
Lecture 5:
LP-based Approximation Algorithms

for SetCover

Part I:
SetCover as an ILP

Approximation Algorithms

Alexander Wolff Winter 2022/23

SetCover as an ILP

Ground set U

SetCover as an ILP

Ground set U
Family S ⊆ 2U with

⋃ S = U

SetCover as an ILP

Ground set U

1

4

4 6 5
23

Family S ⊆ 2U with
⋃ S = U

Costs c : S → Q+

SetCover as an ILP

Ground set U

Find cover
S ′ ⊆ S of U with
minimum cost.

1

4

4 6 5
23

Family S ⊆ 2U with
⋃ S = U

Costs c : S → Q+

SetCover as an ILP

Ground set U

Find cover
S ′ ⊆ S of U with
minimum cost.

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ∈ {0, 1} S ∈ S

1

4

4 6 5
23

Family S ⊆ 2U with
⋃ S = U

Costs c : S → Q+

SetCover as an ILP

Ground set U

Find cover
S ′ ⊆ S of U with
minimum cost.

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ∈ {0, 1} S ∈ S

1

4

4 6 5
23

Family S ⊆ 2U with
⋃ S = U

Costs c : S → Q+

SetCover as an ILP

Ground set U

Find cover
S ′ ⊆ S of U with
minimum cost.

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ∈ {0, 1} S ∈ S

1

4

4 6 5
23

Family S ⊆ 2U with
⋃ S = U

Costs c : S → Q+

SetCover as an ILP

Ground set U

Find cover
S ′ ⊆ S of U with
minimum cost.

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ∈ {0, 1} S ∈ S

1

4

4 6 5
23

Family S ⊆ 2U with
⋃ S = U

Costs c : S → Q+

SetCover as an ILP

Ground set U

Find cover
S ′ ⊆ S of U with
minimum cost.

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ∈ {0, 1} S ∈ S

1

4

4 6 5
23

Family S ⊆ 2U with
⋃ S = U

Costs c : S → Q+

Lecture 5:
LP-based Approximation Algorithms

for SetCover

Part II:
LP-Rounding

Approximation Algorithms

Alexander Wolff Winter 2022/23

Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Compute a solution for the LP-relaxation.

OPTrelax

Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Compute a solution for the LP-relaxation.

OPTrelax

Round to obtain an integer solution for Π.

ALG

Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Compute a solution for the LP-relaxation.

OPTrelax

Round to obtain an integer solution for Π.

ALG

Difficulty: Ensure the feasiblity of the solution.

Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Compute a solution for the LP-relaxation.

OPTrelax

Round to obtain an integer solution for Π.

ALG

α

Difficulty: Ensure the feasiblity of the solution.

Approximation factor: ALG/OPTΠ ≤ ALG/OPTrelax.

SetCover – LP-Relaxation

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

SetCover – LP-Relaxation

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Optimal?

SetCover – LP-Relaxation

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Optimal?

SetCover – LP-Relaxation

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Optimal?

1

SetCover – LP-Relaxation

1

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Optimal?

1

SetCover – LP-Relaxation

11

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Optimal?

1

SetCover – LP-Relaxation

11

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Optimal?

1

11

1

integer: 2

×1

×1 ×0

SetCover – LP-Relaxation

11

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Optimal?

1

11

1

integer: 2

×1

×1 ×0
11

1

fractional: 3
2

× 1
2

× 1
2 × 1

2

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a valid solution.

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a valid solution.
– Scaling factor arbitrarily large.

. . .

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a valid solution.
– Scaling factor arbitrarily large.

. . .

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a valid solution.
– Scaling factor arbitrarily large.

. . .

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a valid solution.
– Scaling factor arbitrarily large.

. . .

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a valid solution.
– Scaling factor arbitrarily large.

. . .

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a valid solution.
– Scaling factor arbitrarily large.

. . .

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a valid solution.
– Scaling factor arbitrarily large.

. . .

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a valid solution.
– Scaling factor arbitrarily large.

. . .

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a valid solution.
– Scaling factor arbitrarily large.

. . .

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

. . .

LP-Rounding: Approach I

LP-Rounding-One(U,S , c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a valid solution.
– Scaling factor arbitrarily large.

. . .

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

. . .
Use frequency f

LP-Rounding: Approach II

LP-Rounding-Two(U,S , c)
Compute optimal solution x for LP-Relaxation.
Round each xS with xS ≥ 1/ f to 1; remaining to 0.

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Let f be the frequency of (i.e., the number of sets
containing) the most frequent element.

LP-Rounding: Approach II

LP-Rounding-Two(U,S , c)
Compute optimal solution x for LP-Relaxation.
Round each xS with xS ≥ 1/ f to 1; remaining to 0.

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Theorem. LP-Rounding-Two is a factor- f approximation
algorithm for SetCover.

Let f be the frequency of (i.e., the number of sets
containing) the most frequent element.

Lecture 5:
LP-based Approximation Algorithms

for SetCover

Part III:
The Primal-Dual Schema

Approximation Algorithms

Alexander Wolff Winter 2022/23

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

Consider a minimization problem Π in ILP form.

sd
sΠ

OPTΠOPTdual = OPTprimal

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd sΠ

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd sΠ

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

Compute dual solution sd and integral primal solution sΠ
for Π iteratively:
increase sd according to CS and make sΠ “more feasible”.

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

sΠ

Compute dual solution sd and integral primal solution sΠ
for Π iteratively:
increase sd according to CS and make sΠ “more feasible”.

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd

α

Approximation factor ≤ obj(sΠ)/obj(sd)

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

sΠ

Compute dual solution sd and integral primal solution sΠ
for Π iteratively:
increase sd according to CS and make sΠ “more feasible”.

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd

α

Approximation factor ≤ obj(sΠ)/obj(sd)

Advantage: don’t need LP-“machinery”; possibly faster,
more flexible.

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

sΠ

Compute dual solution sd and integral primal solution sΠ
for Π iteratively:
increase sd according to CS and make sΠ “more feasible”.

SetCover – Dual LP

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

SetCover – Dual LP

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

SetCover – Dual LP

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

SetCover – Dual LP

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

SetCover – Dual LP

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Complementary Slackness

minimize cᵀx
subject to Ax ≥ b

x ≥ 0

maximize bᵀy
subject to Aᵀy ≤ c

y ≥ 0

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be valid solutions
for the primal and dual program (resp.). Then x and y are
optimal if and only if the following conditions are met:

Primal CS:
For each j = 1, . . . , n: xj = 0 or ∑m

i=1 aijyi = cj

Dual CS:
For each i = 1, . . . , m: yi = 0 or ∑n

j=1 aijxj = bi

Theorem.

Relaxing Complementary Slackness

Primal CS:
For each j = 1, . . . , n: xj = 0 or ∑m

i=1 aijyi = cj

Dual CS:
For each i = 1, . . . , m: yi = 0 or ∑n

j=1 aijxj = bi

⇔
n

∑
j=1

cjxj =
m

∑
i=1

biyi

minimize cᵀx
subject to Ax ≥ b

x ≥ 0

maximize bᵀy
subject to Aᵀy ≤ c

y ≥ 0

Relaxing Complementary Slackness

Primal CS:
For each j = 1, . . . , n: xj = 0 or ∑m

i=1 aijyi = cj

Dual CS:
For each i = 1, . . . , m: yi = 0 or ∑n

j=1 aijxj = bi

Relaxed Primal CS

cj/α ≤ ∑m
i=1 aijyi ≤ cj

⇔
n

∑
j=1

cjxj =
m

∑
i=1

biyi

minimize cᵀx
subject to Ax ≥ b

x ≥ 0

maximize bᵀy
subject to Aᵀy ≤ c

y ≥ 0

Relaxing Complementary Slackness

Primal CS:
For each j = 1, . . . , n: xj = 0 or ∑m

i=1 aijyi = cj

Dual CS:
For each i = 1, . . . , m: yi = 0 or ∑n

j=1 aijxj = bi

Relaxed Primal CS

cj/α ≤ ∑m
i=1 aijyi ≤ cj

bi ≤ ∑n
j=1 aijxj ≤ β · bi

⇔
n

∑
j=1

cjxj =
m

∑
i=1

biyi

Relaxed Dual CS

minimize cᵀx
subject to Ax ≥ b

x ≥ 0

maximize bᵀy
subject to Aᵀy ≤ c

y ≥ 0

Relaxing Complementary Slackness

Primal CS:
For each j = 1, . . . , n: xj = 0 or ∑m

i=1 aijyi = cj

Dual CS:
For each i = 1, . . . , m: yi = 0 or ∑n

j=1 aijxj = bi

Relaxed Primal CS

cj/α ≤ ∑m
i=1 aijyi ≤ cj

bi ≤ ∑n
j=1 aijxj ≤ β · bi

⇔
n

∑
j=1

cjxj =
m

∑
i=1

biyi

Relaxed Dual CS

⇒
n

∑
j=1

cjxj ≤ αβ
m

∑
i=1

biyi ≤ αβ ·OPTLP

minimize cᵀx
subject to Ax ≥ b

x ≥ 0

maximize bᵀy
subject to Aᵀy ≤ c

y ≥ 0

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...

. . . and simultaneously the obj. value of the dual solution.

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...

. . . and simultaneously the obj. value of the dual solution.

Do so until the relaxed CS conditions are met.

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...

. . . and simultaneously the obj. value of the dual solution.

Maintain that the primal solution is integer valued.

Do so until the relaxed CS conditions are met.

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution
(often trivial).

“Improve” the feasibility of the primal solution...

. . . and simultaneously the obj. value of the dual solution.

Maintain that the primal solution is integer valued.

The feasibility of the primal solution and relaxed CS
condition provide an approximation ratio.

Do so until the relaxed CS conditions are met.

Relaxed CS for SetCover

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Relaxed CS for SetCover

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

(Unrelaxed) primal CS: xS 6= 0⇒ ∑u∈S yu = cS

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Relaxed CS for SetCover

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

(Unrelaxed) primal CS: xS 6= 0⇒ ∑u∈S yu = cS

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Relaxed CS for SetCover

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

(Unrelaxed) primal CS: xS 6= 0⇒ ∑u∈S yu = cS

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Relaxed CS for SetCover

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

(Unrelaxed) primal CS: xS 6= 0⇒ ∑u∈S yu = cS

critical set

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Relaxed CS for SetCover

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

(Unrelaxed) primal CS: xS 6= 0⇒ ∑u∈S yu = cS

critical set

only chooses critical sets

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Relaxed CS for SetCover

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

(Unrelaxed) primal CS: xS 6= 0⇒ ∑u∈S yu = cS

Relaxed dual CS: yu 6= 0⇒ 1 ≤ ∑
S3u

xS ≤ f · 1

critical set

only chooses critical sets

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Relaxed CS for SetCover

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

(Unrelaxed) primal CS: xS 6= 0⇒ ∑u∈S yu = cS

Relaxed dual CS: yu 6= 0⇒ 1 ≤ ∑
S3u

xS ≤ f · 1

critical set

only chooses critical sets

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Relaxed CS for SetCover

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

(Unrelaxed) primal CS: xS 6= 0⇒ ∑u∈S yu = cS

Relaxed dual CS: yu 6= 0⇒ 1 ≤ ∑
S3u

xS ≤ f · 1

critical set

only chooses critical sets

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Relaxed CS for SetCover

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

(Unrelaxed) primal CS: xS 6= 0⇒ ∑u∈S yu = cS

Relaxed dual CS: yu 6= 0⇒ 1 ≤ ∑
S3u

xS ≤ f · 1

critical set

only chooses critical sets

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Relaxed CS for SetCover

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

(Unrelaxed) primal CS: xS 6= 0⇒ ∑u∈S yu = cS

Relaxed dual CS: yu 6= 0⇒ 1 ≤ ∑
S3u

xS ≤ f · 1

critical set

trivial for binary x

only chooses critical sets

minimize ∑
S∈S

cSxS

subject to ∑
S3u

xS ≥ 1 u ∈ U

xS ≥ 0 S ∈ S

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0
0

0

0

0

0
3

0

0

0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0
0

0

0

0

0
3

3 0

0

0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0
0

0

0

0

0
3

3 0

0

0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0
0

0

0

0

0
3

3 0

0

0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0
3

3 0

0

0 1

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0
3

3 0

0

0 1

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0

0
3

3 0

0

1

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0 0

0

0
3

3 0

0

1

4

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0
0 0 0

3
3 0

0

1

40 4 0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0
0 0

3
3 0

0

1

40 4 0

1

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0
0 0

3
3 0

0

1

40 4 0

6 1

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0
03

3 0

0

1

40 4 0

6 1 3
2

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

3
3 0

0

1

40 4 0

6 1 3
24

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S , c)
x ← 0, y← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (∑u′∈S yu′ = cS).
Select all critical sets and update x.
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

3
3 0

0

1

40 4 0

6 1 3
24

PrimalDualSetCover is a factor- f approximation
algorithm for SetCover. This bound is tight.

Theorem.

Tight Example

Tight Example

Tight Example

Tight Example

1
1

1

1
1

1

1

1

Tight Example

1
1

1

1
1

1

1

1

Tight Example

1 + ε

1
1

1

1
1

1

1

1

Integrality Gap

0

OPTΠOPTdual = OPTprimal

γ

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.

Integrality Gap

Dual methods (without outside help) are limited by the
integrality gap of the LP-relaxation

0

OPTΠOPTdual = OPTprimal

γ

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.

Integrality Gap

Dual methods (without outside help) are limited by the
integrality gap of the LP-relaxation

α ≥ γ = sup
I

OPTΠ(I)
OPTprimal(I)

0

OPTΠOPTdual = OPTprimal

γ

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.

Integrality Gap

Dual methods (without outside help) are limited by the
integrality gap of the LP-relaxation

α ≥ γ = sup
I

OPTΠ(I)
OPTprimal(I)

0

OPTΠOPTdual = OPTprimal

γ
α

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.

Lecture 5:
LP-based Approximation Algorithms

for SetCover

Part IV:
Dual Fitting

Approximation Algorithms

Alexander Wolff Winter 2022/23

Technique III) Dual Fitting

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

sΠ

Consider a minimization problem Π in ILP form.

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution sΠ and infeasible dual solution sd that
completely “pays” for sΠ ,

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

sΠ

Consider a minimization problem Π in ILP form.

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution sΠ and infeasible dual solution sd that
completely “pays” for sΠ , i.e., obj(sΠ) ≤ obj(sd).

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

sΠ

Consider a minimization problem Π in ILP form.

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution sΠ and infeasible dual solution sd that
completely “pays” for sΠ ,

Scale the dual variables feasible dual solution s̄d.

i.e., obj(sΠ) ≤ obj(sd).

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

sΠs̄d

α

Consider a minimization problem Π in ILP form.

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution sΠ and infeasible dual solution sd that
completely “pays” for sΠ ,

Scale the dual variables feasible dual solution s̄d.

i.e., obj(sΠ) ≤ obj(sd).

⇒ obj(s̄d) ≤ OPTdual ≤ OPTΠ

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

sΠs̄d

α

Consider a minimization problem Π in ILP form.

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution sΠ and infeasible dual solution sd that
completely “pays” for sΠ ,

Scale the dual variables feasible dual solution s̄d.

i.e., obj(sΠ) ≤ obj(sd).

⇒ obj(s̄d) ≤ OPTdual ≤ OPTΠ

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

sΠs̄d

α

Consider a minimization problem Π in ILP form.

obj(sd)/α =

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution sΠ and infeasible dual solution sd that
completely “pays” for sΠ ,

Scale the dual variables feasible dual solution s̄d.

i.e., obj(sΠ) ≤ obj(sd).

obj(sΠ)/α ≤⇒ obj(s̄d) ≤ OPTdual ≤ OPTΠ

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

sΠs̄d

α

Consider a minimization problem Π in ILP form.

obj(sd)/α =

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution sΠ and infeasible dual solution sd that
completely “pays” for sΠ ,

Scale the dual variables feasible dual solution s̄d.

⇒ Scaling factor α is approximation factor.

i.e., obj(sΠ) ≤ obj(sd).

obj(sΠ)/α ≤⇒ obj(s̄d) ≤ OPTdual ≤ OPTΠ

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

sΠs̄d

α

Consider a minimization problem Π in ILP form.

obj(sd)/α =

Dual Fitting for SetCover

GreedySetCover(U,S , c)
C ← ∅
S ′ ← ∅
while C 6= U do

S← Set from S that minimizes c(S)
|S\C|

foreach u ∈ S \ C do
price(u)← c(S)

|S\C|

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

Combinatorial (greedy) algorithm (see Lecture #2):

Dual Fitting for SetCover

GreedySetCover(U,S , c)
C ← ∅
S ′ ← ∅
while C 6= U do

S← Set from S that minimizes c(S)
|S\C|

foreach u ∈ S \ C do
price(u)← c(S)

|S\C|

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

Reminder: ∑u∈U price(u) . . .

Combinatorial (greedy) algorithm (see Lecture #2):

Dual Fitting for SetCover

GreedySetCover(U,S , c)
C ← ∅
S ′ ← ∅
while C 6= U do

S← Set from S that minimizes c(S)
|S\C|

foreach u ∈ S \ C do
price(u)← c(S)

|S\C|

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

Reminder: ∑u∈U price(u) completely pays for S ′.

Combinatorial (greedy) algorithm (see Lecture #2):

New: LP-based Analysis
Observation. For each u ∈ U, price(u) is a dual variable

New: LP-based Analysis
Observation. For each u ∈ U, price(u) is a dual variable

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

New: LP-based Analysis
Observation. For each u ∈ U, price(u) is a dual variable

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

New: LP-based Analysis
Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

New: LP-based Analysis
Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

New: LP-based Analysis
Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

Dual-fitting trick:
Scale dual variables such that no set is overpacked.

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

New: LP-based Analysis
Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take ȳu =

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

New: LP-based Analysis
Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take ȳu = price(u)/

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

New: LP-based Analysis
Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take ȳu = price(u)/Hk.

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

(k = cardinality of largest set in S .)

New: LP-based Analysis
Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take ȳu = price(u)/Hk.

The greedy algorithm uses these dual variables as lower
bound for OPT.

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

(k = cardinality of largest set in S .)

New: LP-based Analysis
Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take ȳu = price(u)/Hk.

The greedy algorithm uses these dual variables as lower
bound for OPT.

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

(k = cardinality of largest set in S .)

Proof.

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤ c(S)/(`− i + 1).

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤ c(S)/(`− i + 1).

⇒ ȳui ≤

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤ c(S)/(`− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
`−i+1

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤ c(S)/(`− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
`−i+1 ⇒

`

∑
i=1

ȳui ≤

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤ c(S)/(`− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
`−i+1 ⇒

`

∑
i=1

ȳui ≤
c(S)
Hk
·
(

1
` + · · ·+

1
1

)
maximize ∑

u∈U
yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤ c(S)/(`− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
`−i+1 ⇒

`

∑
i=1

ȳui ≤
c(S)
Hk
·
(

1
` + · · ·+

1
1

)
maximize ∑

u∈U
yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤ c(S)/(`− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
`−i+1 ⇒

`

∑
i=1

ȳui ≤
c(S)
Hk
·
(

1
` + · · ·+

1
1

)︷ ︸︸ ︷
maximize ∑

u∈U
yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤ c(S)/(`− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
`−i+1 ⇒

`

∑
i=1

ȳui ≤
c(S)
Hk
·
(

1
` + · · ·+

1
1

)︷ ︸︸ ︷= H` ≤ Hk

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Proof. To prove: No set is overpacked by ȳ.
Let S ∈ S and ` = |S| ≤ k.
Let u1, . . . , u` be the elements of S –
in the order in which they are covered by greedy.
Consider the iteration in which ui is covered.
Before that, ≥ `− i + 1 elem. of S are uncovered.
So price(ui) ≤ c(S)/(`− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
`−i+1 ⇒

`

∑
i=1

ȳui ≤
c(S)
Hk
·
(

1
` + · · ·+

1
1

)︷ ︸︸ ︷= H` ≤ Hk

≤ c(S) �

maximize ∑
u∈U

yu

subject to ∑
u∈S

yu ≤ cS S ∈ S

yu ≥ 0 u ∈ U

Lemma.
The vector ȳ = (ȳu)u∈U
is a feasible solution for
the dual LP.

Result for Dual Fitting
Theorem. GreedySetCover is a factor-Hk approximation

algorithm for SetCover, where k = maxS∈S |S|.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S|.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤ ∑
u∈U

price(u) =

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S|.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤ ∑
u∈U

price(u) =Hk · ∑
u∈U

ȳu ≤

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S|.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤ ∑
u∈U

price(u) =Hk · ∑
u∈U

ȳu ≤

≤ Hk ·OPTrelax

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S|.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤ ∑
u∈U

price(u) =Hk · ∑
u∈U

ȳu ≤

≤ Hk ·OPTrelax

≤ Hk ·OPT �

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S|.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤ ∑
u∈U

price(u) =Hk · ∑
u∈U

ȳu ≤

≤ Hk ·OPTrelax

≤ Hk ·OPT �

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S|.

Strengthened bound with respect to OPTrelax ≤ OPT.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤ ∑
u∈U

price(u) =Hk · ∑
u∈U

ȳu ≤

≤ Hk ·OPTrelax

≤ Hk ·OPT �

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S|.

Strengthened bound with respect to OPTrelax ≤ OPT.

Dual solution allows a per-instance estimation

. . . which may be stronger than worst-case bound Hk.

	SetCover as an ILP
	SetCover via LP-Rounding
	Technique I) LP-Rounding
	SetCover - LP-Relaxation
	LP-Rounding: Approach I
	LP-Rounding: Approach II

	SetCover via Primal-Dual Schema
	Technique II) Primal--Dual Approach
	SetCover - Dual LP
	Complementary Slackness
	Relaxing Complementary Slackness

	Primal--Dual Schema
	Primal--Dual Schema
	Relaxed CS for SetCover

	Primal--Dual Schema for \textsc{SetCover}
	Primal-Dual-Schema for SetCover
	Tight Example
	Integrality Gap

	SetCover via Dual Fitting
	Technique III) Dual Fitting
	Dual Fitting for SetCover
	New: LP-based Analysis
	Result for Dual Fitting

