Approximation Algorithms Lecture 2: SETCOVER and SHORTESTSUPERSTRING

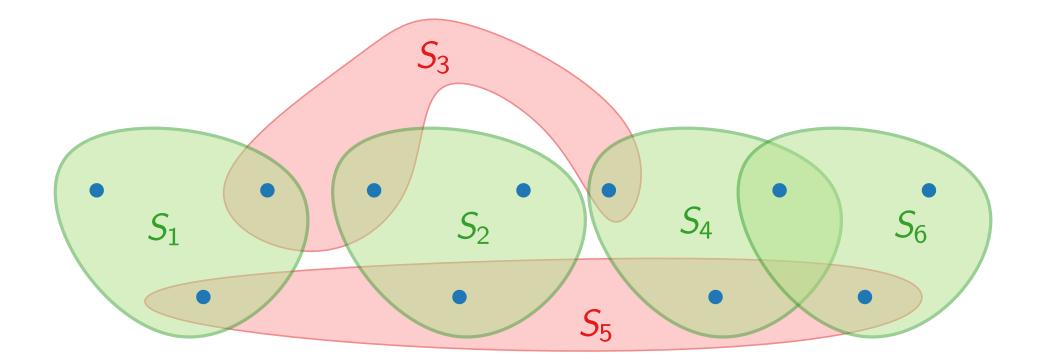
Part I: SetCover

Alexander Wolff

SETCOVER (card.)

Let U be some ground set (universe), and let S be a family of subsets of U with $\bigcup S = U$.

Find a cover $S' \subseteq S$ of U (i.e., with $\bigcup S' = U$) of minimum cardinality.



SETCOVER (general)

Let U be some ground set (universe), and let S be a family of subsets of U with $\bigcup S = U$. Each $S \in S$ has cost c(S) > 0. Find a cover $S' \subseteq S$ of U (i.e., with $\bigcup S' = U$) of minimum cardinality. total cost $c(S') := \sum_{S \in S'} c(S)$.



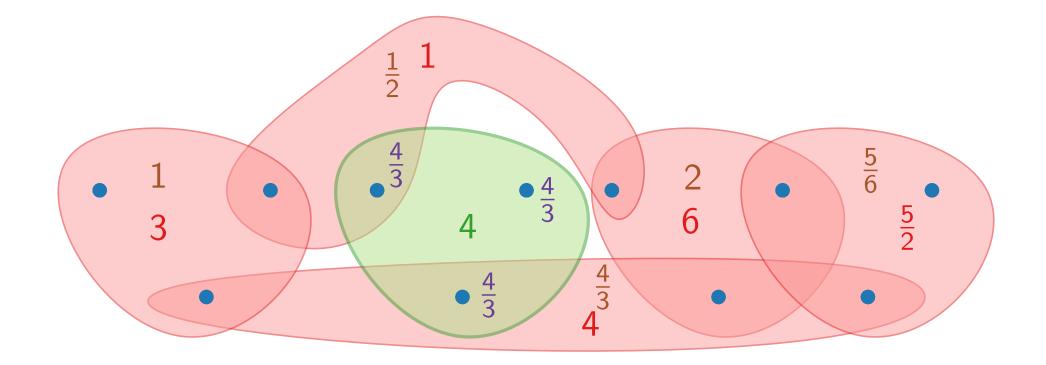
Approximation Algorithms Lecture 2: SETCOVER and SHORTESTSUPERSTRING

Part II: Greedy for SETCOVER

Alexander Wolff

Iterative "Buying" of Elements

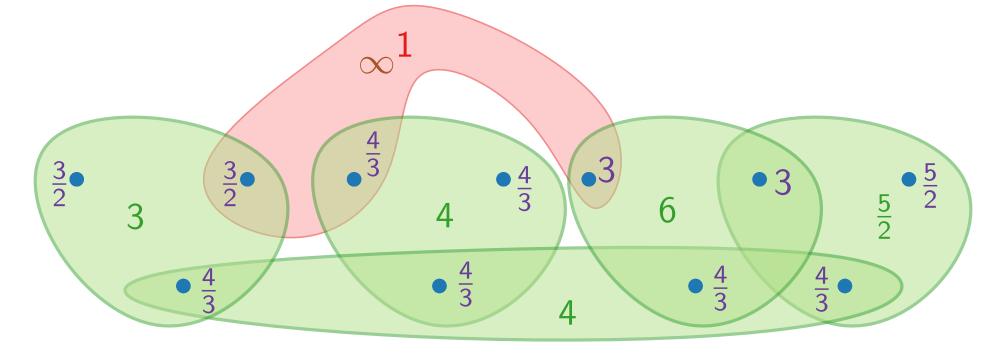
What is the real cost of picking a set? Set with k elements and cost c has per-element cost c/k. What happens if we "buy" a set? Fix price of elements bought and recompute per-element cost.



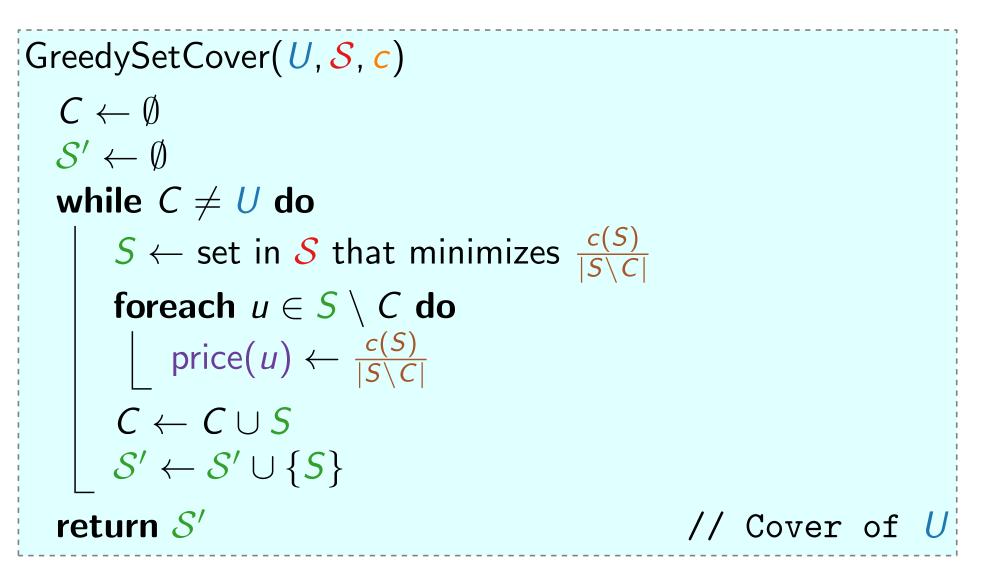
Iterative "Buying" of Elements

What is the real cost of picking a set? Set with k elements and cost c has per-element cost c/k. What happens if we "buy" a set? Fix price of elements bought and recompute per-element cost. total cost: $\sum_{u \in U} \operatorname{price}(u)$

Greedy: Always choose the set with minimum per-element cost.



Greedy for $\operatorname{Set}\operatorname{Cover}$



Approximation Algorithms Lecture 2: SETCOVER and SHORTESTSUPERSTRING

Part III: Analysis

Alexander Wolff

Analysis

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SETCOVER, where k is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k.$

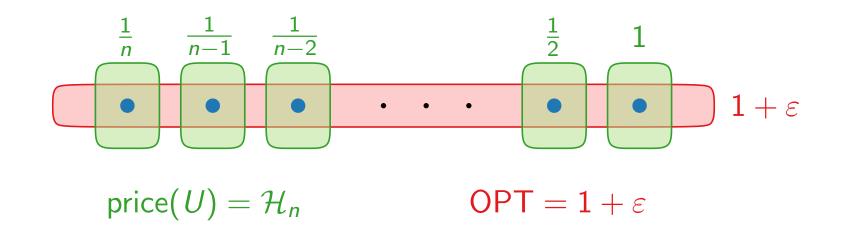
Lemma.	Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S
	in the order in which they are covered ("bought")
	by GreedySetCover. Then
	$\operatorname{price}(u_j) \leq \frac{c(S)}{(\ell - j + 1)}.$

Lemma.
$$\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$$

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. $\operatorname{OPT} = \sum_{i=1}^m c(S_i)$
 $\operatorname{price}(U) = \sum_{u \in U} \operatorname{price}(u) \leq \sum_{i=1}^m \operatorname{price}(S_i)$
 $\leq \sum_{i=1}^m c(S_i) \cdot \mathcal{H}_k = \operatorname{OPT} \cdot \mathcal{H}_k$

Analysis tight?

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SETCOVER, where k is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k$.



Can we do better?

No – SETCOVER cannot be approximated within factor $(1 - o(1)) \cdot \ln n$ (unless P = NP). [Feige, JACM 1998]

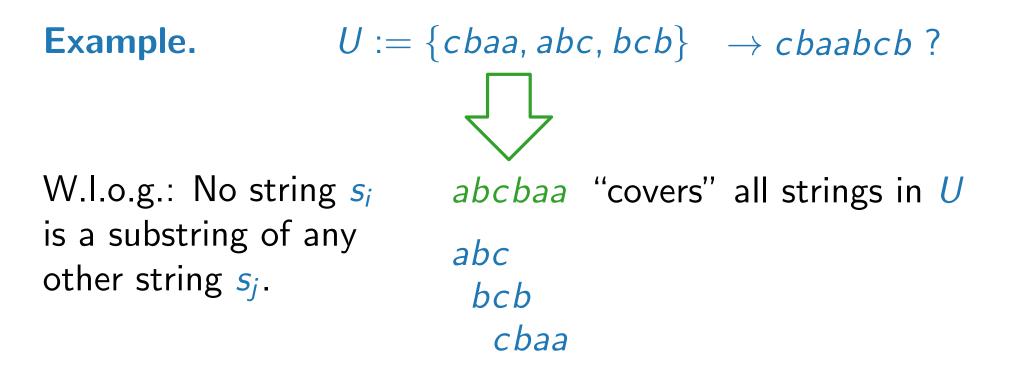
Approximation Algorithms Lecture 2: SETCOVER and SHORTESTSUPERSTRING

Part IV: ShortestSuperString

Alexander Wolff

SHORTESTSUPERSTRING (SSS)

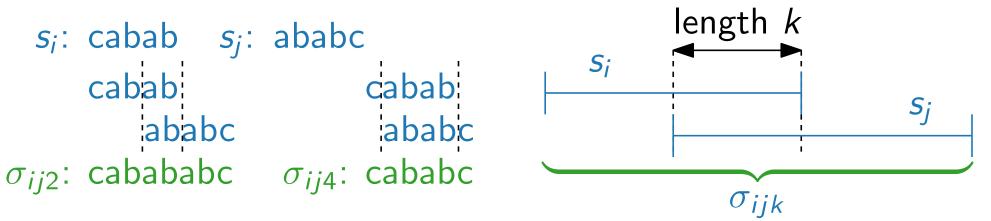
Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** *s* (*superstring*) such that, for each $i \in \{1, \ldots, n\}$, the string s_i is a *substring* of *s*.



SSS as a $\operatorname{SetCover}$ Problem

SETCOVER Instance: ground set U, set family S, costs c. Ground set $U := \{s_1, \ldots, s_n\}$.

Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)



 $S(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$ contains the elements of the ground set covered by σ_{ijk} .

 $c(S(\sigma_{ijk})) = |\sigma_{ijk}| \quad (number of characters in \sigma_{ijk})$ $S = \{S(\sigma_{ijk}) \mid k > 0\} \quad (possibly \ i = j)$

12/17

Approximation Algorithms

Lecture 2: SetCover and ShortestSuperString

Part V: Solving ShortestSuperString via SetCover

Alexander Wolff

Relating ${\rm SSS}$ and ${\rm SetCover}$

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U, and let OPT_{SC} be the minimum cost of the corresponding SETCOVER instance. Then $OPT_{SSS} < OPT_{SC}$.

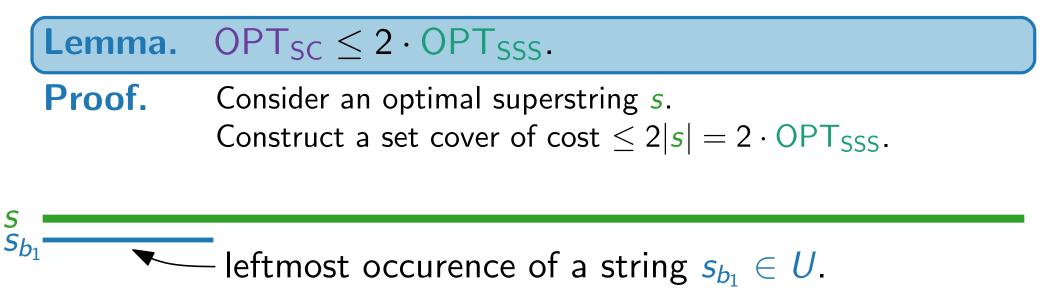
Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

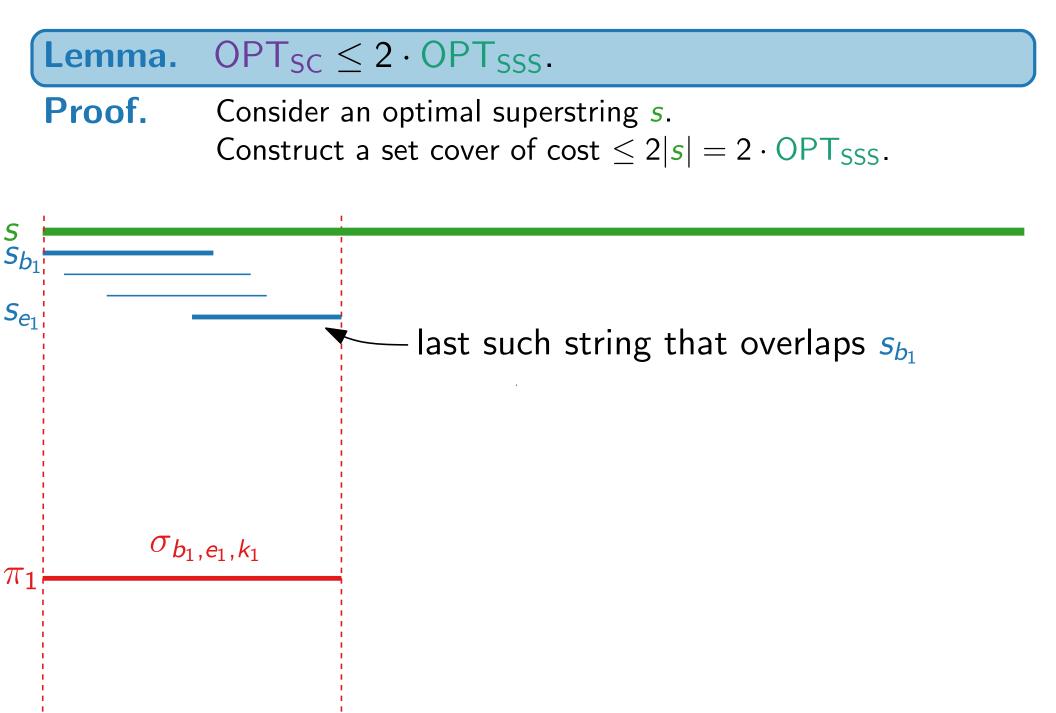
Then $s := \pi_1 \circ \ldots \circ \pi_k$ is a superstring of U of length $\sum_{i=1}^k |\pi_i| = \sum_{i=1}^k c(S(\pi_i)) = \mathsf{OPT}_{\mathsf{SC}}.$

Thus, $OPT_{SSS} \leq |s| = OPT_{SC}$.

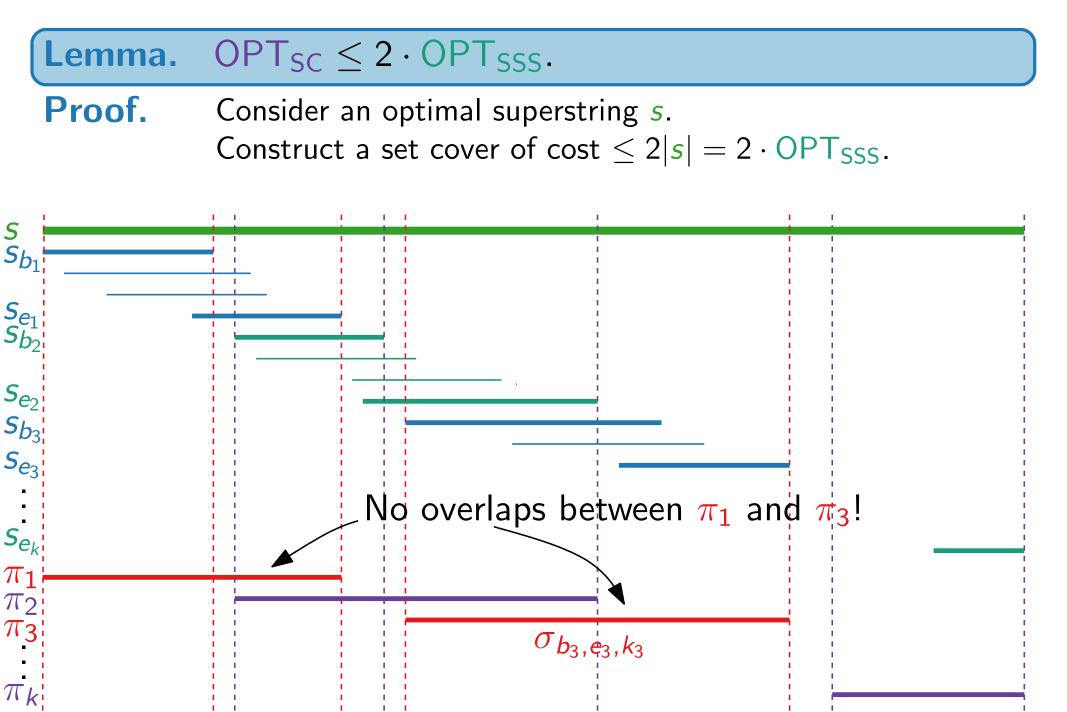
Relating SSS and $\operatorname{SETCOVER}$



Relating SSS and $\operatorname{SETCOVER}$



Relating ${\rm SSS}$ and ${\rm SetCover}$



Relating ${\rm SSS}$ and ${\rm SetCover}$

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SETCOVER instance with cost $\sum_i |\pi_i|$.

Substrings π_j , π_{j+2} do not overlap.

Each character in *s* lies in at most **two** (subsequent) substrings, namely π_j and π_{j+1} .

 $\sum_{i} |\pi_{i}| \leq 2|s| = 2 \cdot \mathsf{OPT}_{\mathsf{SSS}}$

Algorithm for SSS

- 1. Construct SETCOVER instance $\langle U, S, c \rangle$.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with the algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \ldots \circ \pi_k$ as the superstring.

Theorem. This algorithm is a factor- $2\mathcal{H}_n$ approximation algorithm for SHORTESTSUPERSTRING.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SETCOVER, where k is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k$.

Can we do better?

- The best known approximation factor for SHORTESTSUPERSTRING is $\frac{71}{30} \approx 2.367$.
- SHORTESTSUPERSTRING cannot be approximated within factor $\frac{333}{332} \approx 1.003$ (unless P = NP).