Lecture 1: Introduction and Vertex Cover

Part I: Organizational

Lectures: on site (in German :-)

Lectures: on site (in German :-)

Fri, 10:15-11:45 (ÜR I)

Lectures: on site (in German :-)

Fri, 10:15–11:45 (ÜR I)

possibly some lectures via inverted classroom

Lectures: on site (in German :-)

Fri, 10:15-11:45 (ÜR I)

possibly some lectures via inverted classroom

Tutorials: roughly one exercise sheet per lecture

Lectures: on site (in German :-)

Fri, 10:15-11:45 (ÜR I)

possibly some lectures via inverted classroom

Tutorials: roughly one exercise sheet per lecture

discussing old solutions and solving new tasks

Lectures: on site (in German :-)

Fri, 10:15-11:45 (ÜR I)

possibly some lectures via inverted classroom

Tutorials: roughly one exercise sheet per lecture

discussing old solutions and solving new tasks

Tue, 10:15–11:45 (SE I)

Lectures: on site (in German :-)

Fri, 10:15-11:45 (ÜR I)

possibly some lectures via inverted classroom

Tutorials: roughly one exercise sheet per lecture

discussing old solutions and solving new tasks

Tue, 10:15–11:45 (SE I)

Bonus (+0.3 on final grade) for $\geq 50\%$ points

Lectures: on site (in German :-)

Fri, 10:15-11:45 (ÜR I)

possibly some lectures via inverted classroom

Tutorials: roughly one exercise sheet per lecture

discussing old solutions and solving new tasks

Tue, 10:15–11:45 (SE I)

Bonus (+0.3 on final grade) for $\geq 50\%$ points

Questions/Tasks during the lecture

Lectures: on site (in German :-)

Fri, 10:15-11:45 (ÜR I)

possibly some lectures via inverted classroom

Tutorials: roughly one exercise sheet per lecture

discussing old solutions and solving new tasks

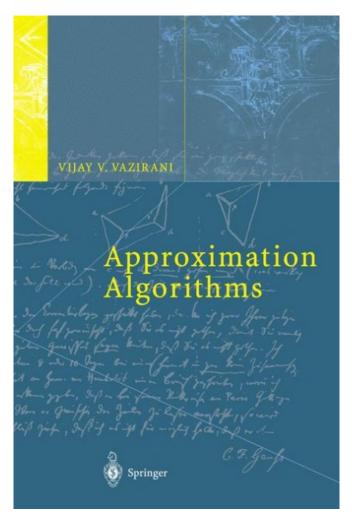
Tue, 10:15–11:45 (SE I)

Bonus (+0.3 on final grade) for $\geq 50\%$ points

Questions/Tasks during the lecture

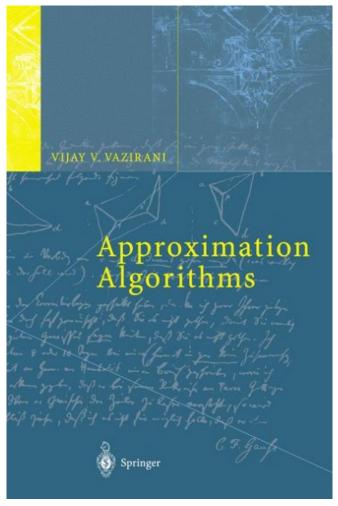
Most slides are due to Joachim Spoerhase. Thanks!

Textbooks

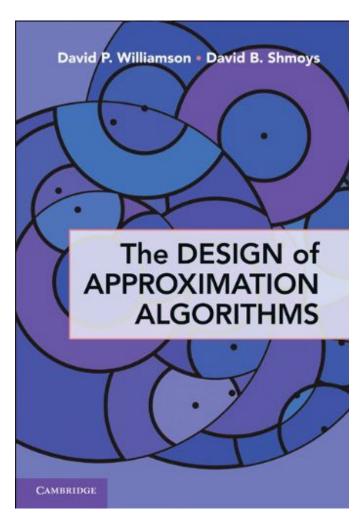


Vijay V. Vazirani: Approximation Algorithms Springer-Verlag, 2003.

Textbooks



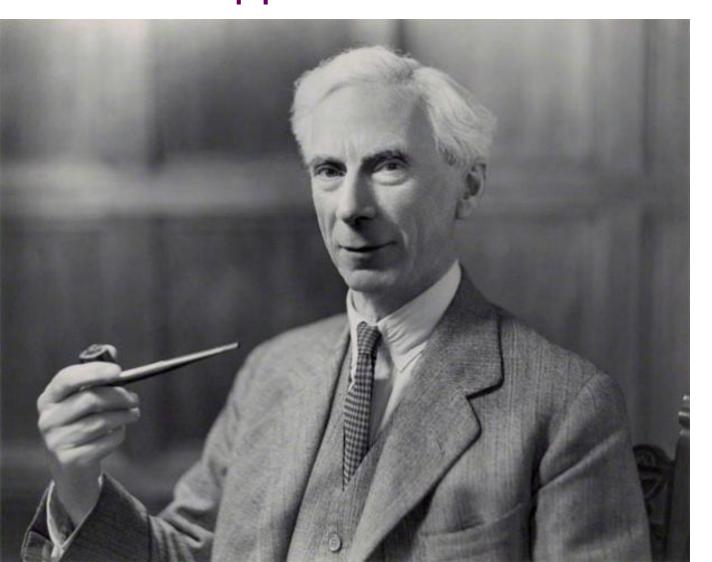
Vijay V. Vazirani: Approximation Algorithms Springer-Verlag, 2003.



D. P. Williamson & D. B. Shmoys: The Design of Approximation Algorithms Cambridge-Verlag, 2011.

http://www.designofapproxalgs.com/

"All exact science is dominated by the idea of approximation."



Bertrand Russell(1872 – 1970)

Many optimization problems are NP-hard!
 (For example, the traveling salesperson problem.)

- Many optimization problems are NP-hard!
 (For example, the traveling salesperson problem.)
- an optimal solution cannot be efficiently computed unless P=NP.

- Many optimization problems are NP-hard!
 (For example, the traveling salesperson problem.)
- an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!

- Many optimization problems are NP-hard!
 (For example, the traveling salesperson problem.)
- an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!
- Techniques for the design and analysis of approximation algorithms arise from studying specific optimization problems.

Overview

Combinatorial algorithms

- Introduction (Vertex Cover)
- Set Cover via Greedy
- Shortest Superstring via reduction to SC
- Steiner Tree via MST
- Multiway Cut via Greedy
- *k*-Center via Parametrized Pruning
- Min-Degree Spanning Tree and local search
- Knapsack via DP and Scaling
- Euclidean TSP via Quadtrees

Overview

Combinatorial algorithms

- Introduction (Vertex Cover)
- Set Cover via Greedy
- Shortest Superstring via reduction to SC
- Steiner Tree via MST
- Multiway Cut via Greedy
- *k*-Center via Parametrized Pruning
- Min-Degree Spanning Tree and local search
- Knapsack via DP and Scaling
- Euclidean TSP via Quadtrees

LP-based algorithms

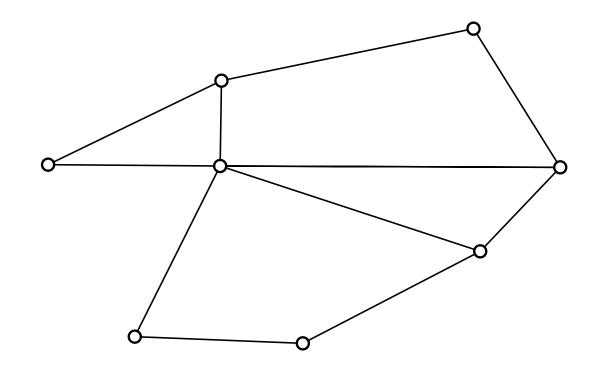
- introduction to LP-Duality
- Set Cover via LP Rounding
- Set Cover via Primal–Dual Schema
- Maximum Satisfiability
- Scheduling und Extreme Point Solutions
- Steiner Forest via Primal–Dual

Lecture 1: Introduction and Vertex Cover

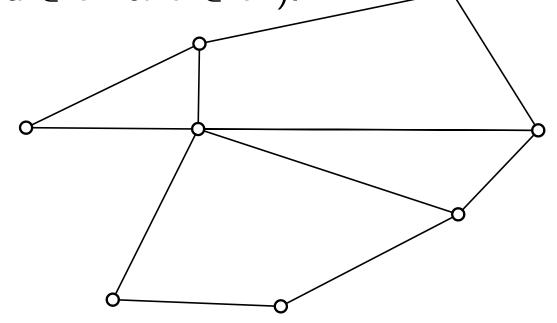
Part II: (Cardinality) Vertex Cover

Input: Graph G = (V, E)

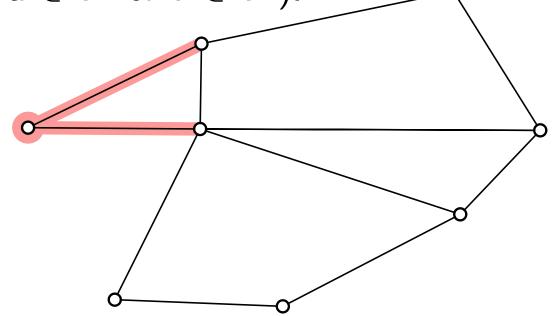
Output:



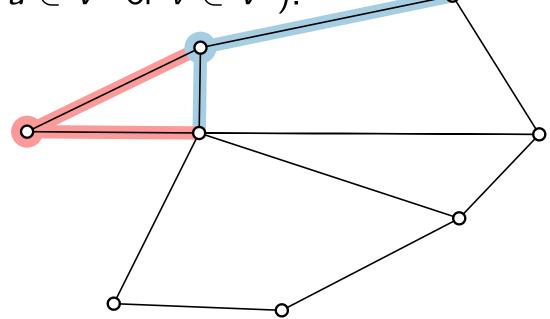
Input: Graph G = (V, E)



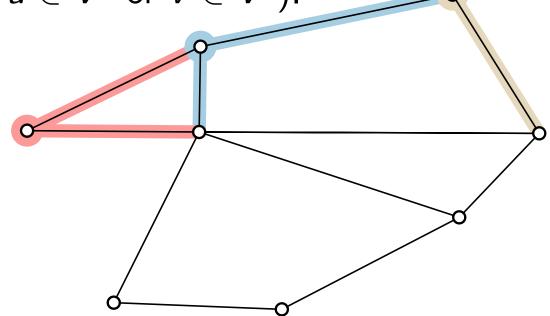
Input: Graph G = (V, E)



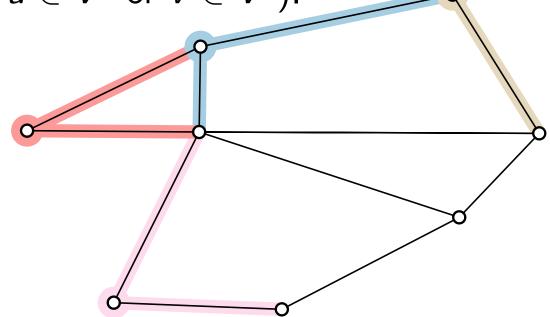
Input: Graph G = (V, E)



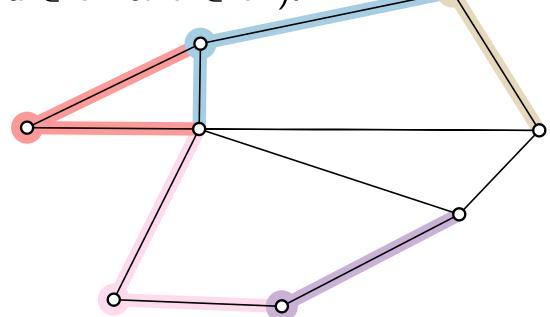
Input: Graph G = (V, E)



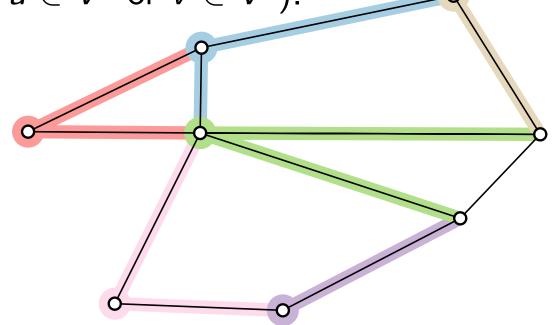
Input: Graph G = (V, E)



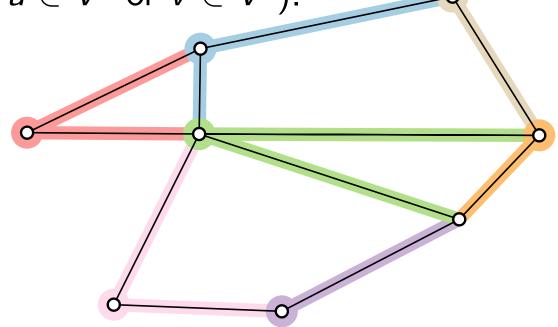
Input: Graph G = (V, E)



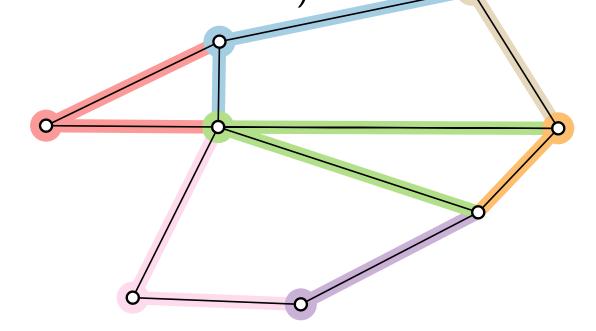
Input: Graph G = (V, E)



Input: Graph G = (V, E)



Input: Graph G = (V, E)



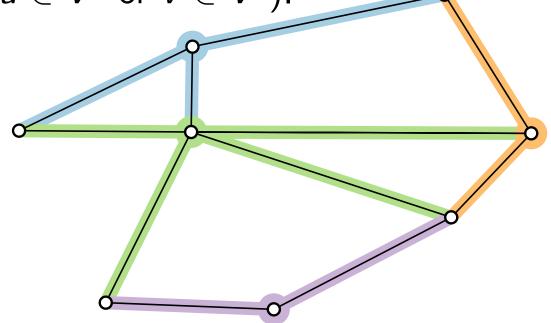
Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

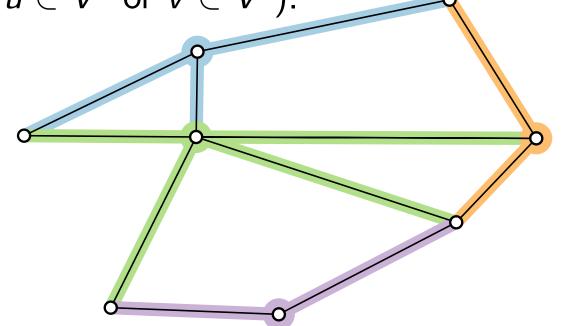
Output: a minimum **vertex cover**, that is, a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, it holds that $u \in V'$ or $v \in V'$).



Optimum (OPT = 4)

Input: Graph G = (V, E)

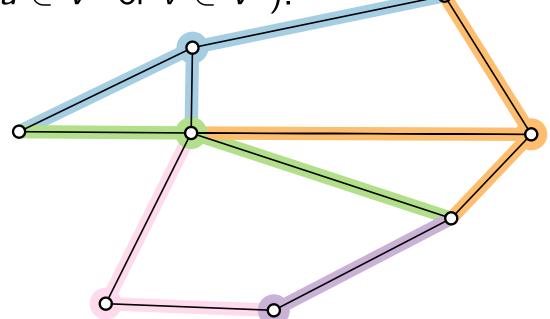
Output: a minimum **vertex cover**, that is, a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, it holds that $u \in V'$ or $v \in V'$).



Optimum (OPT = 4) – but in general NP-hard to find :-(

Input: Graph G = (V, E)

Output: a minimum **vertex cover**, that is, a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, it holds that $u \in V'$ or $v \in V'$).



"good" (5/4-) approximate solution

Lecture 1: Introduction and Vertex Cover

Part III: NP-Optimization Problem

An NP-optimization problem Π is given by:

■ A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.
- A polynomial time computable objective function obj_{Π} which assigns a positive objective value $\operatorname{obj}_{\Pi}(I,s) \geq 0$ to any given pair (s,I) with $s \in S_{\Pi}(I)$.

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.
- A polynomial time computable objective function obj_{Π} which assigns a positive objective value $\operatorname{obj}_{\Pi}(I,s) \geq 0$ to any given pair (s,I) with $s \in S_{\Pi}(I)$.
- \blacksquare Π is either a minimization or maximization problem.

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

$$D_{\Pi}=$$
For $I\in D_{\Pi}$: $|I|=$
 $S_{\Pi}(I)=$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = S_{\Pi}(I) =$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = G = (V, E)$ $S_{\Pi}(I) = G = (V, E)$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$

$$G = (V, E) \qquad S_{\Pi}(I) =$$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$

$$G = (V, E) \qquad S_{\Pi}(I) = \text{Set of all vertex covers of } G$$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$

$$G = (V, E) \qquad S_{\Pi}(I) = \text{Set of all vertex covers of } G$$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subset V \Rightarrow |s| < |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$\operatorname{obj}_{\Pi}(I,s) = |s|$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$\operatorname{obj}_{\Pi}(I,s) = |s|$$

Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $\operatorname{obj}_{\Pi}(I, s^*)$ is minimal among the objective values attained by the feasible solutions of I.

maximization problem Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $\max_{\substack{\text{maximal} \\ \text{obj}_{\Pi}(I, s^*)}}$ is minimal among the objective values attained by the feasible solutions of I.

maximization problem Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $\underset{\Pi}{\text{obj}}_{\Pi}(I, s^*)$ is minimal among the objective values attained by the feasible solutions of I.

The optimal value $obj_{\Pi}(I, s^*)$ of the objective function is denoted by $OPT_{\Pi}(I)$ or simply by OPT in context.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)}$$

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)} \leq \alpha.$$

Let Π be a minimization problem and $\alpha: \mathbb{N} \to \mathbb{Q}$

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)} \leq \mathscr{A}. \quad \alpha(|I|)$$

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)} \stackrel{\geq}{\leq} \mathscr{A}. \quad \alpha(|I|)$$

Lecture 1: Introduction and Vertex Cover

Part IV:

Approximation Algorithm for VERTEXCOVER

Approximation Alg. for VERTEXCOVER

Ideas?

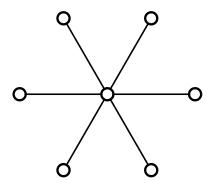
Edge-Greedy

Approximation Alg. for VERTEXCOVER

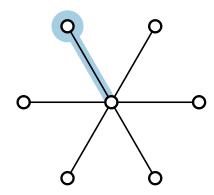
- Edge-Greedy
- Vertex-Greedy

Approximation Alg. for VERTEXCOVER

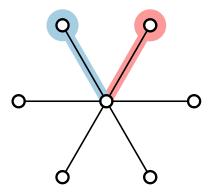
- Edge-Greedy
- Vertex-Greedy



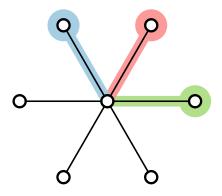
- Edge-Greedy
- Vertex-Greedy



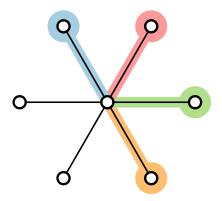
- Edge-Greedy
- Vertex-Greedy



- Edge-Greedy
- Vertex-Greedy

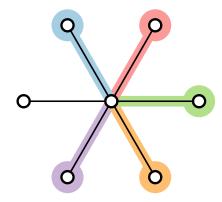


- Edge-Greedy
- Vertex-Greedy



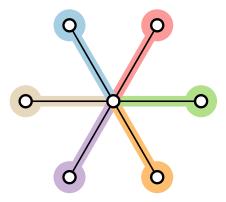
Ideas?

- Edge-Greedy
- Vertex-Greedy



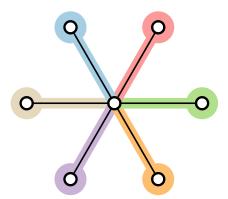
Ideas?

- Edge-Greedy
- Vertex-Greedy



Ideas?

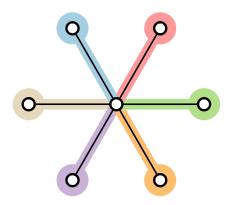
- Edge-Greedy
- Vertex-Greedy



Quality?

Ideas?

- Edge-Greedy
- Vertex-Greedy

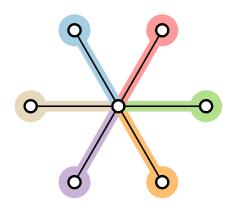


Quality?

Problem: How can we estimate $obj_{\Pi}(I, s)/OPT$, when it is hard to compute OPT?

Ideas?

- Edge-Greedy
- Vertex-Greedy



Quality?

Problem: How can we estimate $obj_{\Pi}(I, s)/OPT$,

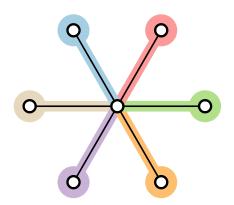
when it is hard to compute OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT and

compare it to our approximate solution.

Ideas?

- Edge-Greedy
- Vertex-Greedy



Quality?

Problem: How can we estimate $obj_{\Pi}(I, s)/OPT$,

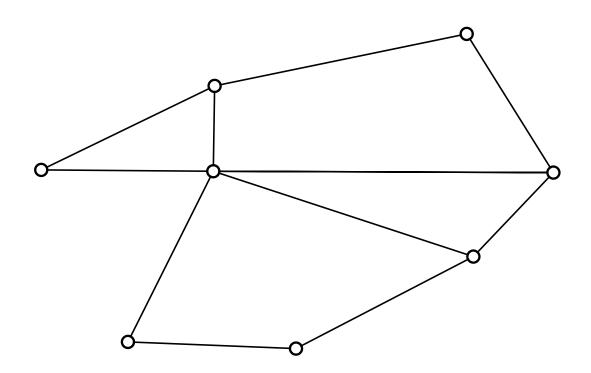
when it is hard to compute OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT and compare it to our approximate solution.

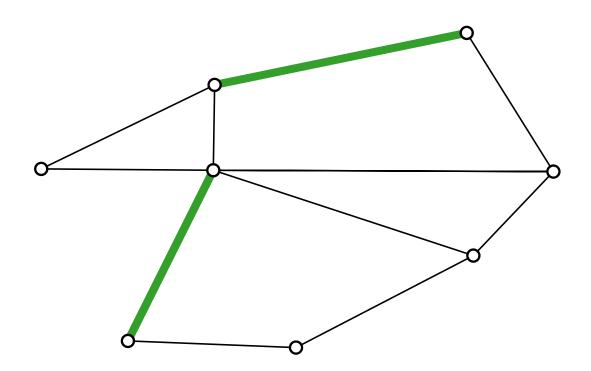
$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}} \leq \frac{\operatorname{obj}_{\Pi}(I,s)}{L}$$



An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

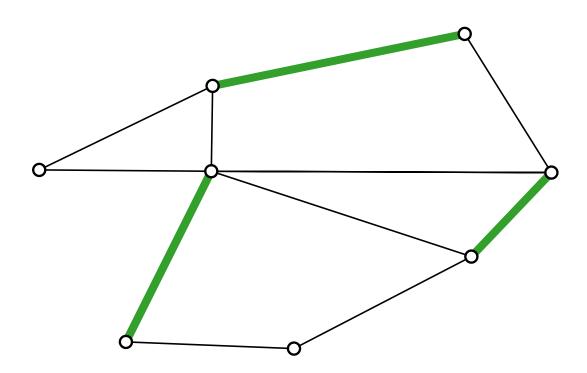


An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).



An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.



An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

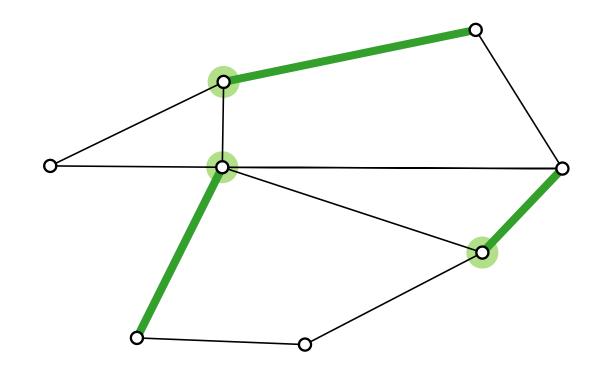
OPT ≥



An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

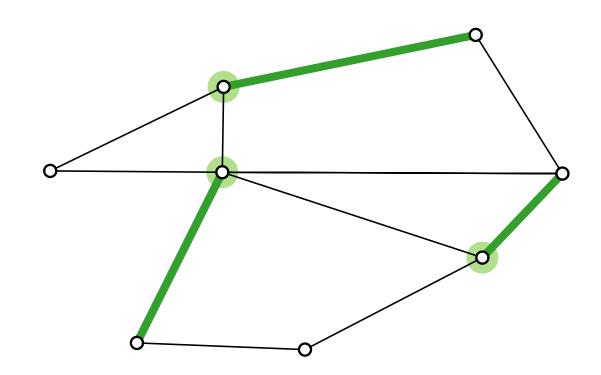
OPT ≥



An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

 $OPT \ge |M|$

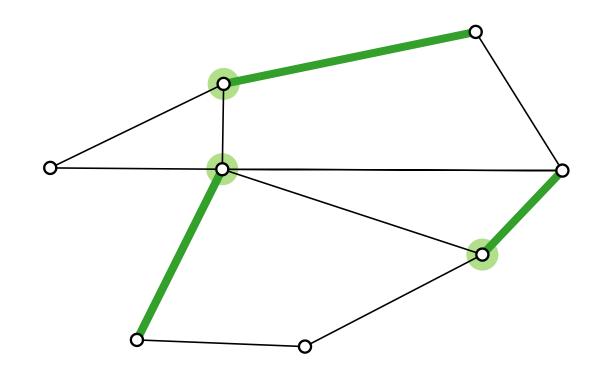


Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$OPT \ge |M|$$

 $OPT = |M|$?

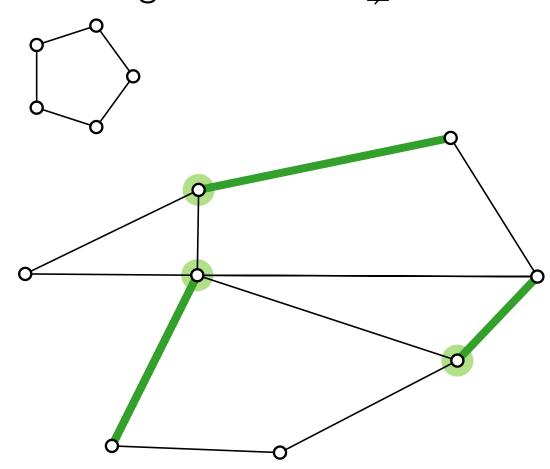


Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$OPT \ge |M|$$

 $OPT = |M|$?

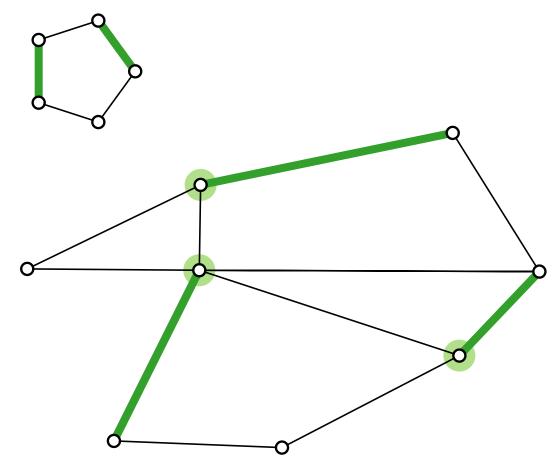


Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$OPT \ge |M|$$

 $OPT = |M|$?

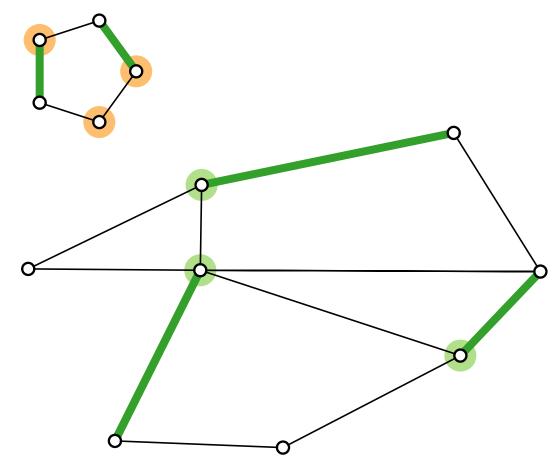


Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$OPT \ge |M|$$

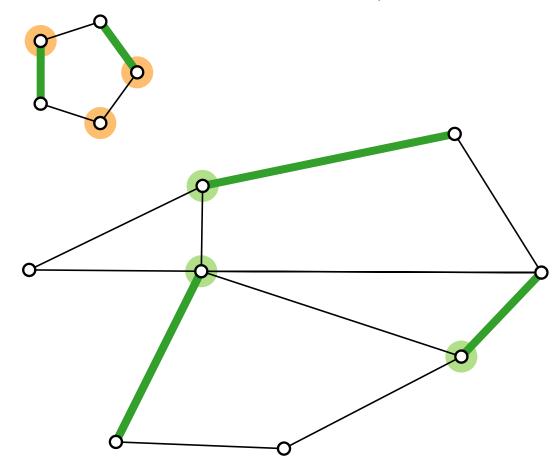
 $OPT = |M|$?



Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

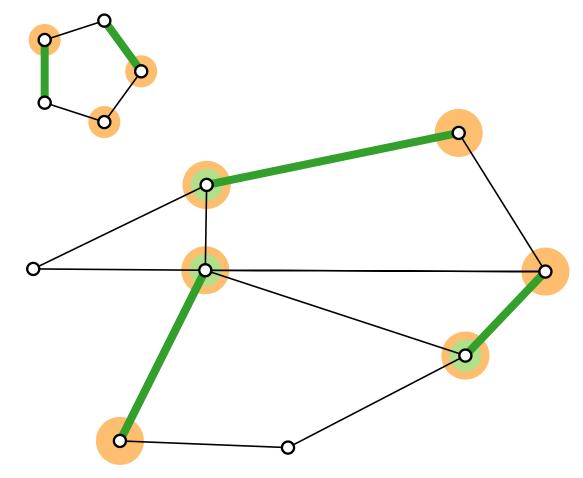
$$\frac{\mathsf{OPT} \geq |M|}{\mathsf{OPT} = |M|?}$$



Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

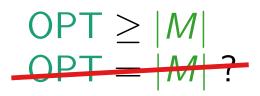
M is **maximal** if there is no matching M' with $M' \supseteq M$.

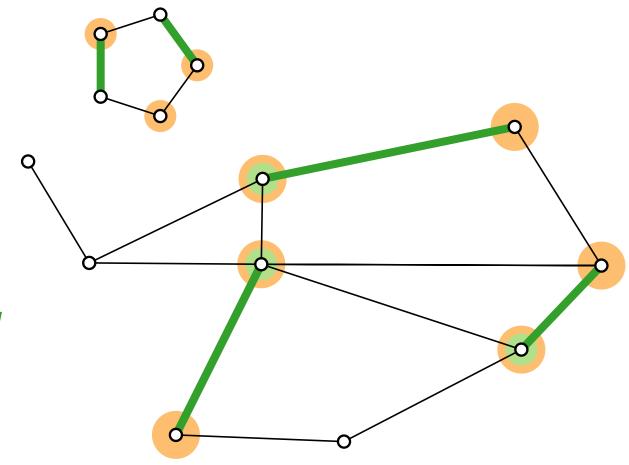
$$\frac{\mathsf{OPT} \geq |M|}{\mathsf{OPT} = |M|}?$$



Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

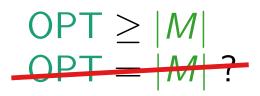
M is **maximal** if there is no matching M' with $M' \supseteq M$.

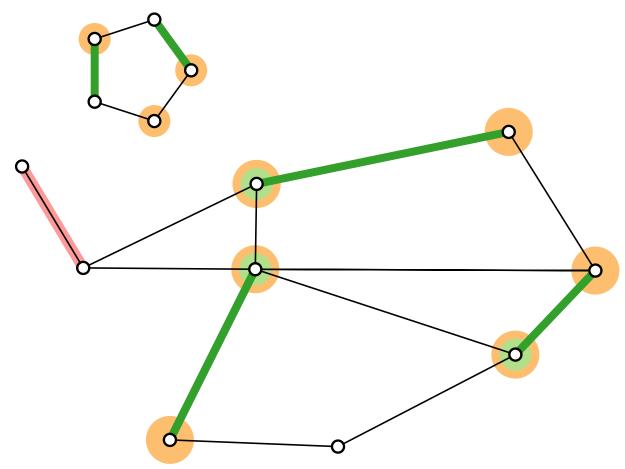




Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

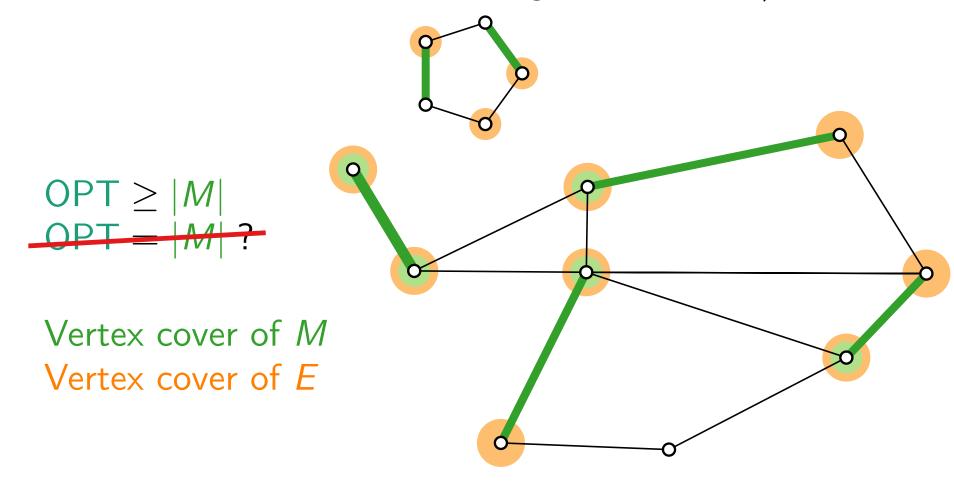
M is **maximal** if there is no matching M' with $M' \supseteq M$.





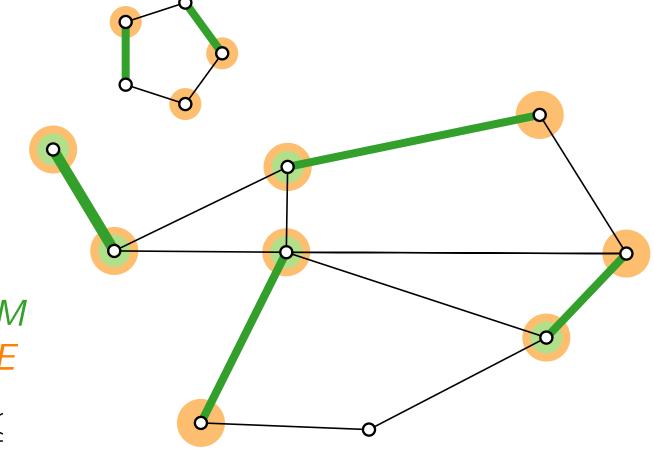
Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.



Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

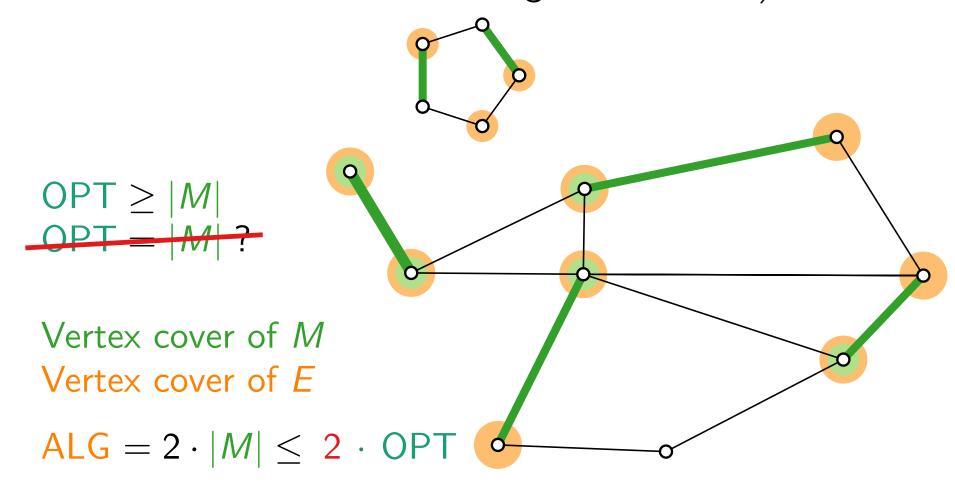


 $\frac{\mathsf{OPT} \geq |M|}{\mathsf{OPT} = |M|}?$

$$ALG = 2 \cdot |M| \le$$

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.



Algorithm VertexCover(G)

$$M \leftarrow \emptyset$$

```
Algorithm VertexCover(G)
M \leftarrow \emptyset
foreach e \in E(G) do
```

Approximation Alg. for VERTEXCOVER

Approximation Alg. for VERTEXCOVER

```
Algorithm VertexCover(G)

M \leftarrow \emptyset

foreach e \in E(G) do

if e is not adjacent to any edge in M then

M \leftarrow M \cup \{e\}
```

```
Algorithm VertexCover(G)

M \leftarrow \emptyset

foreach e \in E(G) do

if e is not adjacent to any edge in M then

M \leftarrow M \cup \{e\}

return \{u, v \mid uv \in M\}
```

```
Algorithm VertexCover(G)

M \leftarrow \emptyset

foreach e \in E(G) do

if e is not adjacent to any edge in M then

M \leftarrow M \cup \{e\}

return \{u, v \mid uv \in M\}
```

Theorem. The above algorithm is a factor-2 approximation algorithm for VERTEXCOVER.

The best known approximation factor for VertexCover is

The best known approximation factor for VERTEXCOVER is $2 - \Theta(1/\sqrt{\log n})$.

The best known approximation factor for VERTEXCOVER is $2 - \Theta(1/\sqrt{\log n})$.

If P \neq NP, VertexCover cannot be approximated within a factor of 1.3606.

The best known approximation factor for VERTEXCOVER is $2 - \Theta(1/\sqrt{\log n})$.

If P \neq NP, VertexCover cannot be approximated within a factor of 1.3606.

VERTEXCOVER cannot be approximated within a factor of $2 - \Theta(1)$ – if the *Unique Games Conjecture* holds.