Visualization of Graphs

Lecture 9:
 Partial Visibility Representation Extension

Part I:
Problem Definition
Jonathan Klawitter

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Polytime for:

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Polytime for:
■ (unit) interval graphs

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Polytime for:

- (unit) interval graphs

\square permutation graphs

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Polytime for:

- (unit) interval graphs

- permutation graphs

- circle graphs

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Polytime for:

- (unit) interval graphs

\square permutation graphs

- circle graphs

NP-hard for:

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Polytime for:

- (unit) interval graphs

- permutation graphs

- circle graphs

NP-hard for:

- planar straight-line drawings

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Polytime for:

- (unit) interval graphs

\square permutation graphs

- circle graphs

NP-hard for:

- planar straight-line drawings
- contacts of

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Polytime for:

- (unit) interval graphs

\square permutation graphs

- circle graphs

NP-hard for:

- planar straight-line drawings
- contacts of ■ disks

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Polytime for:

- (unit) interval graphs

- permutation graphs

- circle graphs

NP-hard for:
■ planar straight-line drawings

- contacts of

■ disks

- triangles

Partial Representation Extension Problem

Let $G=(V, E)$ be a graph.
Let $V^{\prime} \subseteq V$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be representation of H
Find representation Γ_{G} that extends Γ_{H}

Polytime for:

- (unit) interval graphs

- permutation graphs

- circle graphs

NP-hard for:
■ planar straight-line drawings

- contacts of

■ disks

- triangles

■ orthogonal segments

Bar Visibility Representation

Bar Visibility Representation

\square Vertices correspond to horizontal open line segments called bars

Bar Visibility Representation

\square Vertices correspond to horizontal open line segments called bars

■ Edges correspond to vertical unobstructed vertical sightlines

Bar Visibility Representation

\square Vertices correspond to horizontal open line segments called bars

- Edges correspond to vertical unobstructed vertical sightlines

0

Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars
■ Edges correspond to vertical unobstructed vertical sightlines

Bar Visibility Representation

\square Vertices correspond to horizontal open line segments called bars
■ Edges correspond to vertical unobstructed vertical sightlines

Bar Visibility Representation

\square Vertices correspond to horizontal open line segments called bars

■ Edges correspond to vertical unobstructed vertical sightlines

Bar Visibility Representation

\square Vertices correspond to horizontal open line segments called bars

- Edges correspond to vertical unobstructed vertical sightlines

Bar Visibility Representation

\square Vertices correspond to horizontal open line segments called bars

■ Edges correspond to vertical unobstructed vertical sightlines

Bar Visibility Representation

\square Vertices correspond to horizontal open line segments called bars

■ Edges correspond to vertical unobstructed vertical sightlines

Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars
- Edges correspond to vertical unobstructed vertical sightlines
- What about unobstructed 0 -width vertical sight-
 lines? Do all visibilities induce edges?

Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars
- Edges correspond to vertical unobstructed vertical sightlines
- What about unobstructed 0 -width vertical sight-
 lines? Do all visibilities induce edges?

Models.

Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars
- Edges correspond to vertical unobstructed vertical sightlines
- What about unobstructed 0 -width vertical sight-
 lines? Do all visibilities induce edges?

Models.
■ Strong: Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical sightlines

Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars
- Edges correspond to vertical unobstructed vertical sightlines
- What about unobstructed 0 -width vertical sight-
 lines? Do all visibilities induce edges?

Models.
■ Strong: Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical sightlines

■ ε : Edge $u v \Leftrightarrow \varepsilon$ wide vertical sightlines for $\varepsilon>0$

Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars

■ Edges correspond to vertical unobstructed vertical sightlines

- What about unobstructed 0 -width vertical sight-
 lines? Do all visibilities induce edges?

Models.

■ Strong: Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical sightlines
■ ε : Edge $u v \Leftrightarrow \varepsilon$ wide vertical sightlines for $\varepsilon>0$

Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars

■ Edges correspond to vertical unobstructed vertical sightlines

- What about unobstructed 0-width vertical sight-
 lines? Do all visibilities induce edges?

Models.

■ Strong: Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical sightlines
■ ε : Edge $u v \Leftrightarrow \varepsilon$ wide vertical sightlines for $\varepsilon>0$

Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars

■ Edges correspond to vertical unobstructed vertical sightlines

- What about unobstructed 0 -width vertical sight-
 lines? Do all visibilities induce edges?

Models.

■ Strong: Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical sightlines
■ ε : Edge $u v \Leftrightarrow \varepsilon$ wide vertical sightlines for $\varepsilon>0$
■ Weak: Edge $u v \Rightarrow$ unobstructed vertical sightlines
 exists, i. e., any subset of visible pairs

Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars

■ Edges correspond to vertical unobstructed vertical sightlines

- What about unobstructed 0 -width vertical sight-
 lines? Do all visibilities induce edges?

Models.

■ Strong: Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical sightlines
■ ε : Edge $u v \Leftrightarrow \varepsilon$ wide vertical sightlines for $\varepsilon>0$
■ Weak: Edge $u v \Rightarrow$ unobstructed vertical sightlines exists, i. e., any subset of visible pairs

Problems

weak

Problems

Problems

Problems

Problems

Problems

Recognition Problem.

Given a graph G, decide if there exists a weak/strong $/ \varepsilon$ bar visibility representation ψ of G.

Problems

Recognition Problem.

Given a graph G, decide if there exists a weak/strong $/ \varepsilon$ bar visibility representation ψ of G.

Construction Problem.

Given a graph G, construct a weak/strong/ ε bar visibility representation ψ of G when one exists.

Problems

Recognition Problem.

Given a graph G, decide if there exists a weak/strong/ ε bar visibility representation ψ of G.

Construction Problem.

Given a graph G, construct a weak/strong/ ε bar visibility representation ψ of G when one exists.

Partial Representation Extension

 Problem.Given a graph G and a set of bars ψ^{\prime} of $V^{\prime} \subset V(G)$, decide if there exists a weak/strong $/ \varepsilon$ bar visibility representation ψ of G where $\left.\psi\right|_{V^{\prime}}=\psi^{\prime}$ (and construct ψ when it exists).

Background

Background

Weak Bar Visibility.

Background

Weak Bar Visibility.
■ All planar graphs. [Tamassia \& Tollis '86; Wismath '85]

Background

Weak Bar Visibility.
■ All planar graphs. [Tamassia \& Tollis '86; Wismath '85]
■ Linear time recognition and construction [T\&T '86]

Background

Weak Bar Visibility.

■ All planar graphs. [Tamassia \& Tollis '86; Wismath '85]
■ Linear time recognition and construction [T\&T '86]
■ Representation Extension is NP-complete [Chaplick et al. '14]

Background

Weak Bar Visibility.
■ All planar graphs. [Tamassia \& Tollis '86; Wismath '85]

- Linear time recognition and construction [T\&T '86]

■ Representation Extension is NP-complete [Chaplick et al. '14]

Strong Bar Visibility.

Background

Weak Bar Visibility.
■ All planar graphs. [Tamassia \& Tollis '86; Wismath '85]

- Linear time recognition and construction [T\&T '86]

■ Representation Extension is NP-complete [Chaplick et al. '14]

Strong Bar Visibility.

- NP-complete to recognize [Andreae '92]

Background

ε-Bar Visibility.

Background

ε-Bar Visibility.

- Planar graphs that can be embedded with all cut vertices on the outerface. [T\&T '86, Wismath '85]

Background

ε-Bar Visibility.
■ Planar graphs that can be embedded with all cut vertices on the outerface. [T\&T '86, Wismath '85]

■ Linear time recognition and construction [T\&T '86]

Background

ε-Bar Visibility.

- Planar graphs that can be embedded with all cut vertices on the outerface. [T\&T '86, Wismath '85]

■ Linear time recognition and construction [T\&T '86]
■ Representation Extension?

Background

ε-Bar Visibility.

- Planar graphs that can be embedded with all cut vertices on the outerface. [T\&T '86, Wismath '85]

■ Linear time recognition and construction [T\&T '86]

- Representation Extension? This Lecture!

Visualization of Graphs

Lecture 9:
 Partial Visibility Representation Extension

Part II:
Recognition \& Construction

Jonathan Klawitter

ε-bar Visibility and st-Graphs

Recall that an $s t$-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

ε-bar Visibility and st-Graphs

Recall that an $s t$-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

ε-bar Visibility and st-Graphs

Recall that an $s t$-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Testing whether an acyclic planar digraph has a weak bar visibility representation is NP-complete.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Testing whether an acyclic planar digraph has a weak bar visibility representation is NP-complete.

- This is upward planarity testing!
[Garg \& Tamassia '01]

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

■ -bar visibility testing is easily done via st-graph recognition.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

■ -bar visibility testing is easily done via st-graph recognition.

- Strong bar visibility recognition. . . open!

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-bar Visibility and $s t$-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

■ ε-bar visibility testing is easily done via st-graph recognition.

- Strong bar visibility recognition. . . open!
- In a rectangular bar visibility representation $\psi(s)$ and $\psi(t)$ span an enclosing rectangle.

Results and Outline

> Theorem 1.
> Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.

Results and Outline

Theorem $1 . \quad$ [Chaplick et al. '18]
 Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.
 ■ Dynamic program via SPQR-trees

Results and Outline

```
Theorem 1. [Chaplick et al. '18]
Rectangular \varepsilon-Bar Visibility Representation Extension can
be solved in \mathcal{O}(n\mp@subsup{\operatorname{log}}{}{2}n) time for st-graphs.
- Dynamic program via SPQR-trees
- Easier version: \(\mathcal{O}\left(n^{2}\right)\)
```


Results and Outline

Theorem $1 . \quad$ [Chaplick et al. '18]
Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.

- Dynamic program via SPQR-trees

■ Easier version: $\mathcal{O}\left(n^{2}\right)$
Theorem $2 . \quad$ [Chaplick et al. '18]
ε-Bar Visibility Representation Ext. is NP-complete.

Results and Outline

Theorem 1. [Chaplick et al. '18]
Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.

- Dynamic program via SPQR-trees

■ Easier version: $\mathcal{O}\left(n^{2}\right)$
Theorem $2 . \quad$ [Chaplick et al. '18]
ε-Bar Visibility Representation Ext. is NP-complete.
■ Reduction from Planar Monotone 3-SAT

Results and Outline

Theorem 1. [Chaplick et al. '18]
Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.
■ Dynamic program via SPQR-trees
■ Easier version: $\mathcal{O}\left(n^{2}\right)$
Theorem $2 . \quad$ [Chaplick et al. '18]
ε-Bar Visibility Representation Ext. is NP-complete.
■ Reduction from Planar Monotone 3-SAT
Theorem $3 . \quad$ [Chaplick et al. '18]
ε-Bar Visibility Representation Ext. is NP-complete for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

Results and Outline

Theorem 1. [Chaplick et al. '18]
Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.
■ Dynamic program via SPQR-trees
■ Easier version: $\mathcal{O}\left(n^{2}\right)$

Theorem 2.
 [Chaplick et al. '18]

ε-Bar Visibility Representation Ext. is NP-complete.
■ Reduction from Planar Monotone 3-SAT

Theorem 3.
 [Chaplick et al. '18]

ε-Bar Visibility Representation Ext. is NP-complete for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

■ Reduction from 3-Partition

Visualization of Graphs

Lecture 9:
 Partial Visibility Representation Extension

Part III:
SPQR-Trees

Jonathan Klawitter

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- The nodes of T are of four types:

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

■ The nodes of T are of four types:
■ S nodes represent a series composition

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- The nodes of T are of four types:

■ S nodes represent a series composition

- P nodes represent a parallel composition

SPQR-Tree

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:

■ S nodes represent a series composition

- P nodes represent a parallel composition

■ Q nodes represent a single edge

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- The nodes of T are of four types:
- S nodes represent a series composition
- P nodes represent a parallel composition

■ Q nodes represent a single edge
■ R nodes represent 3-connected (rigid) subgraphs

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- The nodes of T are of four types:
- S nodes represent a series composition

■ P nodes represent a parallel composition
■ Q nodes represent a single edge
■ R nodes represent 3-connected (rigid) subgraphs

- A decomposition tree of a series-parallel graph is an SPQR-tree without R nodes.

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- The nodes of T are of four types:

■ S nodes represent a series composition
■ P nodes represent a parallel composition
■ Q nodes represent a single edge
■ R nodes represent 3-connected (rigid) subgraphs

- A decomposition tree of a series-parallel graph is an SPQR-tree without R nodes.
■ T represents all planar embeddings of G.

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- The nodes of T are of four types:
- S nodes represent a series composition
- P nodes represent a parallel composition

■ Q nodes represent a single edge
■ R nodes represent 3-connected (rigid) subgraphs

- A decomposition tree of a series-parallel graph is an SPQR-tree without R nodes.
■ T represents all planar embeddings of G.
■ T can be computed in $\mathcal{O}(n)$ time. [Gutwenger, Mutzel '01]

SPQR-Tree Example

Visualization of Graphs

Lecture 9:
 Partial Visibility Representation Extension

Representation Extension for st-Graphs

Theorem 1'.
Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

Representation Extension for st-Graphs

Theorem 1'.
Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

Representation Extension for st-Graphs

Theorem 1'.

Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

14()

Representation Extension for st-Graphs

Theorem 1'.

Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

Representation Extension for st-Graphs

```
Theorem 1'.
Rectangular \varepsilon-Bar Visibility Representation Extension can
be solved in \mathcal{O}(\mp@subsup{n}{}{2})\mathrm{ time for st-graphs.}
```


- Simplify with assumption on y-coordinates

Representation Extension for st-Graphs

Theorem 1'.
 Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

- Simplify with assumption on y-coordinates
- Look at connection to SPQR-trees - tiling

Representation Extension for st-Graphs

Theorem 1'.
 Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

- Simplify with assumption on y-coordinates
- Look at connection to SPQR-trees - tiling

■ Solve problems for S, P and R nodes

Representation Extension for st-Graphs

Theorem 1'.
 Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

- Simplify with assumption on y-coordinates
- Look at connection to SPQR-trees - tiling
■ Solve problems for S, P and R nodes
- Dynamic program via SPQRtree

y-Coordinate Invariant

- Let $G=(V, E)$ be an st-graph, and ψ^{\prime} be a representation of $V^{\prime} \subseteq V$.

y-Coordinate Invariant

- Let $G=(V, E)$ be an st-graph, and ψ^{\prime} be a representation of $V^{\prime} \subseteq V$.

■ Let $y: V \rightarrow \mathbb{R}$ such that

y-Coordinate Invariant

- Let $G=(V, E)$ be an st-graph, and ψ^{\prime} be a representation of $V^{\prime} \subseteq V$.

■ Let $y: V \rightarrow \mathbb{R}$ such that
■ for each $v \in V^{\prime}, y(v)=$ the y-coordinate of $\psi^{\prime}(v)$.

y-Coordinate Invariant

- Let $G=(V, E)$ be an st-graph, and ψ^{\prime} be a representation of $V^{\prime} \subseteq V$.

■ Let $y: V \rightarrow \mathbb{R}$ such that
■ for each $v \in V^{\prime}, y(v)=$ the y-coordinate of $\psi^{\prime}(v)$.

- for each edge $(u, v), y(u)<y(v)$.

y-Coordinate Invariant

■ Let $G=(V, E)$ be an st-graph, and ψ^{\prime} be a representation of $V^{\prime} \subseteq V$.
■ Let $y: V \rightarrow \mathbb{R}$ such that
■ for each $v \in V^{\prime}, y(v)=$ the y-coordinate of $\psi^{\prime}(v)$.
■ for each edge $(u, v), y(u)<y(v)$.

Lemma 1.

G has a representation extending ψ^{\prime} if and only if G has a representation ψ extending ψ^{\prime} where the y-coordinates of the bars are as in y.

y-Coordinate Invariant

■ Let $G=(V, E)$ be an st-graph, and ψ^{\prime} be a representation of $V^{\prime} \subseteq V$.
■ Let $y: V \rightarrow \mathbb{R}$ such that
\square for each $v \in V^{\prime}, y(v)=$ the y-coordinate of $\psi^{\prime}(v)$.
■ for each edge $(u, v), y(u)<y(v)$.

Lemma 1.

G has a representation extending ψ^{\prime} if and only if G has a representation ψ extending ψ^{\prime} where the y-coordinates of the bars are as in y.

Proof idea. The relative positions of adjacent bars must match the order given by y.
So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom-to-top.

y-Coordinate Invariant

■ Let $G=(V, E)$ be an st-graph, and ψ^{\prime} be a representation of $V^{\prime} \subseteq V$.
■ Let $y: V \rightarrow \mathbb{R}$ such that
\square for each $v \in V^{\prime}, y(v)=$ the y-coordinate of $\psi^{\prime}(v)$.
■ for each edge $(u, v), y(u)<y(v)$.

Lemma 1.

G has a representation extending ψ^{\prime} if and only if G has a representation ψ extending ψ^{\prime} where the y-coordinates of the bars are as in y.

Proof idea. The relative positions of adjacent bars must match the order given by y.
So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom-to-top.

We can now assume all y-coordinates are given!

But why do SPQR-Trees help?

But why do SPQR-Trees help?

Lemma 2.
The SPQR-tree of an $s t$-graph G induces a recursive tiling of any ε-bar visibility representation of G.

But why do SPQR-Trees help?

Lemma 2.
 The SPQR-tree of an st-graph G induces a recursive tiling of any ε-bar visibility representation of G.

Solve tiles bottom-up

Visualization of Graphs

Lecture 9:
 Partial Visibility Representation Extension

Part V :
Dynamic Program

Jonathan Klawitter

Tiles

Convention. Orange bars are from the partial representation

Tiles

Convention. Orange bars are from the partial representation

Tiles

Convention. Orange bars are from the partial representation

Observation.

The bounding box (tile) of any solution ψ contains the bounding box of the partial representation.

Tiles

Convention. Orange bars are from the partial representation

Observation.

The bounding box (tile) of any solution ψ contains the bounding box of the partial representation.

How many different tiles can we really have?

Types of Tiles

- Right Fixed - due to the orange bar
- Left Loose - due to the orange bar

Types of Tiles

\square Left Fixed - due to the orange bar

- Right Loose - due to the orange bar

Types of Tiles

- Left Fixed - due to the orange bar
- Right Loose - due to the orange bar

Types of Tiles

- Left Fixed - due to the orange bar

■ Right Loose - due to the orange bar

Types of Tiles

■ Left Fixed - due to the orange bar

- Right Loose - due to the orange bar

Four different types: FF, FL, LF, LL

P Nodes

P Nodes

P Nodes

P Nodes

P Nodes

P Nodes

- Children of \mathbf{P} node with prescribed bars occur in given left-to-right order

■ Children of \mathbf{P} node with prescribed bars occur in given left-to-right order

■ But there might be some gaps...

P Nodes

■ Children of \mathbf{P} node with prescribed bars occur in given left-to-right order

■ But there might be some gaps...

Idea.

Greedily fill the gaps by preferring to "stretch" the children with prescribed bars.

P Nodes

■ Children of \mathbf{P} node with prescribed bars occur in given left-to-right order

■ But there might be some gaps...

Idea.

Greedily fill the gaps by preferring to "stretch" the children with prescribed bars.

Outcome.

After processing, we must know the valid types for the corresponding subgraphs.

S Nodes

S Nodes

This fixed vertex means we can only make a Fixed-Fixed representation!

S Nodes

This fixed vertex means we can only make a Fixed-Fixed representation!

S Nodes

This fixed vertex means we can only make a Fixed-Fixed representation!

S Nodes

Here we have a chance to make all (LL, FL, LF, FF) types.

This fixed vertex means we can only make a Fixed-Fixed representation!

R Nodes

R Nodes

R Nodes

R Nodes

R Nodes

R Nodes

R Nodes

R Nodes

R Nodes

R Nodes

R Nodes

R Nodes

R Nodes

R Nodes

R Nodes

- for each child (edge) e :

R Nodes

\square for each child (edge) e :

- find all types of $\{F F, F L, L F, L L\}$ that admit a drawing

R Nodes with 2-SAT Formulation

- for each child (edge) e :

■ find all types of $\{$ FF,FL,LF, LL $\}$ that admit a drawing

\mathbf{R} Nodes with 2-SAT Formulation

\square for each child (edge) e :
■ find all types of $\{F F, F L, L F, L L\}$ that admit a drawing
■ 2 variables l_{e}, r_{e} encoding fixed/loose type of its tile

\mathbf{R} Nodes with 2-SAT Formulation

\square for each child (edge) e :
■ find all types of $\{F F, F L, L F, L L\}$ that admit a drawing
■ 2 variables l_{e}, r_{e} encoding fixed/loose type of its tile

\mathbf{R} Nodes with 2-SAT Formulation

\square for each child (edge) e :
■ find all types of $\{F F, F L, L F, L L\}$ that admit a drawing
■ 2 variables l_{e}, r_{e} encoding fixed/loose type of its tile

\mathbf{R} Nodes with 2-SAT Formulation

\square for each child (edge) e :
■ find all types of $\{F F, F L, L F, L L\}$ that admit a drawing
■ 2 variables l_{e}, r_{e} encoding fixed/loose type of its tile

- consistency clauses

\mathbf{R} Nodes with 2-SAT Formulation

\square for each child (edge) e :
■ find all types of $\{F F, F L, L F, L L\}$ that admit a drawing
■ 2 variables l_{e}, r_{e} encoding fixed/loose type of its tile

- consistency clauses

\mathbf{R} Nodes with 2-SAT Formulation

\square for each child (edge) e :
■ find all types of $\{F F, F L, L F, L L\}$ that admit a drawing

- 2 variables l_{e}, r_{e} encoding fixed/loose type of its tile
- consistency clauses

\mathbf{R} Nodes with 2-SAT Formulation

\square for each child (edge) e :
■ find all types of $\{F F, F L, L F, L L\}$ that admit a drawing
■ 2 variables l_{e}, r_{e} encoding fixed/loose type of its tile ■ consistency clauses $-O\left(n^{2}\right)$ many,

\mathbf{R} Nodes with 2-SAT Formulation

\square for each child (edge) e :

- find all types of $\{$ FF,FL, LF, LL $\}$ that admit a drawing

■ 2 variables l_{e}, r_{e} encoding fixed/loose type of its tile
■ consistency clauses $-O\left(n^{2}\right)$ many, but can be reduced to $O\left(n \log ^{2} n\right)$

Visualization of Graphs

Lecture 9:
 Partial Visibility Representation Extension

Part VI:
NP-Hardness of General Case
Jonathan Klawitter

NP-Hardness of RepExt in General Case

```
Theorem 2.
\varepsilon-Bar Visibility Representation Ext. is NP-complete.
```

- Reduction from Planar Monotone 3-SAT

NP-Hardness of RepExt in General Case

Theorem 2.
ε-Bar Visibility Representation Ext. is NP-complete.
■ Reduction from Planar Monotone 3-SAT

NP-Hardness of RepExt in General Case

Theorem 2.
ε-Bar Visibility Representation Ext. is NP-complete.
■ Reduction from Planar Monotone 3-SAT

$$
\overline{x_{1}} \vee \overline{x_{4}} \vee \overline{x_{5}}
$$

NP-complete
[Berg \& Khosravi '10]

NP-Hardness of RepExt in General Case

```
Theorem 2.
\varepsilon-Bar Visibility Representation Ext. is NP-complete.
```

- Reduction from Planar Monotone 3-SAT

■ NP-complete
[Berg \& Khosravi '10]

Variable Gadget

Variable Gadget

Variable Gadget

Variable Gadget

Variable Gadget

$x=$ FALSE

$x=$ TRUE

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

OR' Gadget

Discussion

■ rectangular ε-Bar Visibility Representation Extension can be solved in $O\left(n \log ^{2} n\right)$ time for $s t$-graphs.

Discussion

■ rectangular ε-Bar Visibility Representation Extension can be solved in $O\left(n \log ^{2} n\right)$ time for $s t$-graphs.

■ ε-Bar Visibility Representation Extension is NP-complete.

Discussion

■ rectangular ε-Bar Visibility Representation Extension can be solved in $O\left(n \log ^{2} n\right)$ time for $s t$-graphs.

■ ε-Bar Visibility Representation Extension is NP-complete.
■ ε-Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the Integer Grid (or if any fixed $\varepsilon>0$ is specified).

Discussion

■ rectangular ε-Bar Visibility Representation Extension can be solved in $O\left(n \log ^{2} n\right)$ time for $s t$-graphs.

■ ε-Bar Visibility Representation Extension is NP-complete.
■ ε-Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the Integer Grid (or if any fixed $\varepsilon>0$ is specified).

Open Problems:
■ Can rectangutar ε-Bar Visibility Representation Extension can be solved in polynomial time on st-graphs?

Discussion

■ rectangular ε-Bar Visibility Representation Extension can be solved in $O\left(n \log ^{2} n\right)$ time for $s t$-graphs.

■ ε-Bar Visibility Representation Extension is NP-complete.
■ ε-Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the Integer Grid (or if any fixed $\varepsilon>0$ is specified).

Open Problems:
■ Can rect2ngutar ε-Bar Visibility Representation Extension can be solved in polynomial time on st-graphs? DAGs?

Discussion

- rectangular ε-Bar Visibility Representation Extension can be solved in $O\left(n \log ^{2} n\right)$ time for $s t$-graphs.

■ ε-Bar Visibility Representation Extension is NP-complete.
■ ε-Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the Integer Grid (or if any fixed $\varepsilon>0$ is specified).

Open Problems:
■ Can rectangutar ε-Bar Visibility Representation Extension can be solved in polynomial time on st-graphs? DAGs?

■ Can Strong Bar Visibility Recognition / Representation Extension can be solved in polynomial time on st-graphs?

Literature

Main source:
■ [Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18] The Partial Visibility Representation Extension Problem

Referenced papers:
■ [Gutwenger, Mutzel '01] A Linear Time Implementation of SPQR-Trees
■ [Wismath '85] Characterizing bar line-of-sight graphs
■ [Tamassia, Tollis '86] Algorithms for visibility representations of planar graphs

- [Andreae '92] Some results on visibility graphs

■ [Chaplick, Dorbec, Kratchovíl, Montassier, Stacho '14] Contact representations of planar graphs: Extending a partial representation is hard

