
Consider the iteration in which 1u; is covered.
Before that, > ¢/ — 1 + 1 elem. of S are uncovered.
So price(u;) <

/Lemma. A maximize Z Yy

The vector 7 = (1/,,),cu uel

is a feasible solution for subjectto) yy < §es
‘the dual LP. ues

g Yy =0 ueld

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

Let u4,...,u,; be the elements of S —

in the order in which they are covered by greedy.
Consider the iteration in which 1u; is covered.
Before that, > ¢/ — 1 + 1 elem. of S are uncovered.
So price(u;) < /(L—14+1).

/Lemma. A maximize Z Yy

The vector 7 = (1/,,),cu uel

is a feasible solution for subjectto) yy < §es
‘the dual LP. ues

g Yy =0 ueld

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

Let u4,...,u,; be the elements of S —

in the order in which they are covered by greedy.
Consider the iteration in which 1u; is covered.
Before that, > ¢/ — 1 + 1 elem. of S are uncovered.
So price(u;) < /(L—14+1).

— y_ui é
/Lemma. A maximize Z Yy
The vector 7 = (1/,,),cu uel
is a feasible solution for subjectto) yy < §es
‘the dual LP. ues

g Yy =0 ueld

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

Let u4,...,u,; be the elements of S —

in the order in which they are covered by greedy.
Consider the iteration in which 1u; is covered.
Before that, > ¢/ — 1 + 1 elem. of S are uncovered.
So price(u;) < /(L—14+1).

/Lemma. A maximize Z Yy

The vector 7 = (1/,,),cu uel

is a feasible solution for subjectto) yy < §es
‘the dual LP. ues

g Yy =0 ueld

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

Let u1,...,uy be the elements of S —
in the order in which they are covered by greedy.

Consider the iteration in which 1u; is covered.
Before that, > ¢/ — i + 1 elem. of S are uncovered.

So price(u;) < /(L—14+1).

{4
1

= Yu; S He 0—i+1 ~ Yu; <
=1

/Lemma. A maximize Z Yy

The vector 7 = (1/,,),cu uel

is a feasible solution for subjectto) yy < §es
‘the dual LP. ues

g Yy =0 ueld

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

Let u1,...,uy be the elements of S —
in the order in which they are covered by greedy.

Consider the iteration in which 1u; is covered.
Before that, > ¢/ — i + 1 elem. of S are uncovered.

So price(u;) < /(L—14+1).

{4
1

= Y S 707 = = 2w S H—k(
i—1

/Lemma. A maximize Z Yy

The vector 7 = (1/,,),cu uel

is a feasible solution for subjectto) yy < §es
‘the dual LP. ues

g Yy =0 ueld

Proof. To prove: No set is overpacked by 7.
Let S e Sand ¢ = |S| < k.

Let u1,...,uy be the elements of S —
in the order in which they are covered by greedy.

Consider the iteration in which 1u; is covered.
Before that, > ¢/ — i + 1 elem. of S are uncovered.

So price(u;) < /(L—14+1).

{4
1

_ . . .
= Yu; S 37 =i =, 1yui§ H—k-(z+---+1>
1=

/Lemma. A maximize Z Yy

The vector 7 = (1/,,),cu uel

is a feasible solution for subjectto) yy < §es
‘the dual LP. ues

g Yy =0 ueld

Proof.

To prove: No set is overpacked by 7.
Let S € Sand ¢ = |S| < k.

Let u1,...,uy be the elements of S —
in the order in which they are covered by greedy.

Consider the iteration in which 1u; is covered.

Before that, > ¢/ — i + 1 elem. of S are uncovered.
So price(u;) < /(L—14+1).

N\
,6 ' N\

1

_ .) :
= Yu; S 37 =i =, 1yui§ H—k’(z+”‘+i>
1=

/Lemma. A maximize Z Yy
The vector 7 = (1/,,),cu uel
is a feasible solution for subjectto) yy < §es

\the dual LP. Hes

7 Yy >0 uel

Proof.

To prove: No set is overpacked by 7.
Let S € Sand ¢ = |S| < k.

Let u1,...,uy be the elements of S —
in the order in which they are covered by greedy.

Consider the iteration in which 1u; is covered.
Before that, > ¢/ — i + 1 elem. of S are uncovered.

So price(u;) < /(6—i+1). = My < Hy
¢ ™ ~

1

—_— _ 72 1
= Yu; S 37 =i =, 1yui§ H—k-(z+---+1>
1=

/Lemma. A maximize Z Yy
The vector 7 = (1/,,),cu uel
is a feasible solution for subjectto) yy < §es

\the dual LP. Hes

7 Yy >0 uel

Proof.

To prove: No set is overpacked by 7.
Let S € Sand ¢ = |S| < k.

Let u1,...,uy be the elements of S —
in the order in which they are covered by greedy.

Consider the iteration in which 1u; is covered.
Before that, > ¢/ — i + 1 elem. of S are uncovered.

So price(u;) < /(L—14+1). = H, < H,y

/ -~
7 1 y 1 1
:>y”i§7{k'£—i+1 = yuig—k (z—l-” +T>
=1 <
‘Lemma.) maximize
The vector 7 = (1/,,),cu . uel
is a feasible solution for subjectto) yy < §es

\the dual LP. Hes

d Yy >0 uel

Result for Dual Fitting

Theorem. GreedySetCover is a factor-7/, approximation
algorithm for SETCOVER, where k = maxgcs |5|.

Result for Dual Fitting

Theorem. GreedySetCover is a factor-7/, approximation
algorithm for SETCOVER, where k = maxgcs |5|.

Proof. ALG=¢(5") <

Result for Dual Fitting

Theorem. GreedySetCover is a factor-7/, approximation
algorithm for SETCOVER, where k = maxgcs |5|.

Proof. ALG =¢(&5) < Z price(u) =

uel

Result for Dual Fitting

Theorem. GreedySetCover is a factor-7/, approximation
algorithm for SETCOVER, where k = maxgcs |5|.

Proof. ALG =c(8') < Y price(u) =Hi - Y 7u <

uel uel

Result for Dual Fitting

Theorem. GreedySetCover is a factor-7/, approximation
algorithm for SETCOVER, where k = maxgcs |5|.

Proof. ALG =c(8') < Y price(u) =Hi - Y 7u <
ucl ucl
< er ' OPTrelax

Result for Dual Fitting

Theorem. GreedySetCover is a factor-7/, approximation
algorithm for SETCOVER, where k = maxgcs |5|.

Proof. ALG =c(8') < Y price(u) =Hi - Y 7u <
ucl ucl
< er ' OPTrelax

< H; - OPT

Result for Dual Fitting

Theorem. GreedySetCover is a factor-7/, approximation
algorithm for SETCOVER, where k = maxgcs |5|.

Proof. ALG = < Z price(u) = Hy - Z Vy <
ucl ucl

< /Hk ' OPTrelax
< H; -OPT

Strengthened bound with respect to OPT 1. < OPT.

Result for Dual Fitting

Theorem. GreedySetCover is a factor-7/; approximation
algorithm for SETCOVER, where k = maxgcs |5|.

Proof. ALG = < Z price(u) = Hy - Z Vy <
ucl ucl

< /Hk ' OPTrelax
< 7, -OPT

Strengthened bound with respect to OPT 1. < OPT.
Dual solution allows a per-instance estimation

... which may be stronger than worst-case bound Hy.

	SetCover as an ILP
	SetCover via LP-Rounding
	Technique I) LP-Rounding
	SetCover - LP-Relaxation
	LP-Rounding: Approach I
	LP-Rounding: Approach II

	SetCover via Primal-Dual Schema
	Technique II) Primal--Dual Approach
	SetCover - Dual LP
	Complementary Slackness
	Relaxing Complementary Slackness

	Primal--Dual Schema
	Primal--Dual Schema
	Relaxed CS for SetCover

	Primal--Dual Schema for \textsc{SetCover}
	Primal-Dual-Schema for SetCover
	Tight Example
	Integrality Gap

	SetCover via Dual Fitting
	Technique III) Dual Fitting
	Dual Fitting for SetCover
	New: LP-based Analysis
	Result for Dual Fitting

