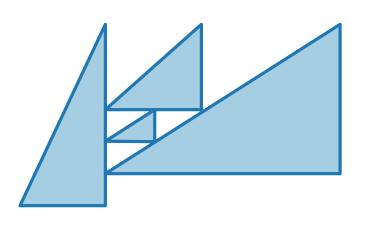


Visualization of Graphs

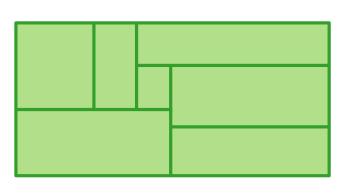
Lecture 8:

Conact Representations of Planar Graphs: Triangle Contacts and Rectangular Duals

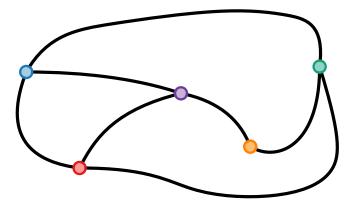


Part I: Geometric Representations

Jonathan Klawitter

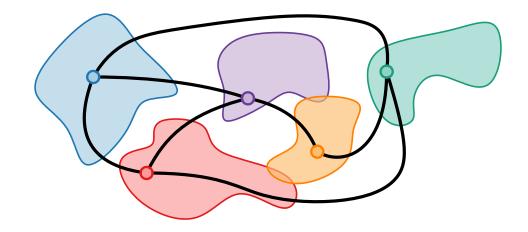


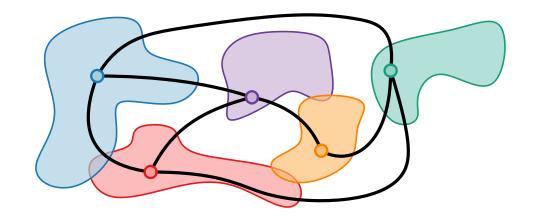
In an intersection representation of a graph each vertex is represented as a set

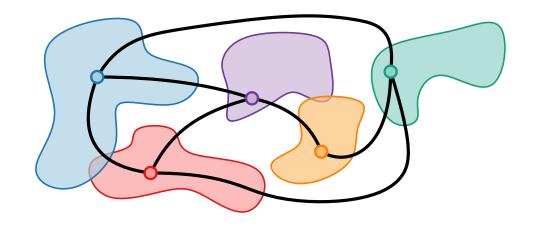


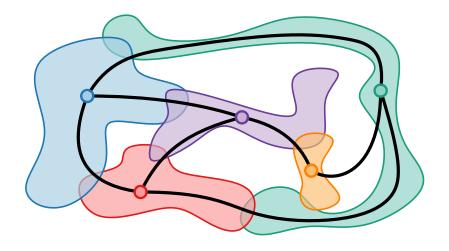
In an intersection representation of a graph each vertex is represented as a set





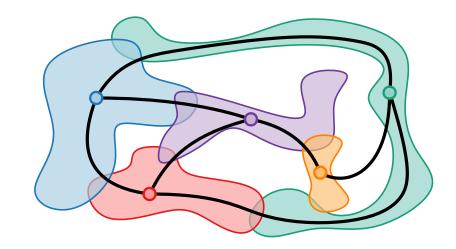


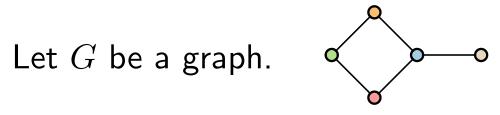


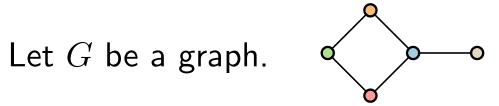


In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

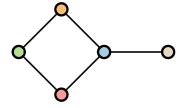
For a collection S of sets S_1, \ldots, S_n , the **intersection graph** G(S) of S has vertex set S and edge set $\{S_iS_j: i, j \in \{1, \ldots, n\}, i \neq j, \text{ and } S_i \cap S_j \neq \emptyset\}.$

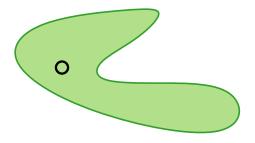




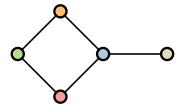


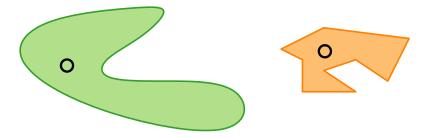
Let G be a graph.



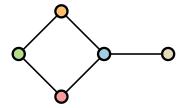


Let G be a graph.

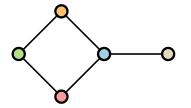


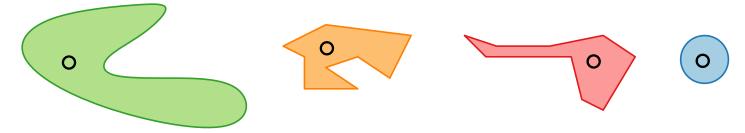


Let G be a graph.

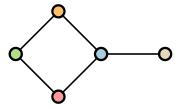


Let G be a graph.

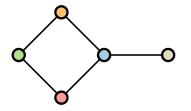




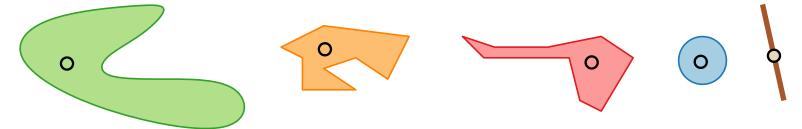
Let G be a graph.



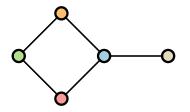
Let ${\cal G}$ be a graph.



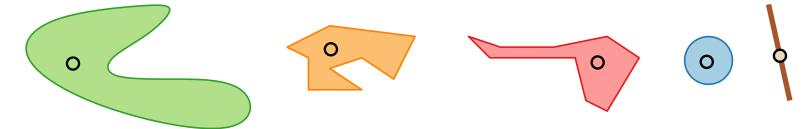
Represent each vertex v by a geometric object S(v)

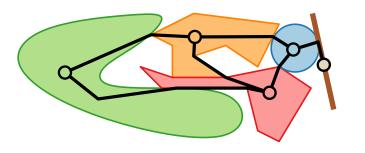


Let G be a graph.

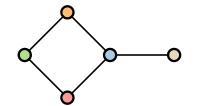


Represent each vertex v by a geometric object S(v)



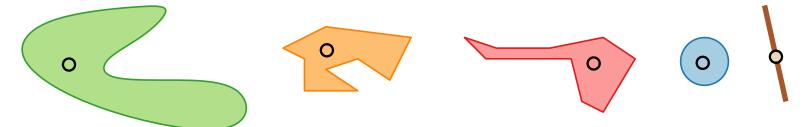


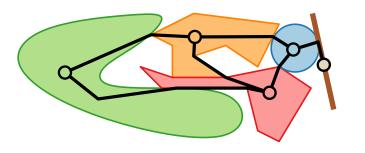
Let G be a graph.



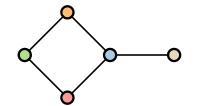
Let S be a set of geometric objects

Represent each vertex v by a geometric object S(v)



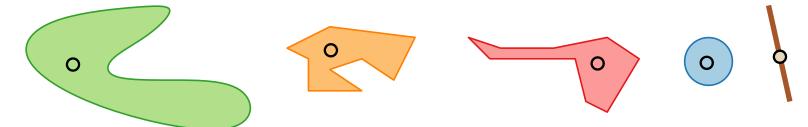


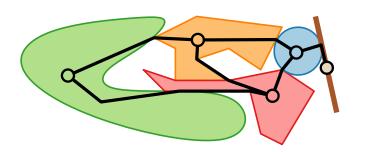
Let G be a graph.



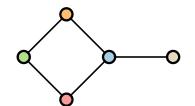
Let $\mathcal S$ be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$



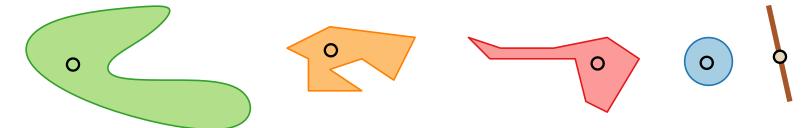


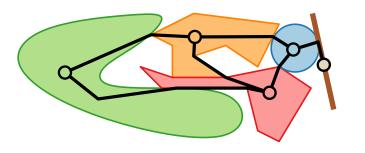
Let G be a graph.



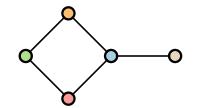
Let $\mathcal S$ be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$





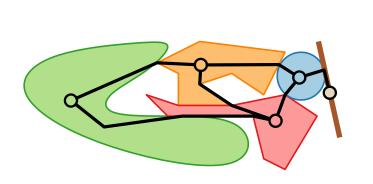
Let G be a graph.

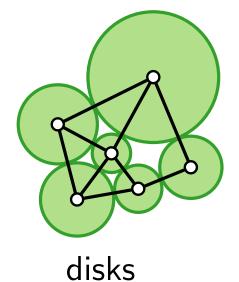


Let S be a set of geometric objects

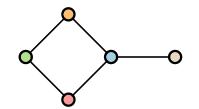
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$





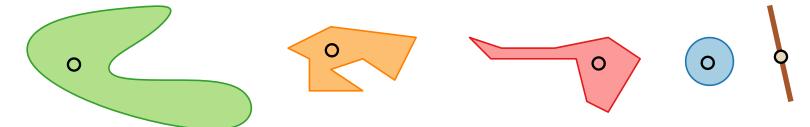


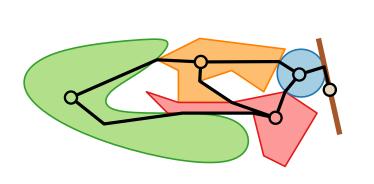
Let ${\cal G}$ be a graph.

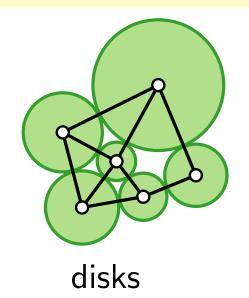


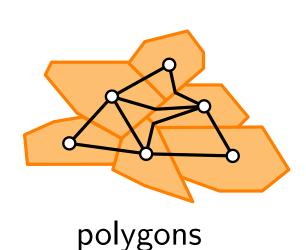
Let S be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

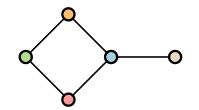






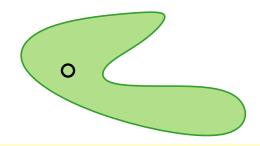


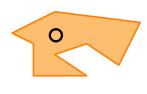
Let G be a graph.

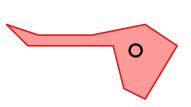


Let S be a set of geometric objects

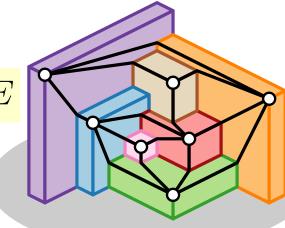
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

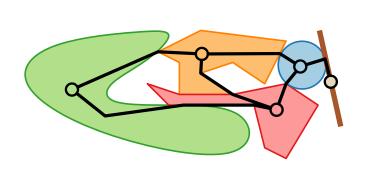


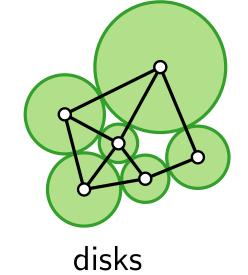


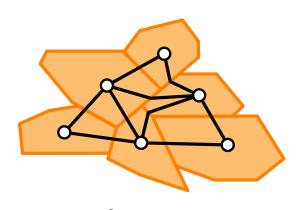


rectangular cuboids



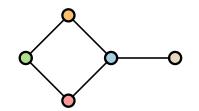






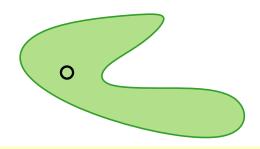
polygons

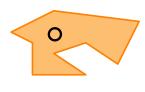
Let G be a graph.

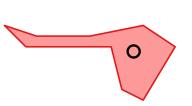


Let S be a set of geometric objects

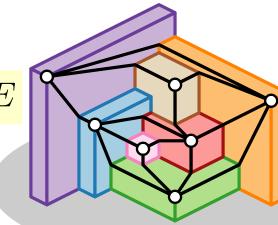
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

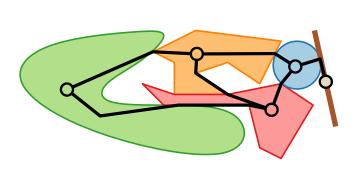




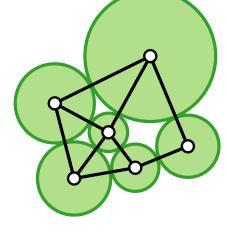


rectangular cuboids

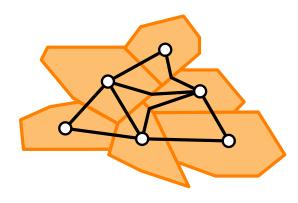




G is planar



disks



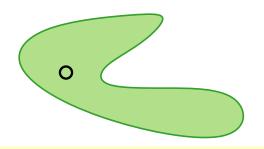
polygons

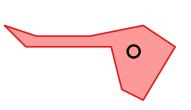
Let G be a graph.



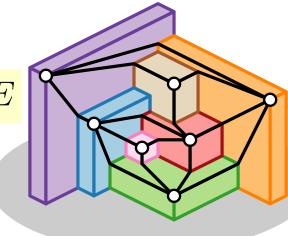
Let S be a set of geometric objects

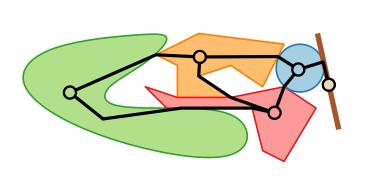
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

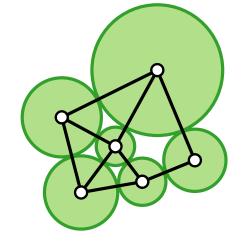


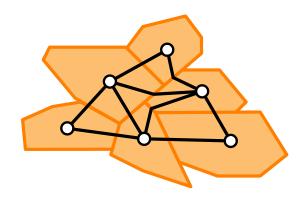


rectangular cuboids



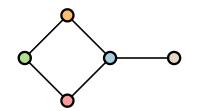






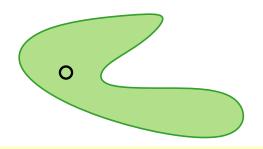
polygons

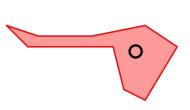
Let G be a graph.



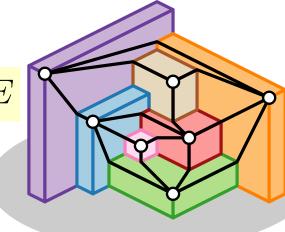
Let S be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

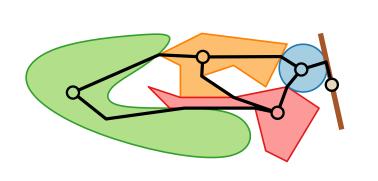


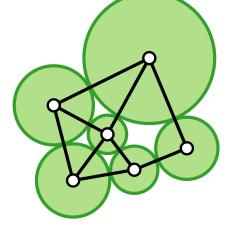


rectangular cuboids



In an S contact representation of G, S(u) and S(v) touch iff $uv \in E$



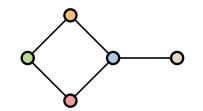




polygons

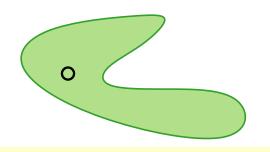
A contact representation is an intersection representation with interior-disjoint sets.

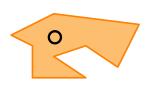
Let G be a graph.

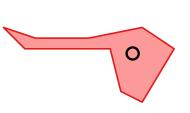


Let S be a set of geometric objects

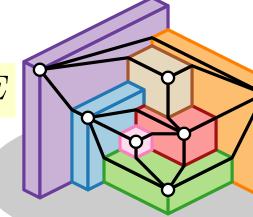
Represent each vertex v by a geometric object S(v)

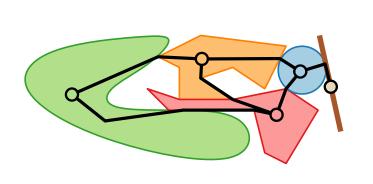


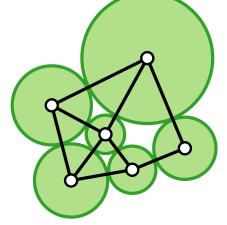


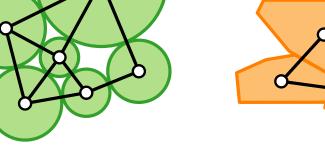


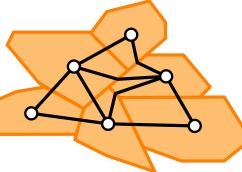
rectangular cuboids







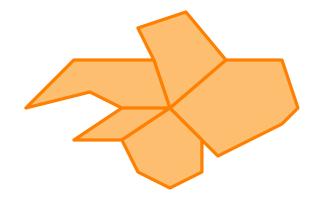




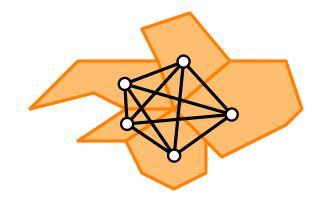
Is the intersection graph of a contact representation always planar?

Is the intersection graph of a contact representation always planar?

Is the intersection graph of a contact representation always planar?



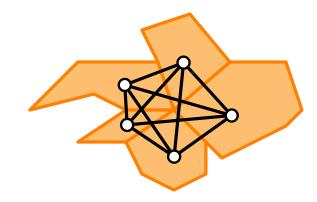
Is the intersection graph of a contact representation always planar?



Is the intersection graph of a contact representation always planar?

■ No, not even for connected object types.

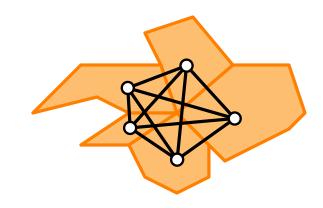
Some object types are used to represent special classes of planar graphs:

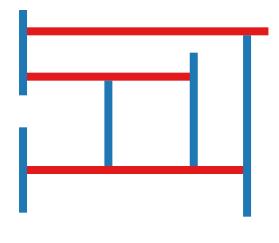


Is the intersection graph of a contact representation always planar?

■ No, not even for connected object types.

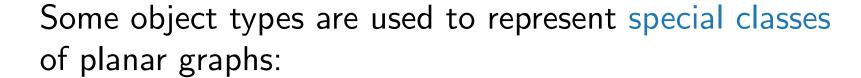
Some object types are used to represent special classes of planar graphs:

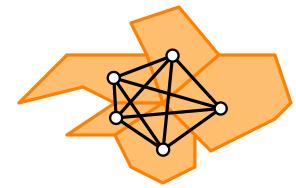


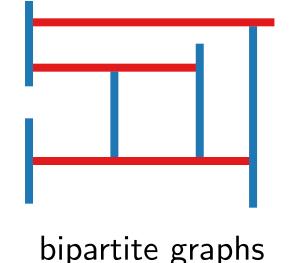


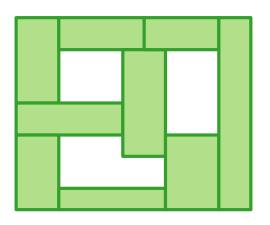
bipartite graphs

Is the intersection graph of a contact representation always planar?







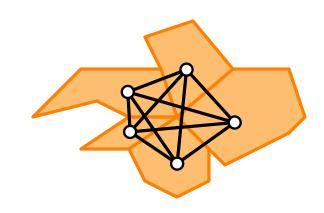


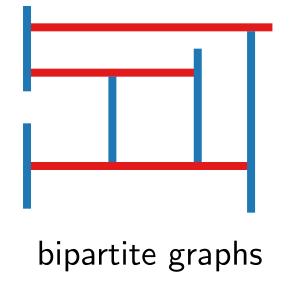
max. triangle-free graphs

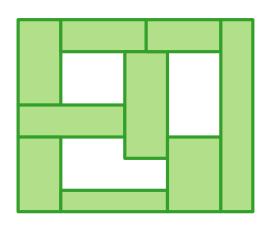
Is the intersection graph of a contact representation always planar?

■ No, not even for connected object types.

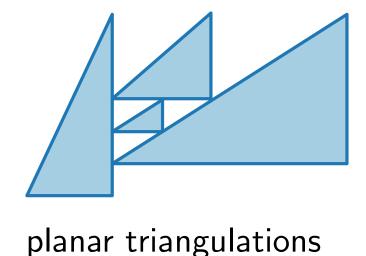
Some object types are used to represent special classes of planar graphs:







max. triangle-free graphs



General Approach

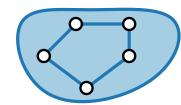
How to compute a contact representation of a given graph G?

How to compute a contact representation of a given graph G?

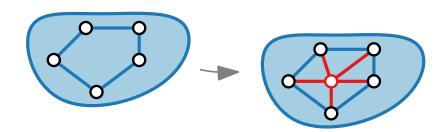
 Consider only inner triangulations (or maximally bipartite graphs, etc)

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

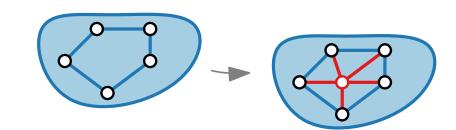


- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges



How to compute a contact representation of a given graph G?

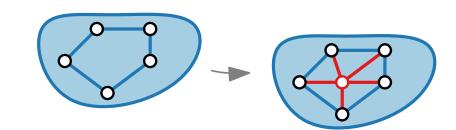
- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges



Describe contact representation combinatorically.

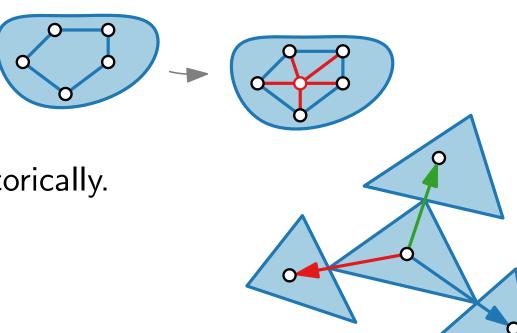
How to compute a contact representation of a given graph G?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

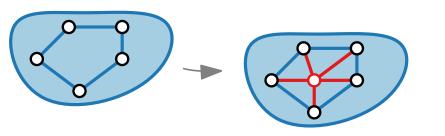


Describe contact representation combinatorically.

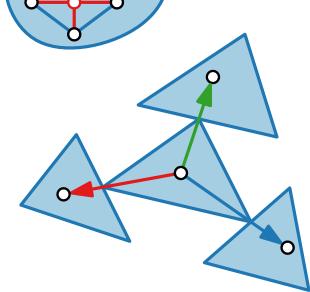
- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges
- Describe contact representation combinatorically.



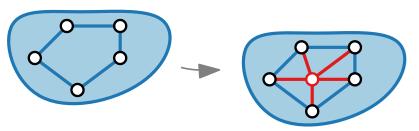
- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges



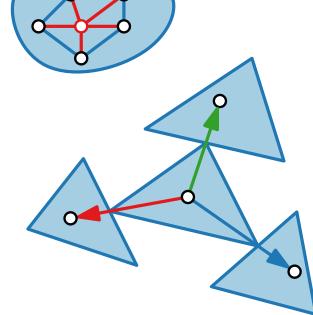
- Describe contact representation combinatorically.
 - Which objects contact each other in which way?



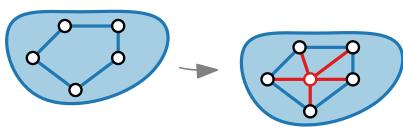
- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges



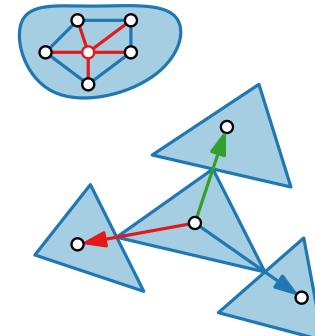
- Describe contact representation combinatorically.
 - Which objects contact each other in which way?
- Compute combinatorical description.



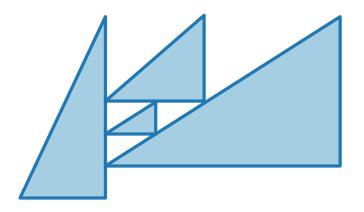
- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges



- Which objects contact each other in which way?
- Compute combinatorical description.
- Show that combinatorical description can be used to construct drawing.

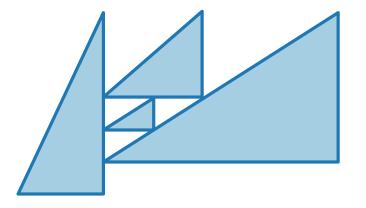


Representations with right-triangles and corner contact



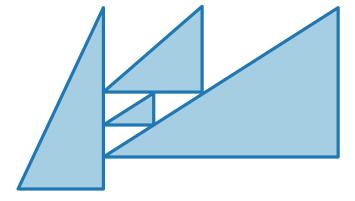
Representations with right-triangles and corner contact

Use Schnyder realizer to describe contacts between triangles



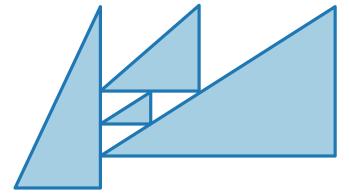
Representations with right-triangles and corner contact

- Use Schnyder realizer to describe contacts between triangles
- Use canonical order to calculate drawing

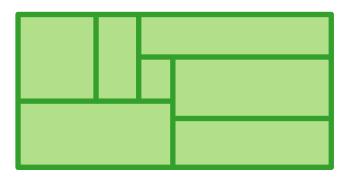


Representations with right-triangles and corner contact

- Use Schnyder realizer to describe contacts between triangles
- Use canonical order to calculate drawing

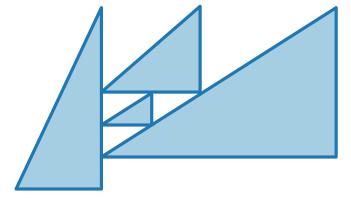


Representation with dissection of a rectangle, called rectangular dual



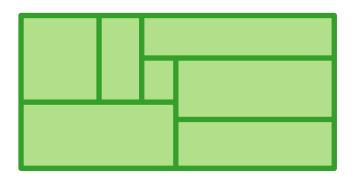
Representations with right-triangles and corner contact

- Use Schnyder realizer to describe contacts between triangles
- Use canonical order to calculate drawing



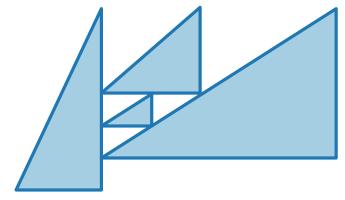
Representation with dissection of a rectangle, called rectangular dual

■ Find similar description like Schnyder realizer for rectangles



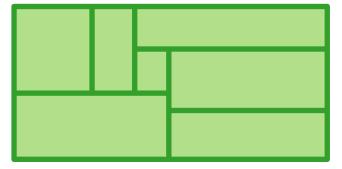
Representations with right-triangles and corner contact

- Use Schnyder realizer to describe contacts between triangles
- Use canonical order to calculate drawing



Representation with dissection of a rectangle, called rectangular dual

- Find similar description like Schnyder realizer for rectangles
- Construct drawing via st-digraphs, duals, and topological sorting

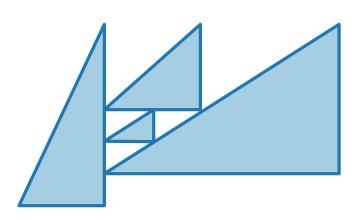


Visualization of Graphs

Lecture 8:

Conact Representations of Planar Graphs:

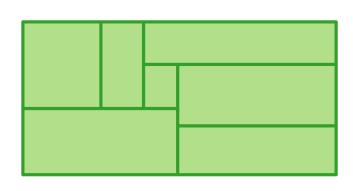
Triangle Contacts and Rectangular Duals



Part II:

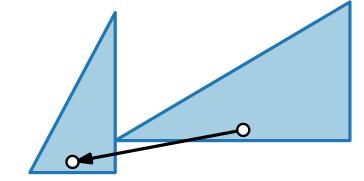
Triangle Contact Representations

Jonathan Klawitter

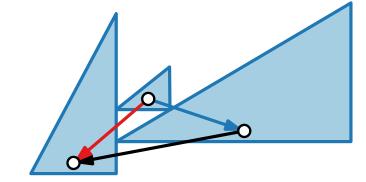


Idea.

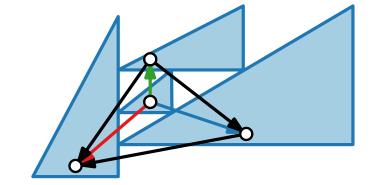
Idea.



Idea.

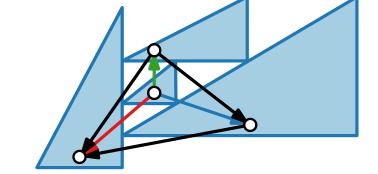


Idea.



Idea.

Use canonical order and Schnyder realizer to find coordinates for triangles.

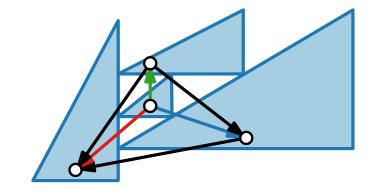


Observation.

■ Can set base of triangle at height equal to position in canonical order.

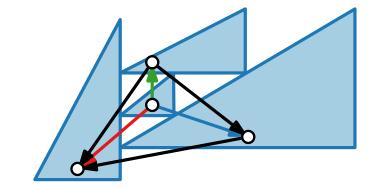
Idea.

- Can set base of triangle at height equal to position in canonical order.
- Triangle tip is precisely at base of triangle corresponding to cover neighbor.



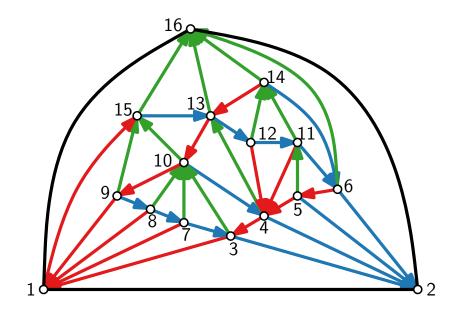
Idea.

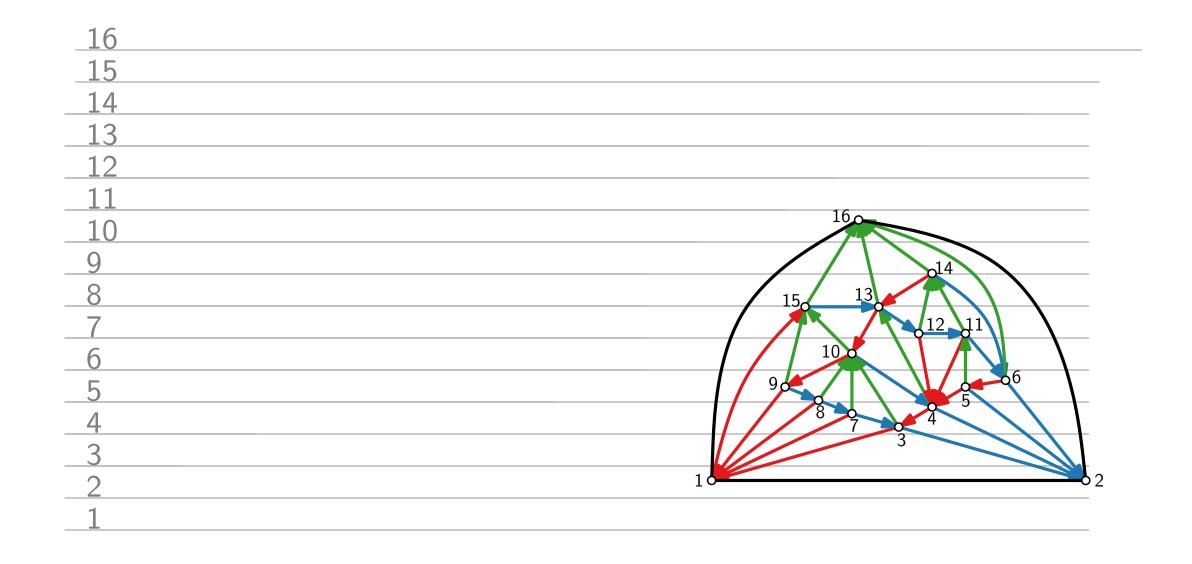
Use canonical order and Schnyder realizer to find coordinates for triangles.

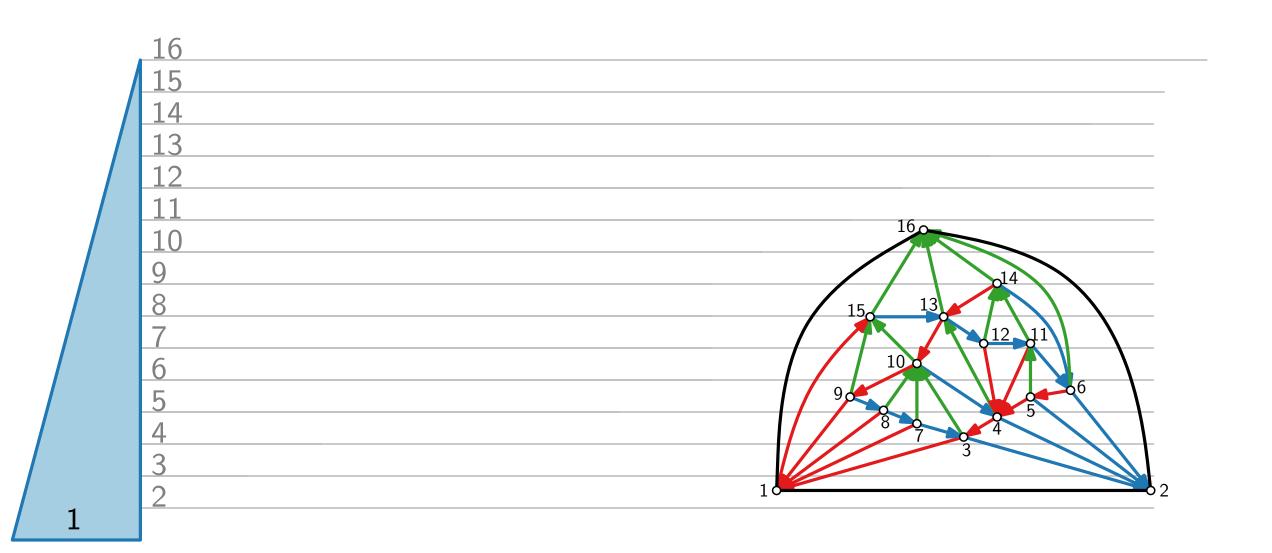


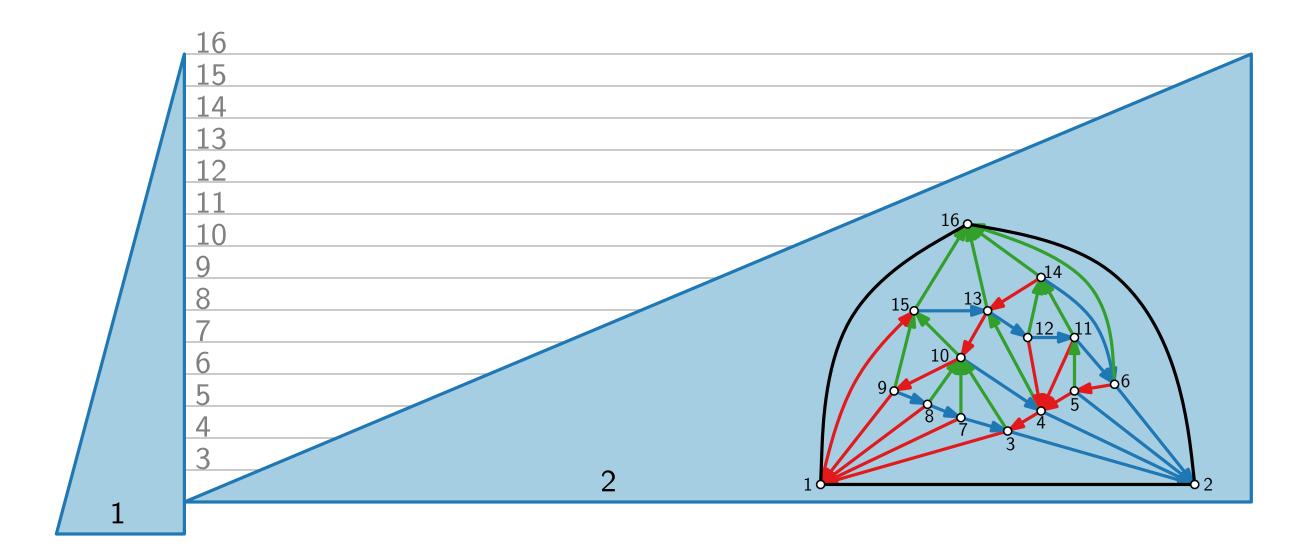
Observation.

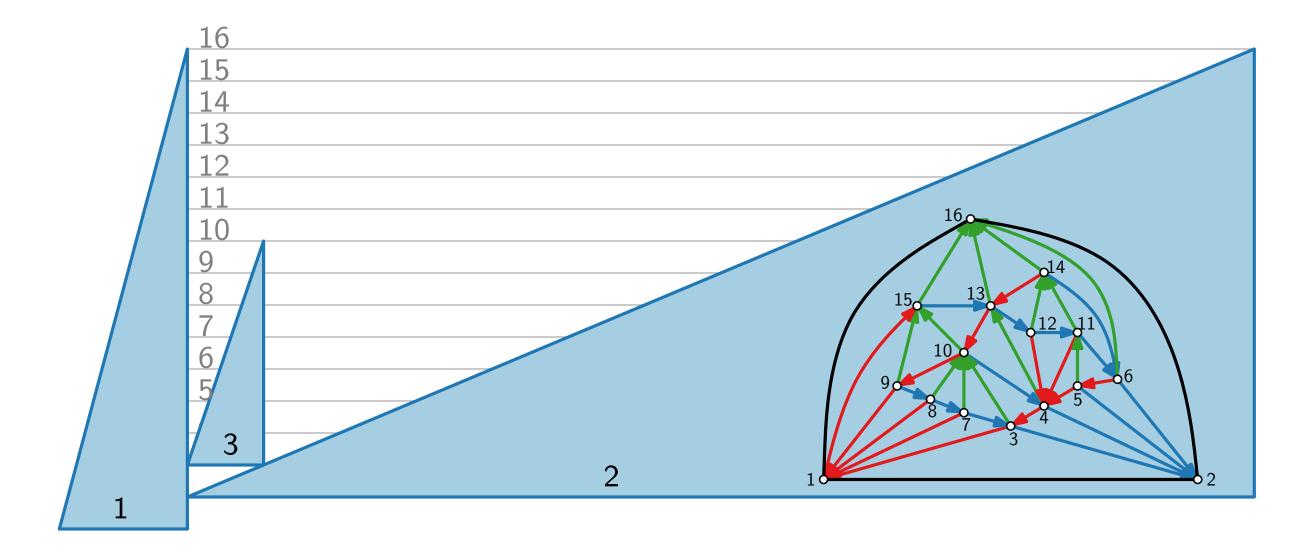
- Can set base of triangle at height equal to position in canonical order.
- Triangle tip is precisely at base of triangle corresponding to cover neighbor.
- Outgoing edges in Schnyder forest indicate corner contacts.

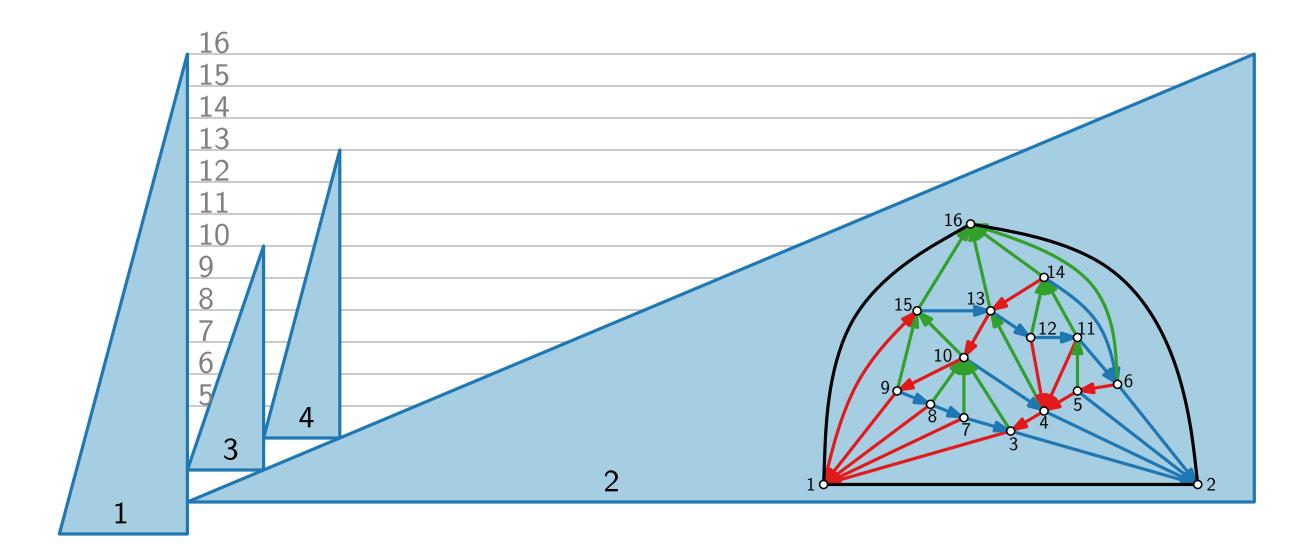


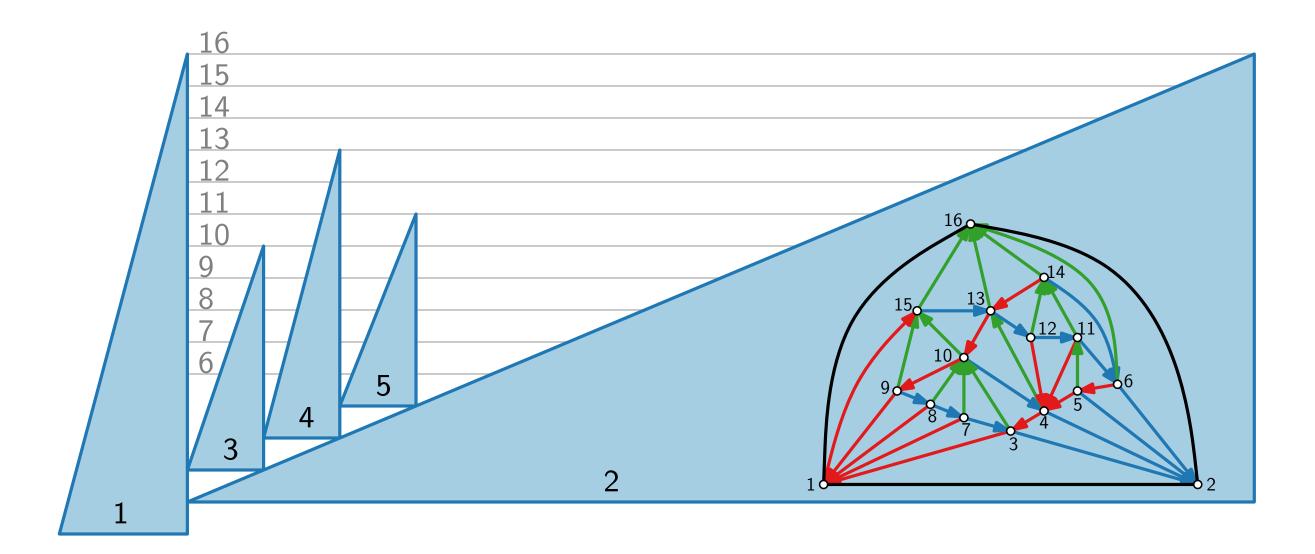


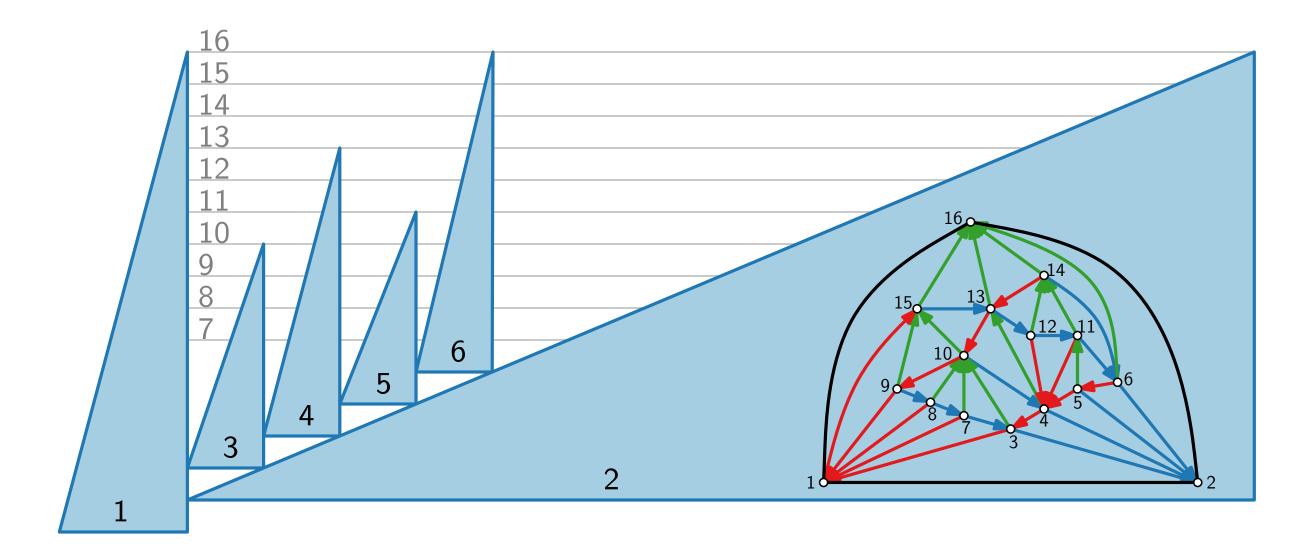


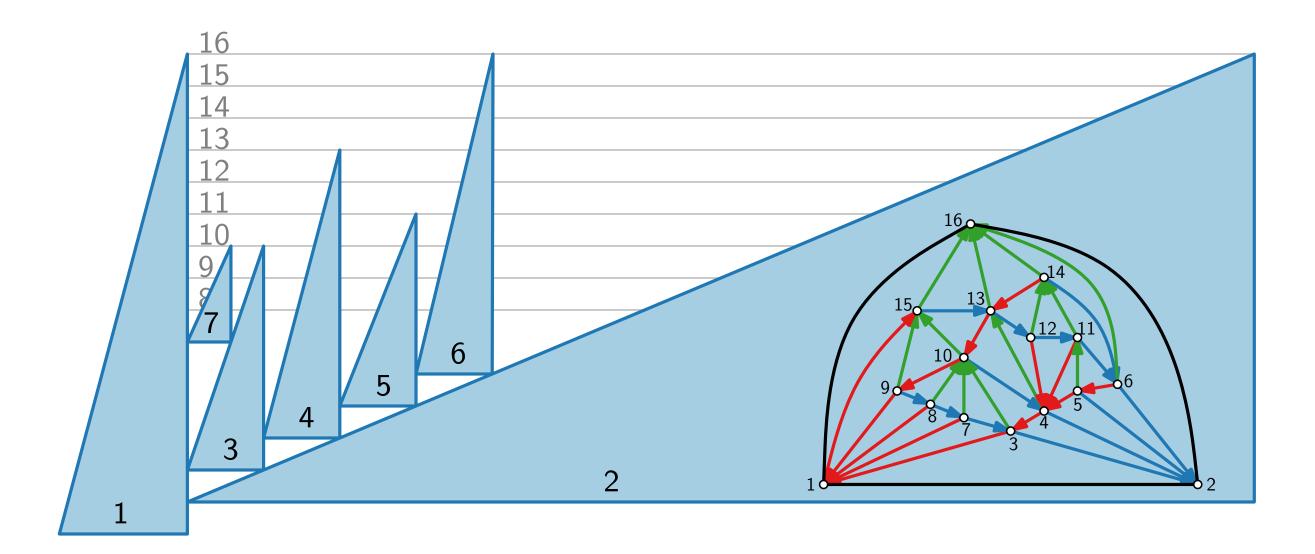


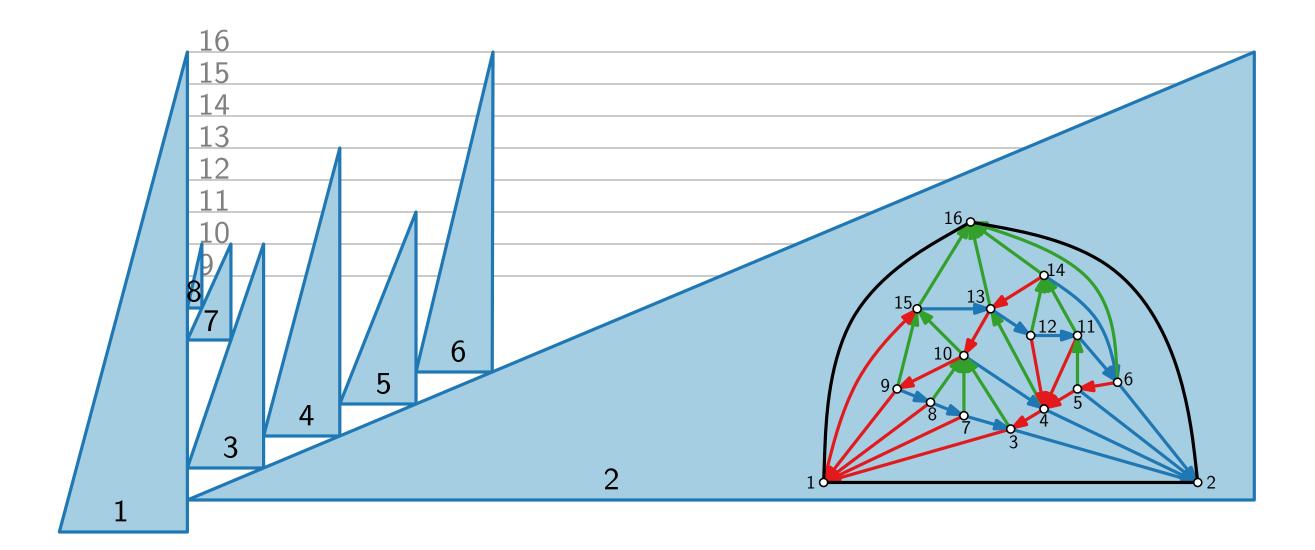


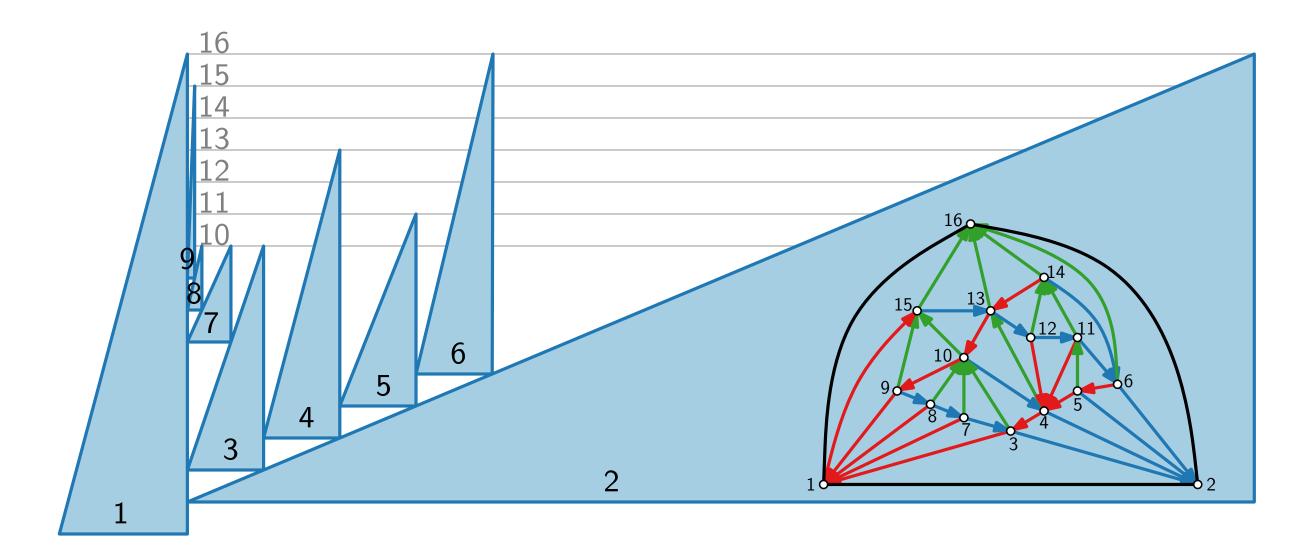


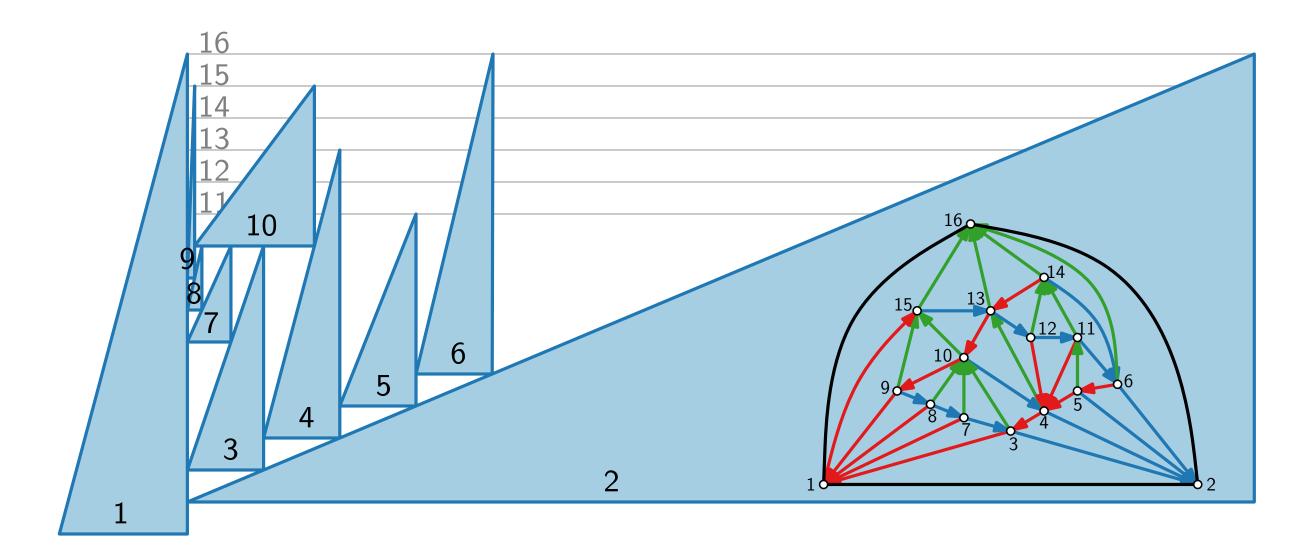


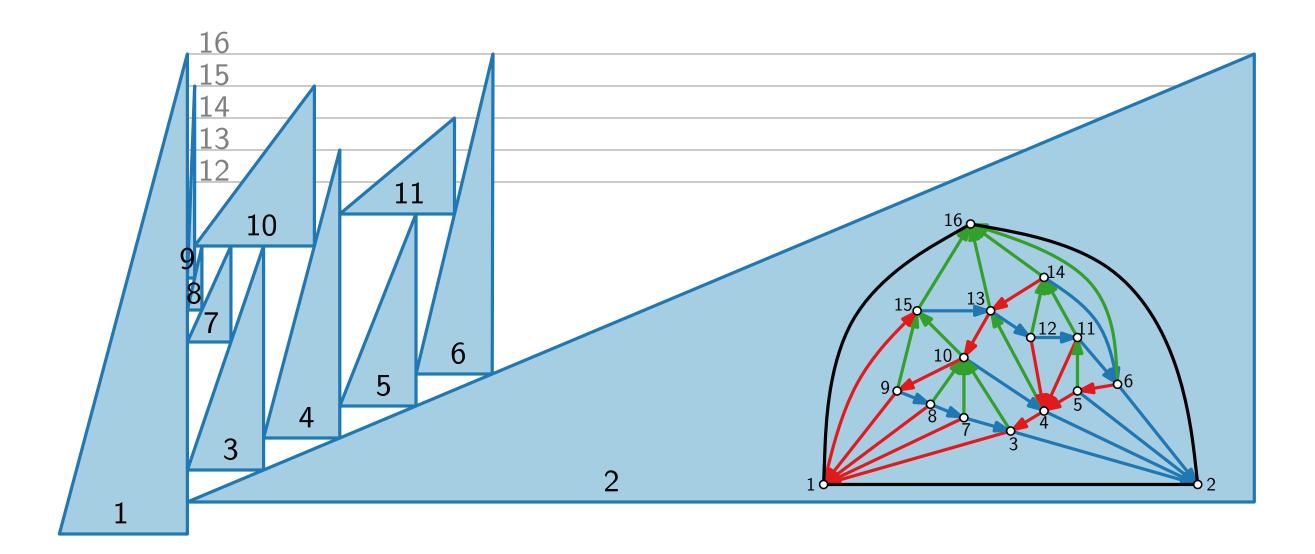


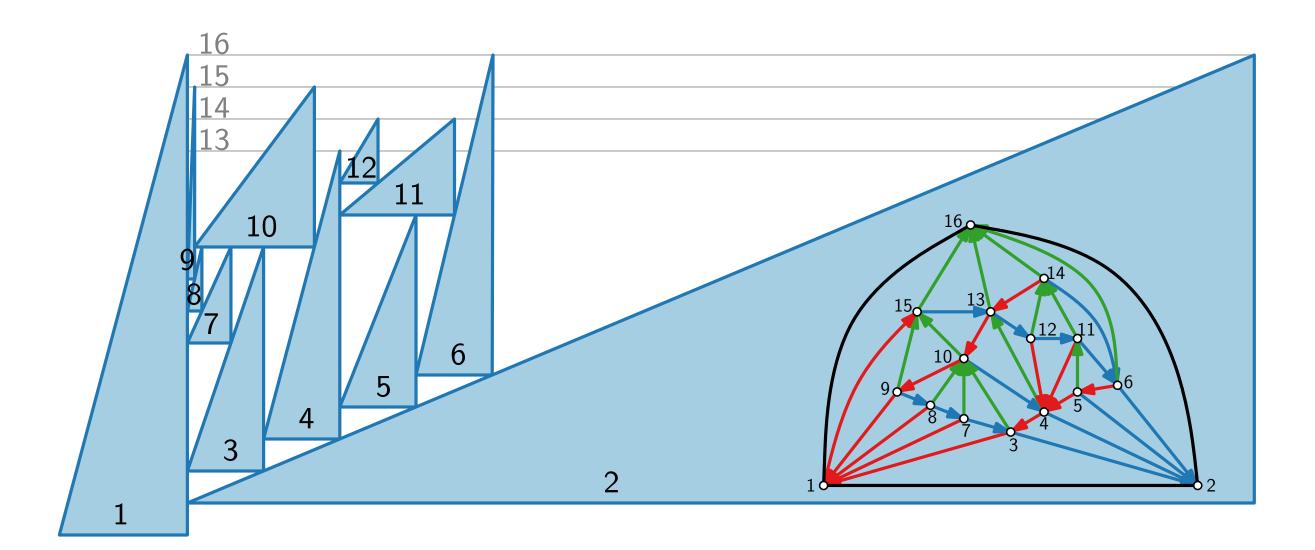


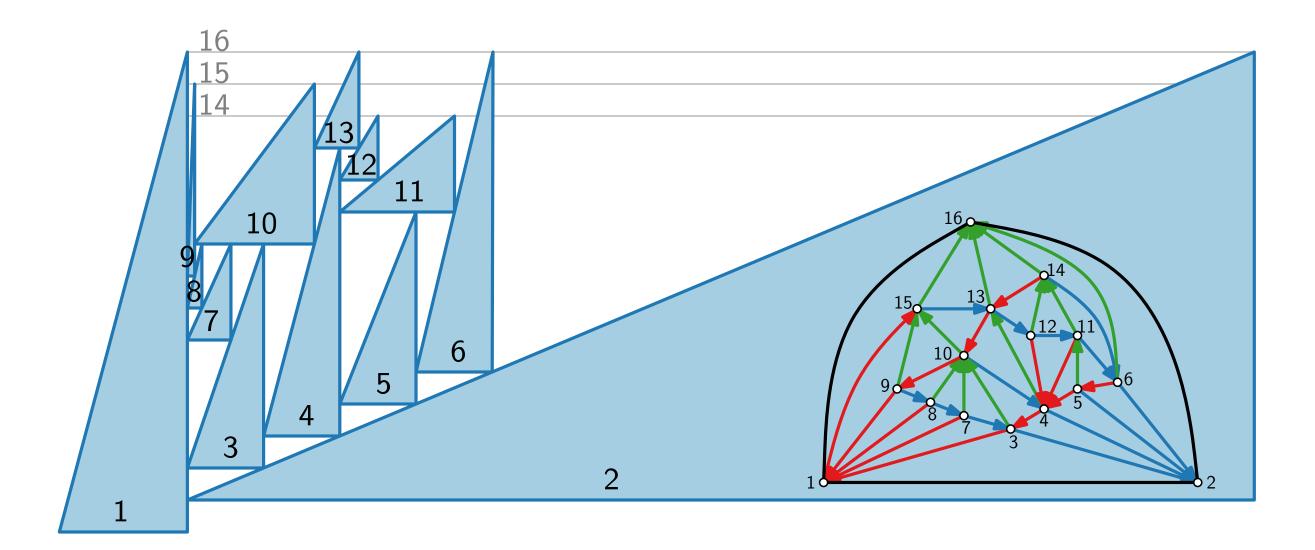


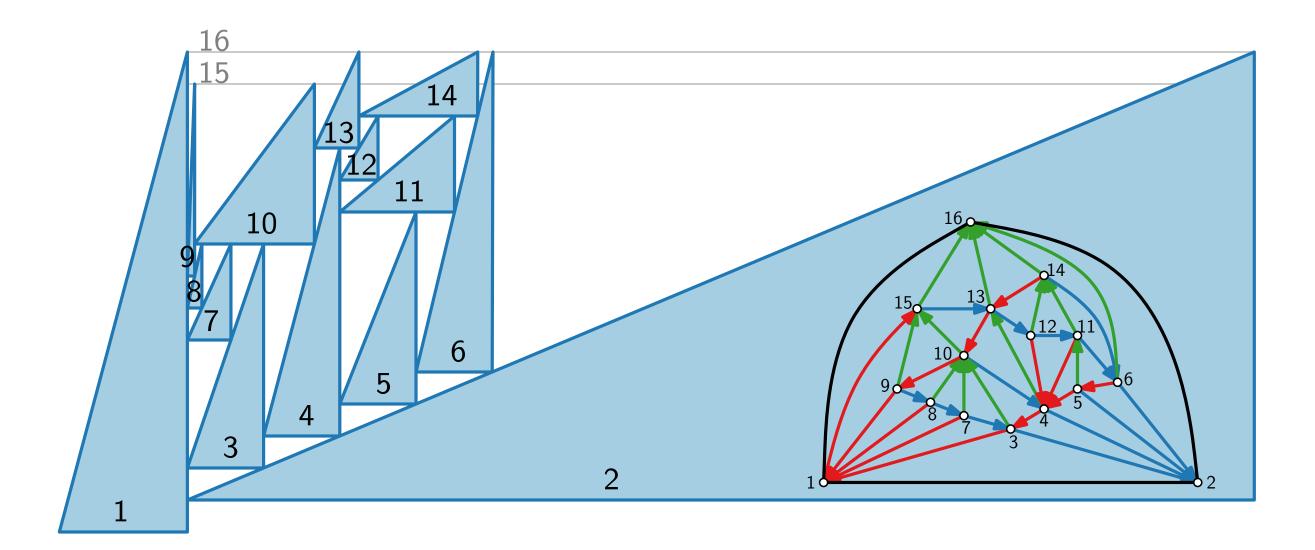


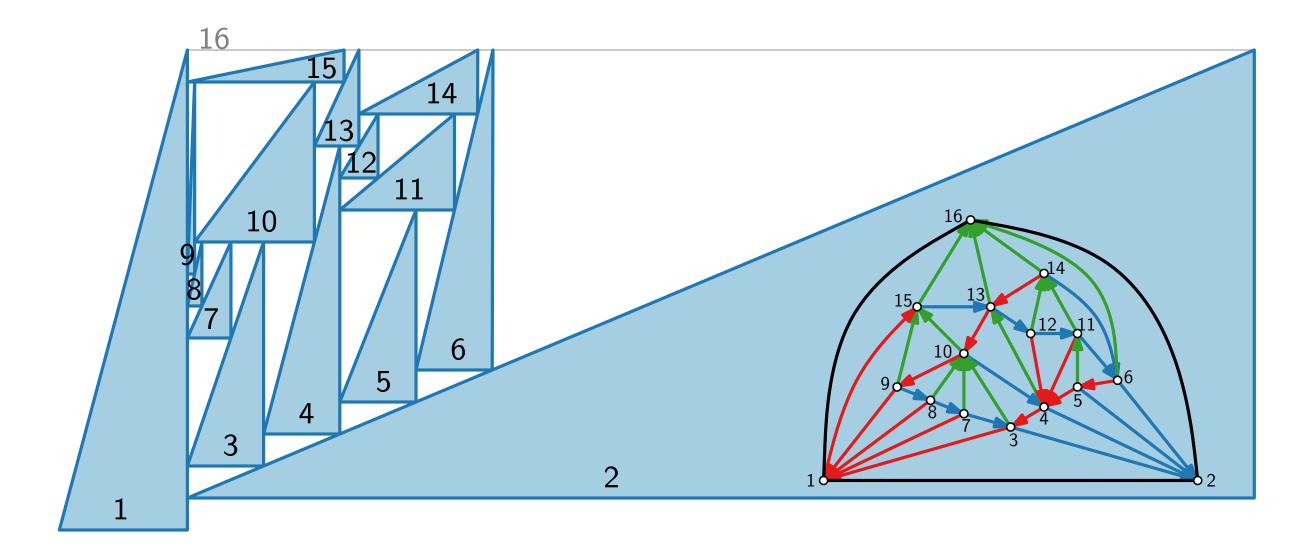


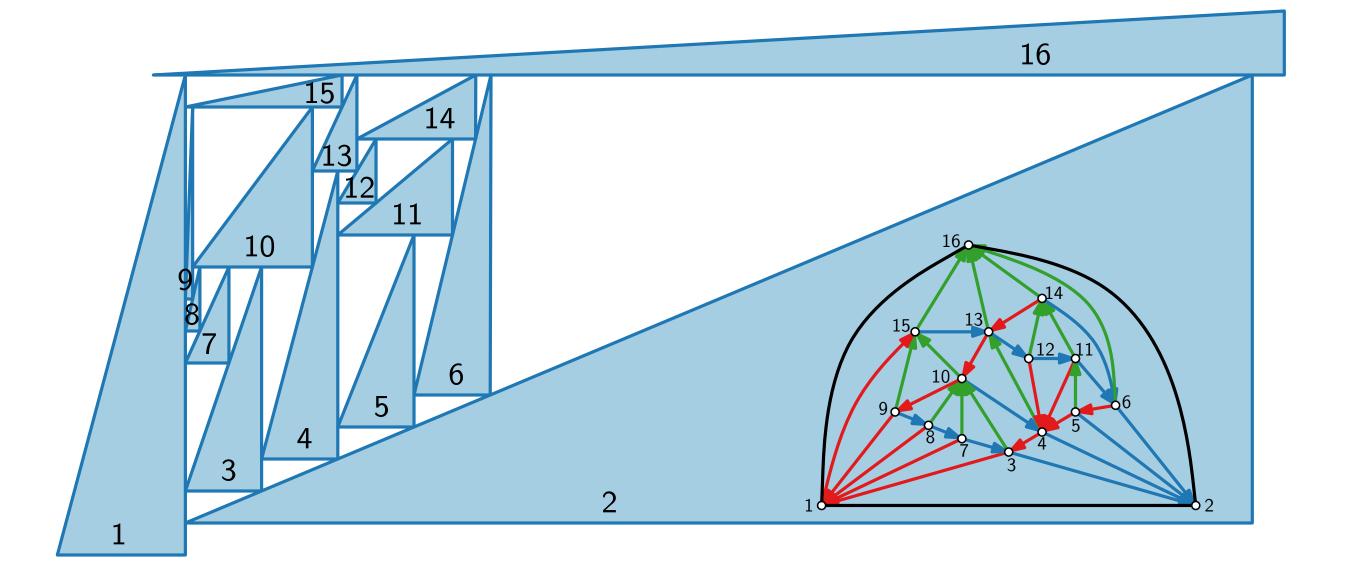


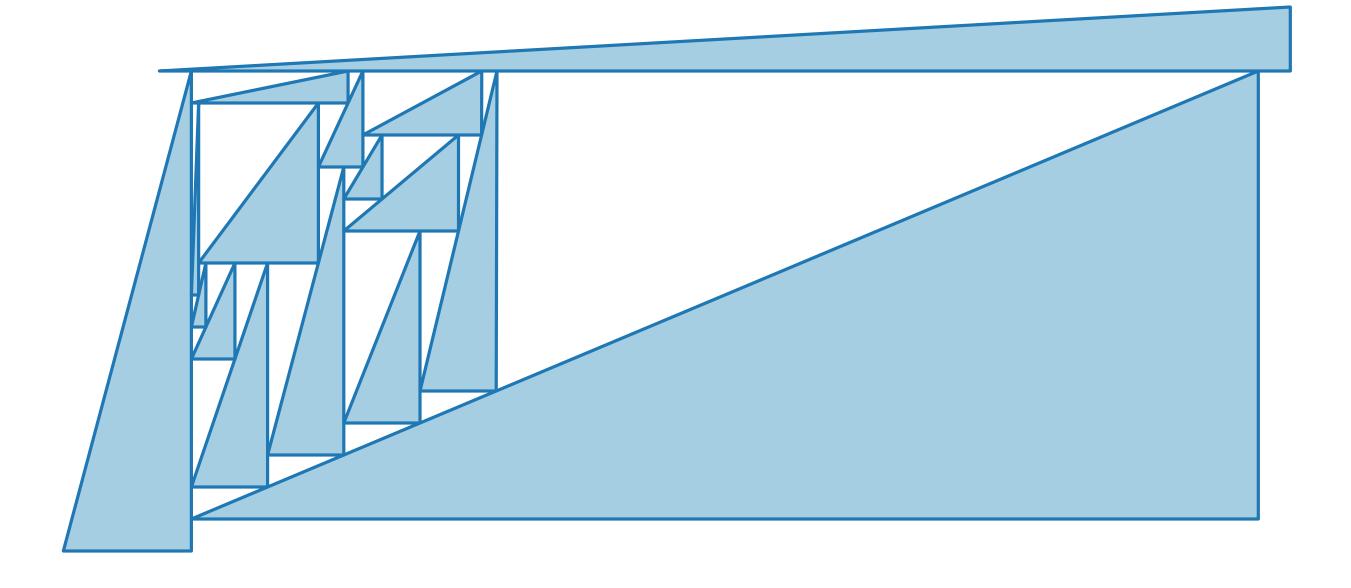


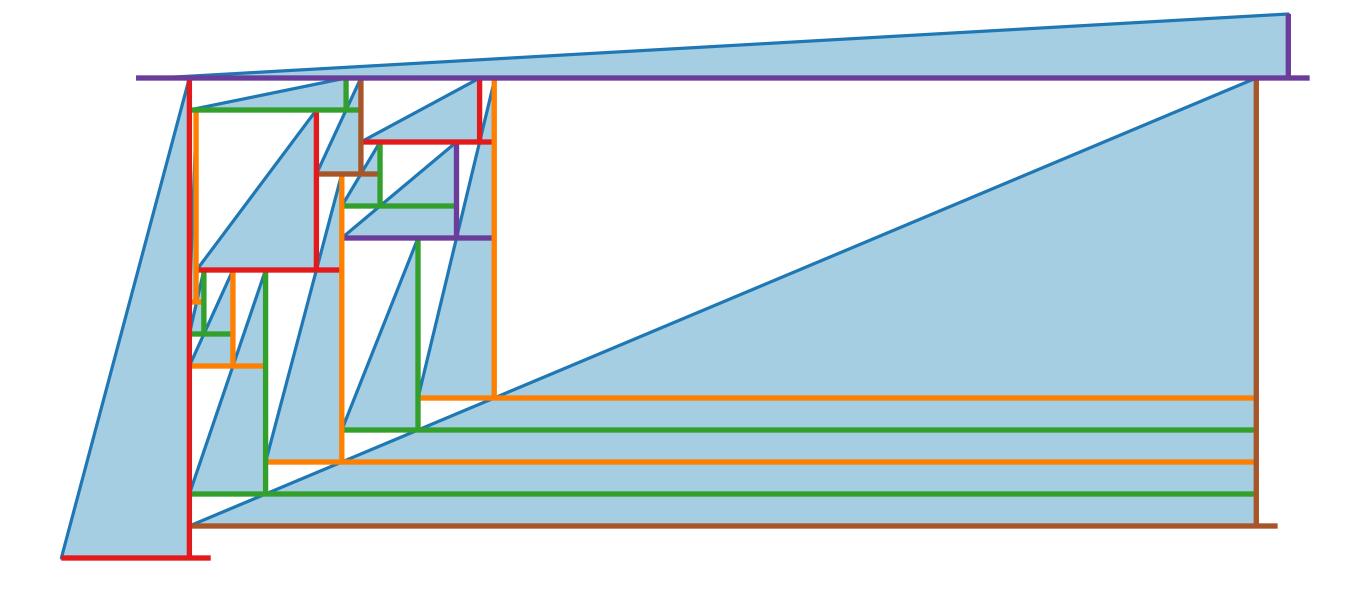


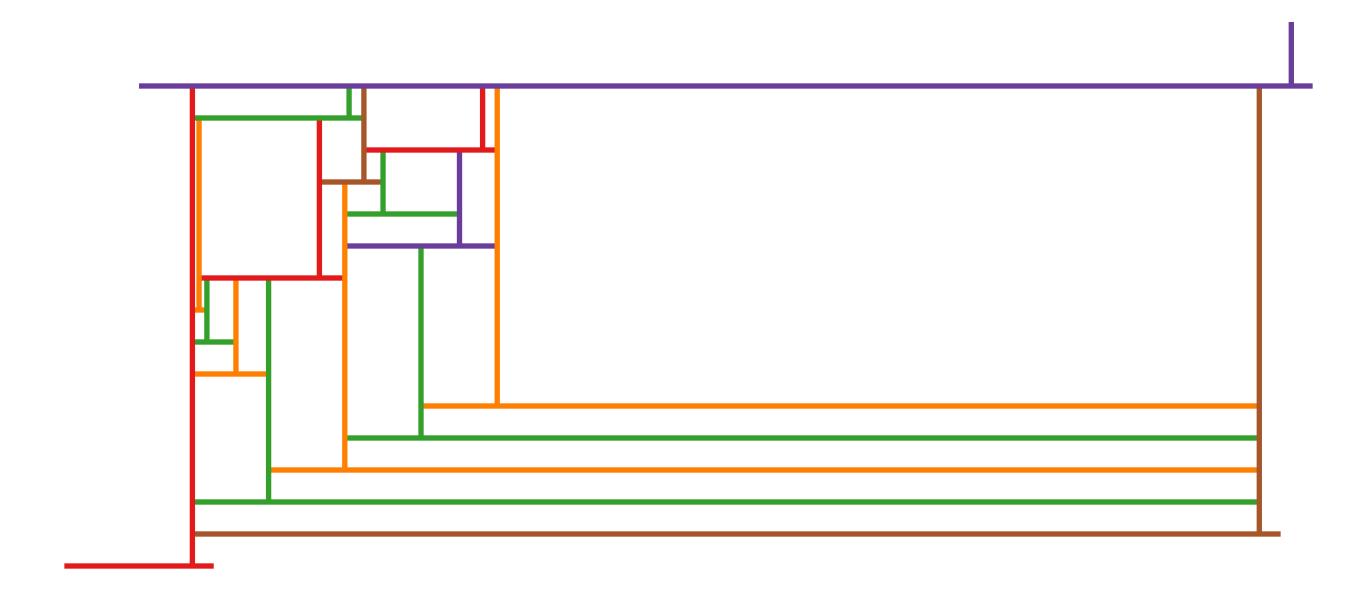


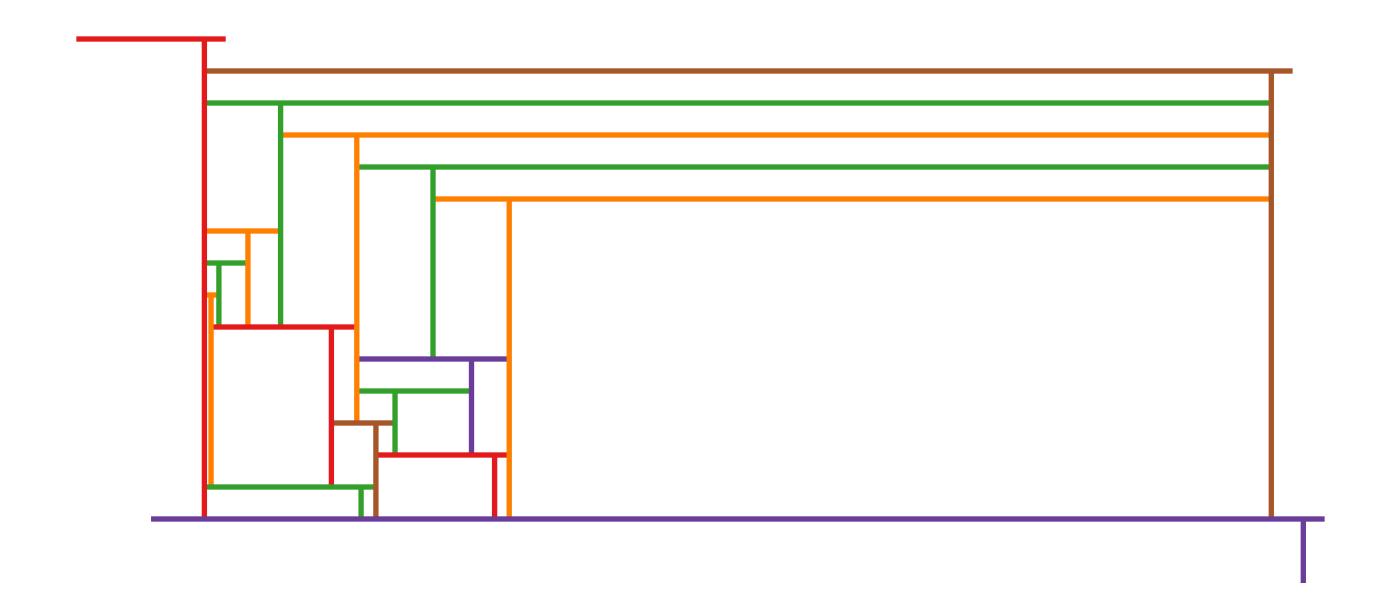








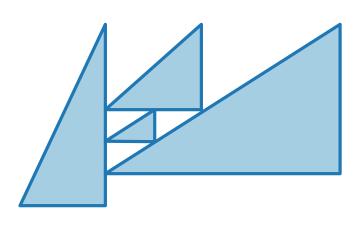




Visualization of Graphs

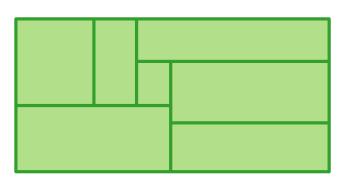
Lecture 8:

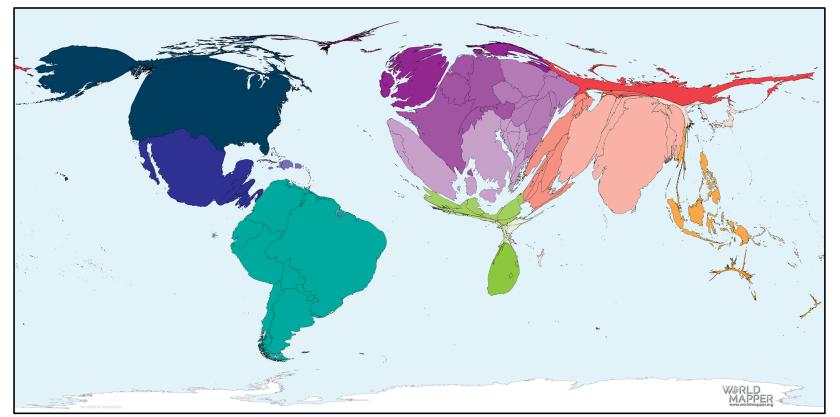
Conact Representations of Planar Graphs: Triangle Contacts and Rectangular Duals



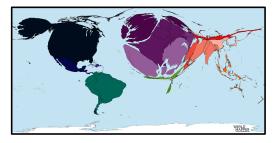
Part III: Rectangular Duals

Jonathan Klawitter

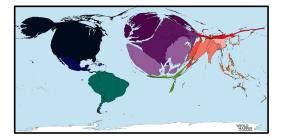




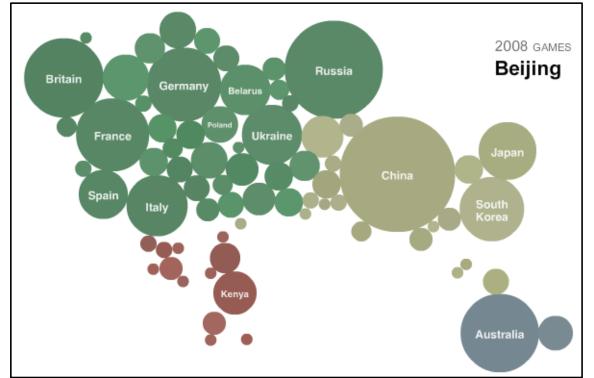
COVID19 reported deaths (January 1, 2021)

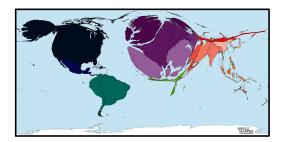


© worldmapper.org

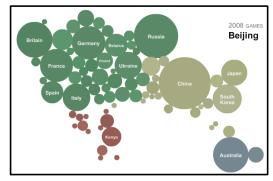


© worldmapper.org

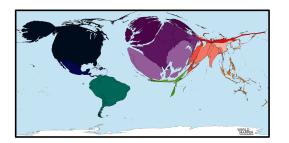




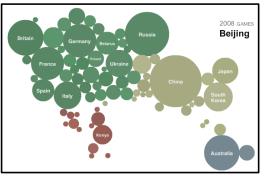
© worldmapper.org



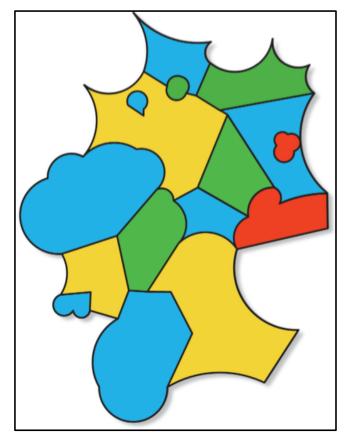
© New York Times

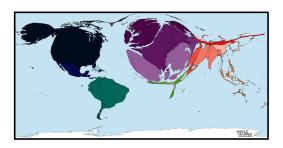


© worldmapper.org

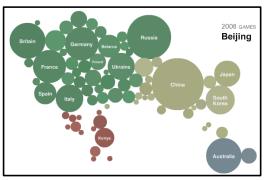


© New York Times

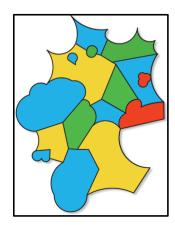


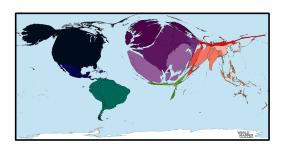


© worldmapper.org

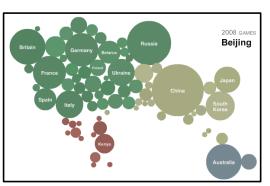


© New York Times

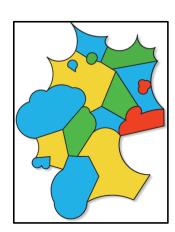


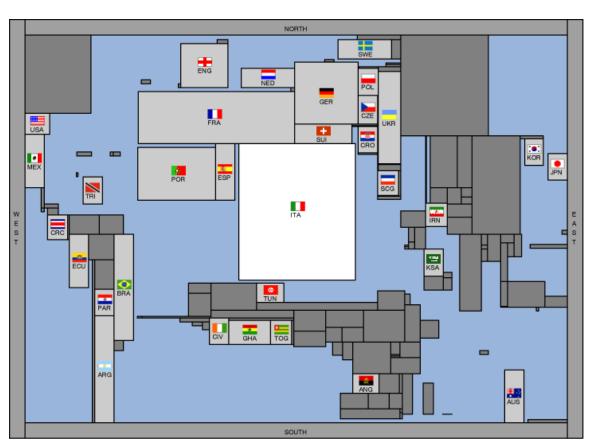


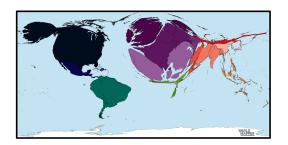
© worldmapper.org



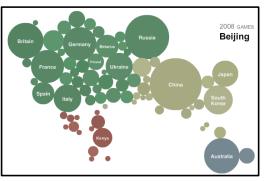
© New York Times



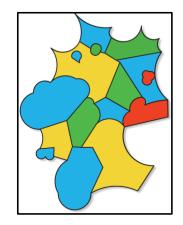


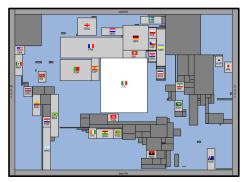


© worldmapper.org

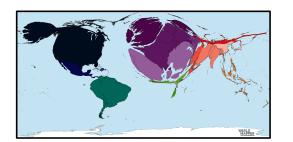


© New York Times

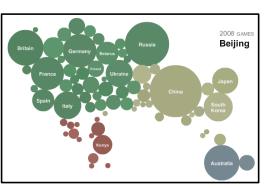




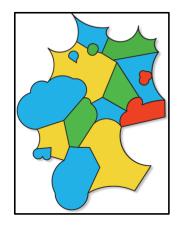
© Bettina Speckmann

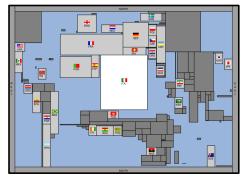


© worldmapper.org

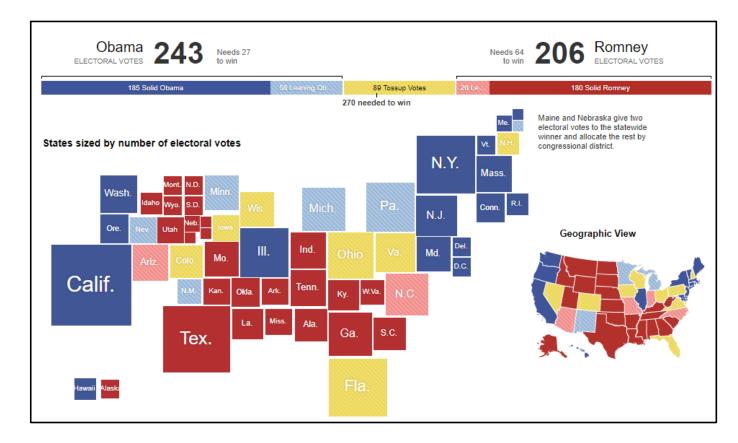


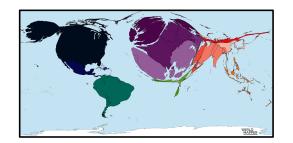
© New York Times



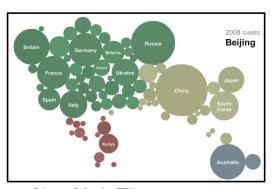


© Bettina Speckmann

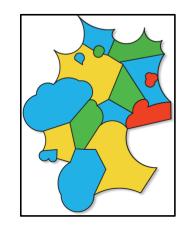




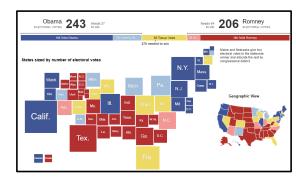
© worldmapper.org



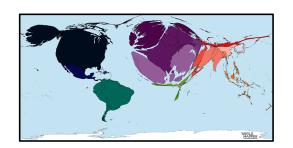
© New York Times



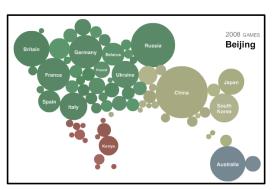
© Bettina Speckmann



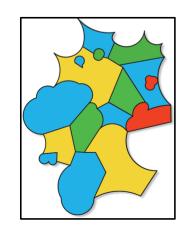
© New York Times



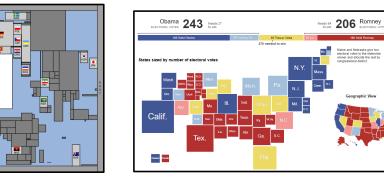
© worldmapper.org



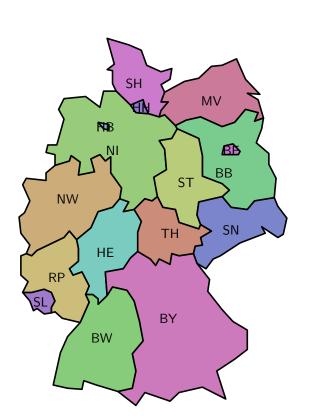
© New York Times

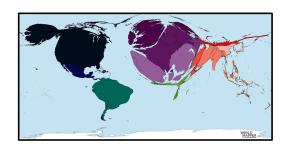


© Bettina Speckmann

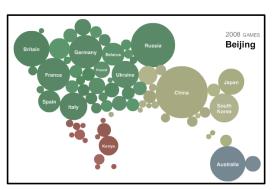


© New York Times

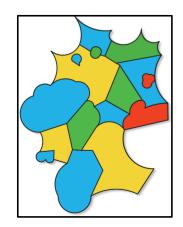




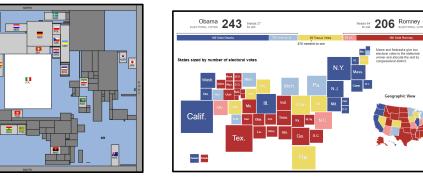
© worldmapper.org



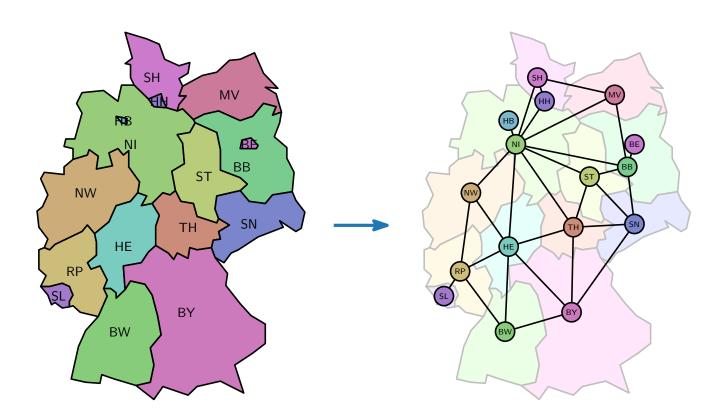
© New York Times



© Bettina Speckmann

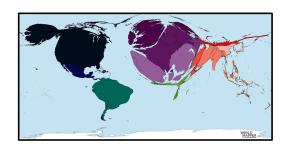


© New York Times

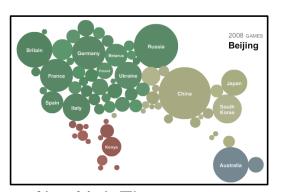


Needs 64 206 Romney ELECTORAL VOTI

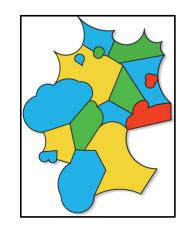
Cartograms



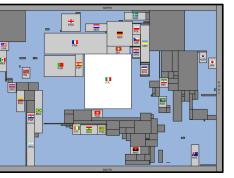
© worldmapper.org



© New York Times

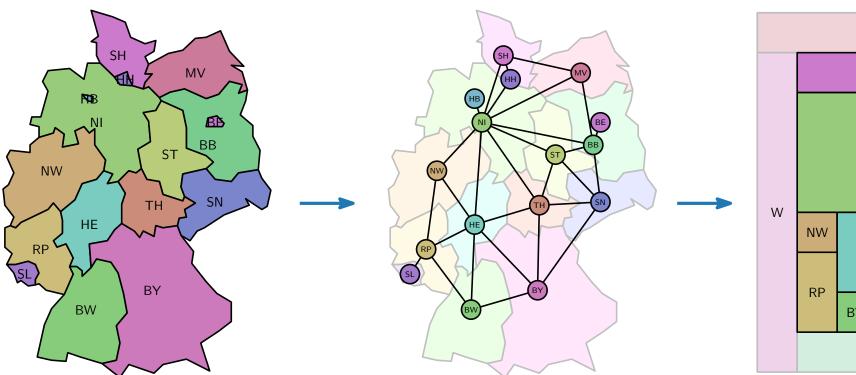


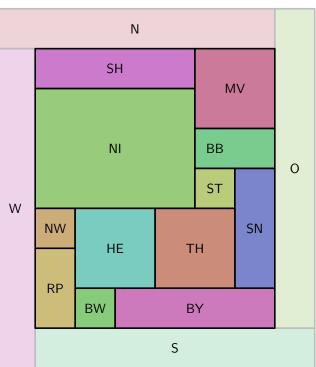
© Bettina Speckmann



© New York Times

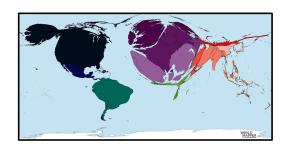
Obama 243 Needs 27 to win



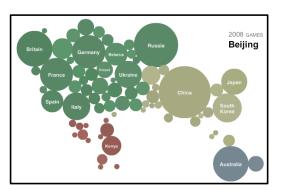


Needs 64 206 Romney ELECTORAL VOTI

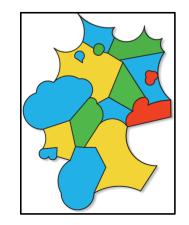
Cartograms



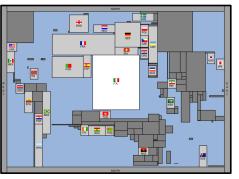
© worldmapper.org



© New York Times

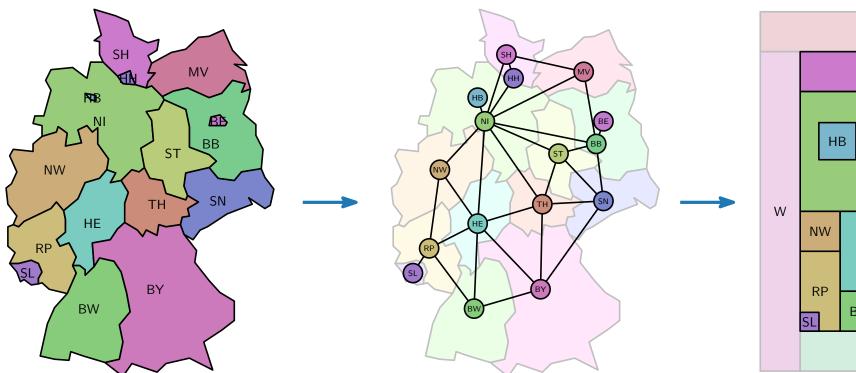


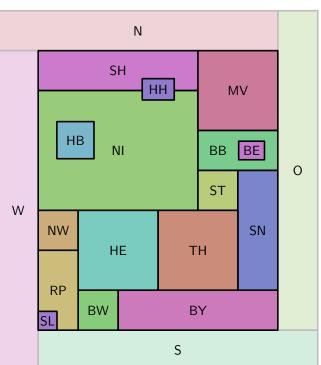
© Bettina Speckmann

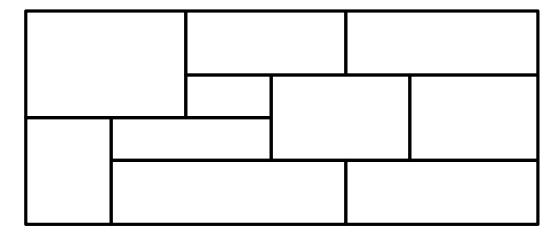


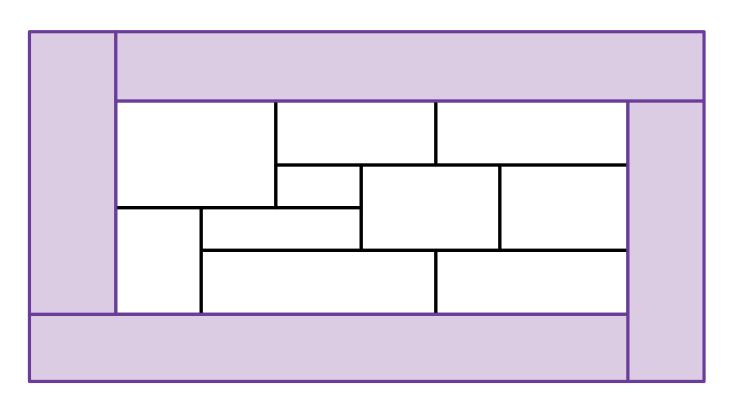
© New York Times

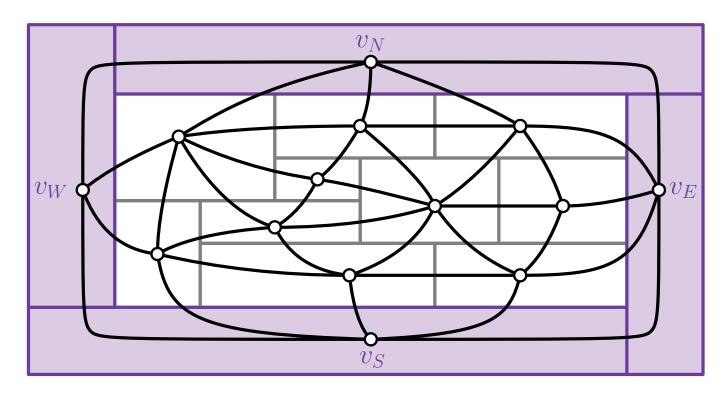
Obama 243 Needs 27 to win

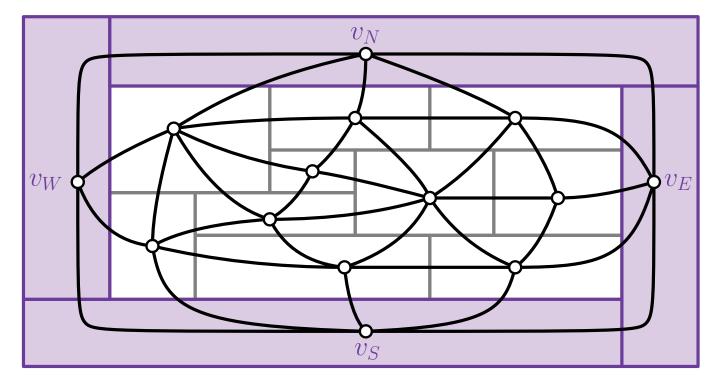


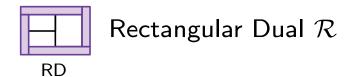




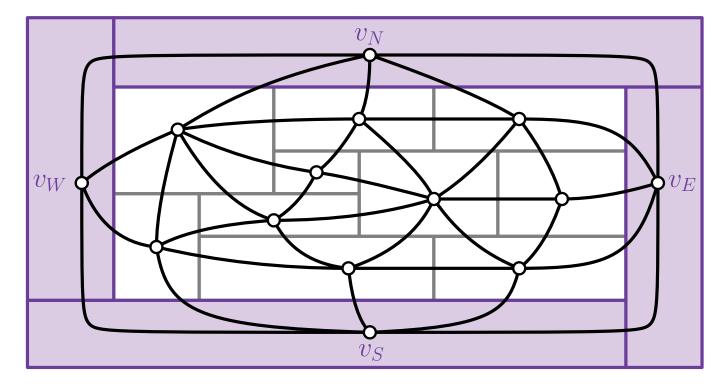








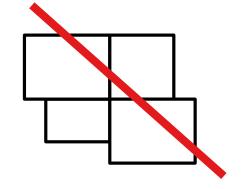
A **rectangular dual** of a graph G is a contact representation with axis aligned rectangles s.t.

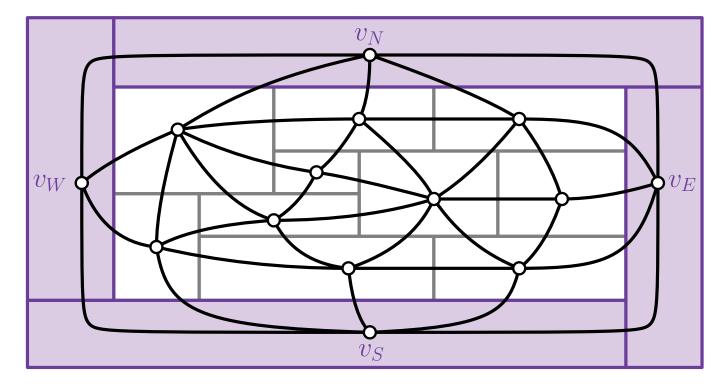


Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

no four rectangles share a point,

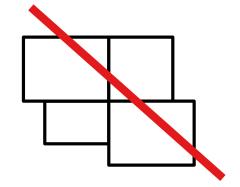


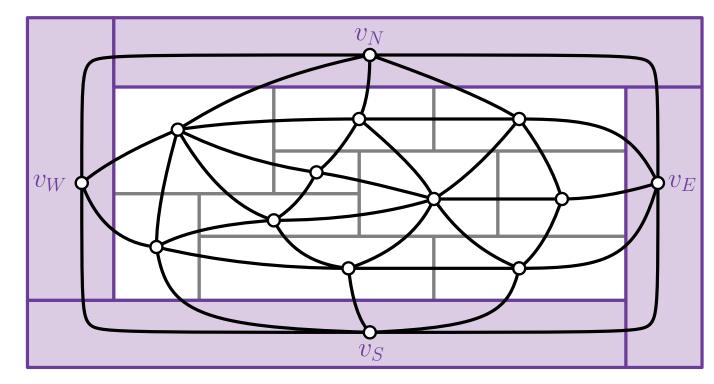


Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

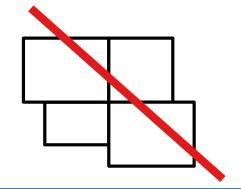




 \square Rectangular Dual $\mathcal R$

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle



Theorem.

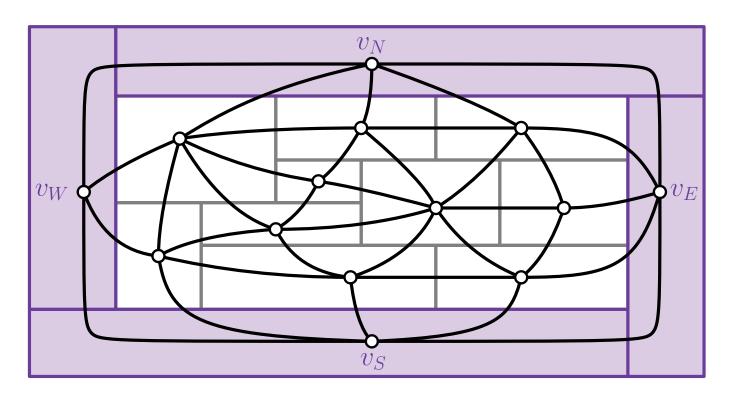
RD

[Koźmiński, Kinnen '85]

A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

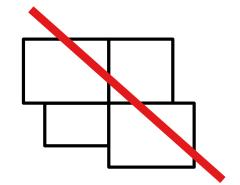
Properly Triangulated Planar Graph ${\cal G}$

Rectangular Dual ${\mathcal R}$



A **rectangular dual** of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle



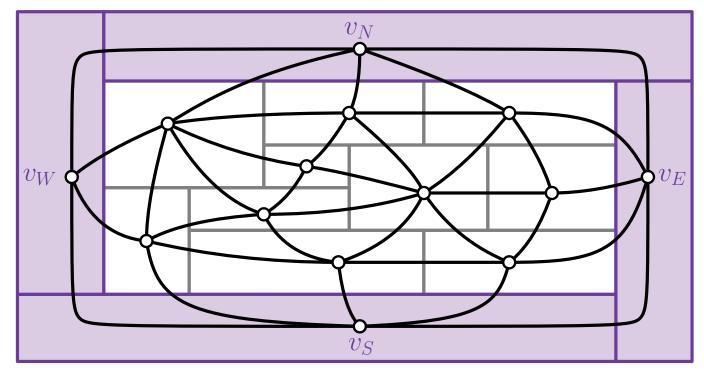
Theorem.

[Koźmiński, Kinnen '85]

A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

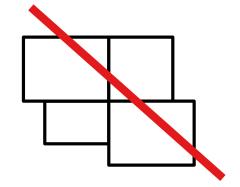
Properly Triangulated Planar Graph G

Rectangular Dual ${\mathcal R}$



A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

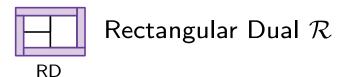
- no four rectangles share a point, and
- the union of all rectangles is a rectangle

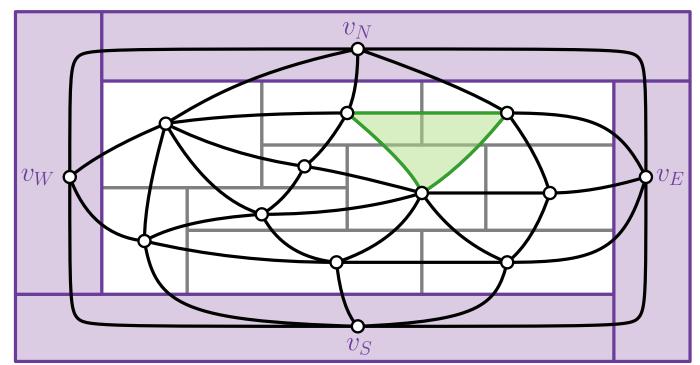


Theorem.

[Koźmiński, Kinnen '85]

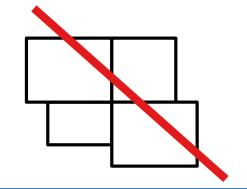
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.





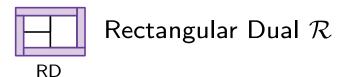
A **rectangular dual** of a graph G is a contact representation with axis aligned rectangles s.t.

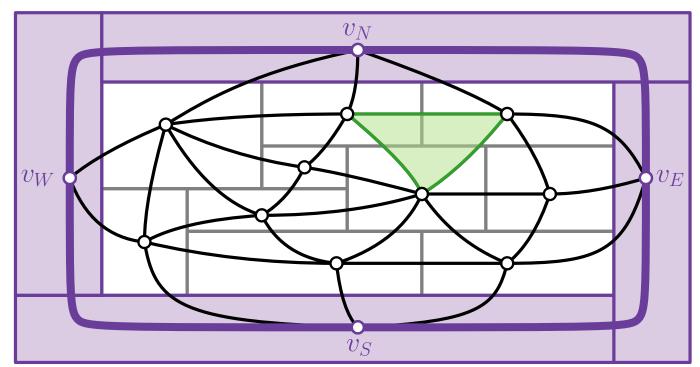
- no four rectangles share a point, and
- the union of all rectangles is a rectangle



Theorem.

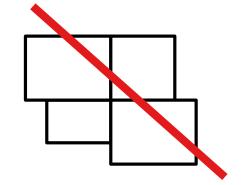
[Koźmiński, Kinnen '85]





A **rectangular dual** of a graph G is a contact representation with axis aligned rectangles s.t.

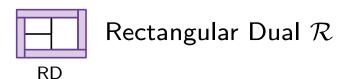
- no four rectangles share a point, and
- the union of all rectangles is a rectangle

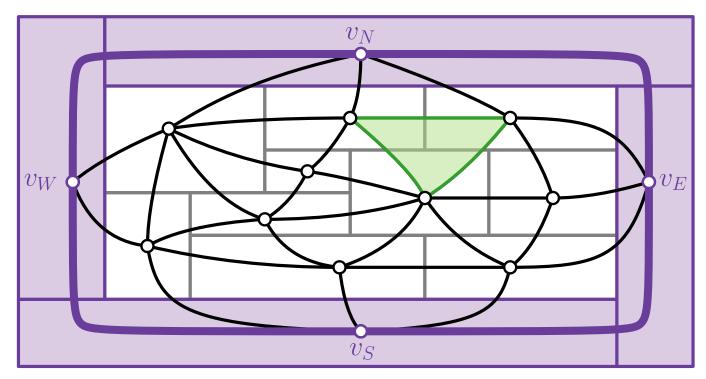


Theorem.

[Koźmiński, Kinnen '85]

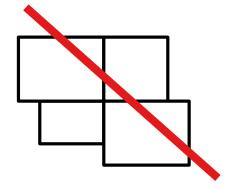
Exactly 4 vertices on outer face





A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

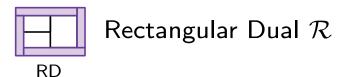


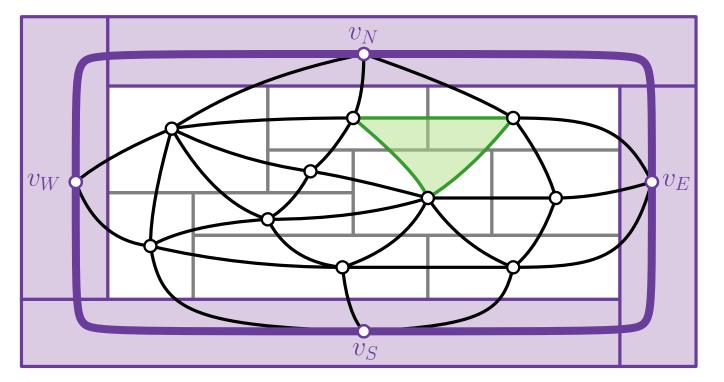
Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face



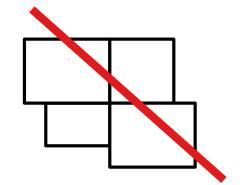




no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

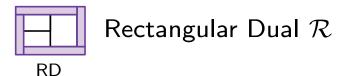
- no four rectangles share a point, and
- the union of all rectangles is a rectangle

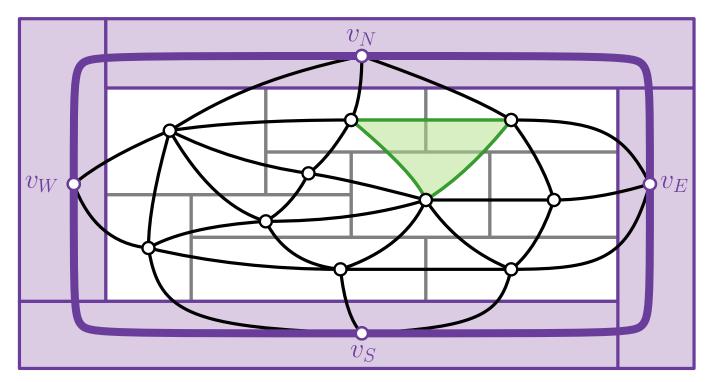


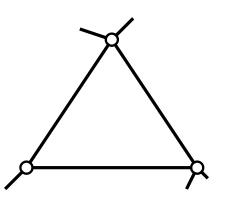
Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face



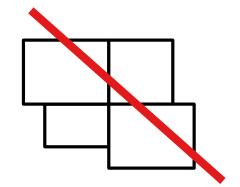




no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

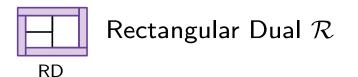
- no four rectangles share a point, and
- the union of all rectangles is a rectangle

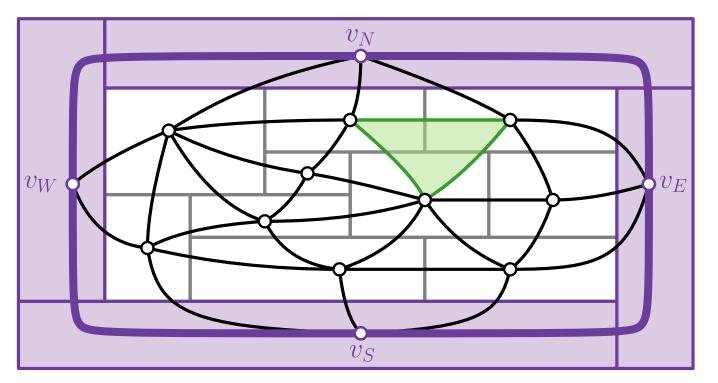


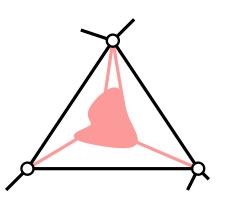
Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face



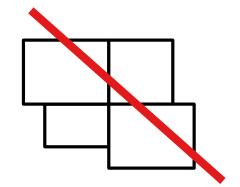




no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

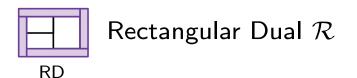
- no four rectangles share a point, and
- the union of all rectangles is a rectangle

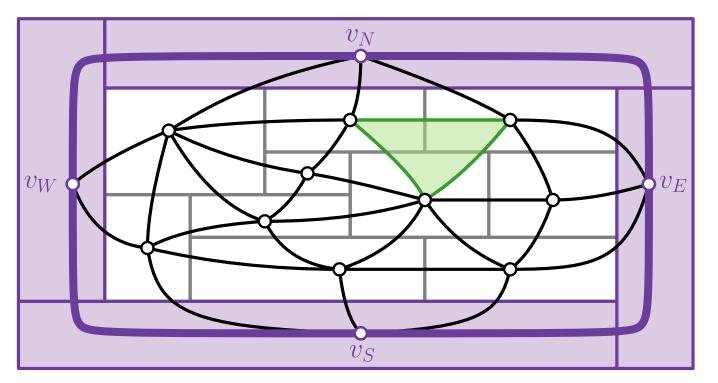


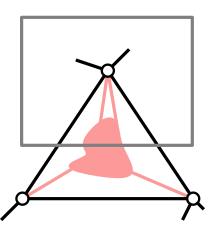
Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face



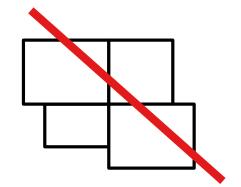




no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

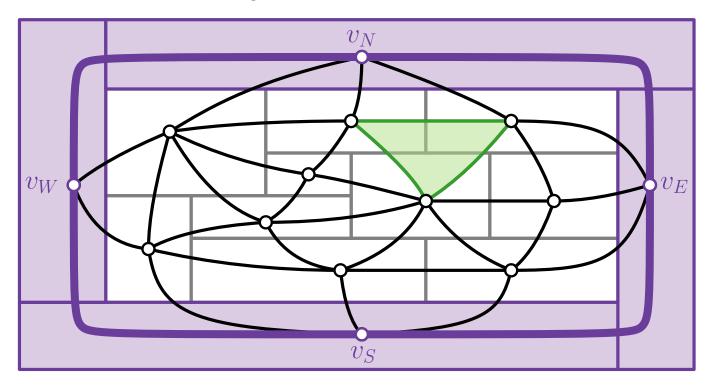
- no four rectangles share a point, and
- the union of all rectangles is a rectangle

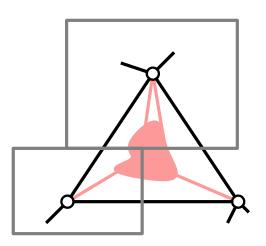


Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face

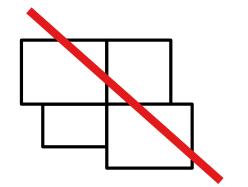




no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

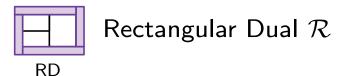
- no four rectangles share a point, and
- the union of all rectangles is a rectangle

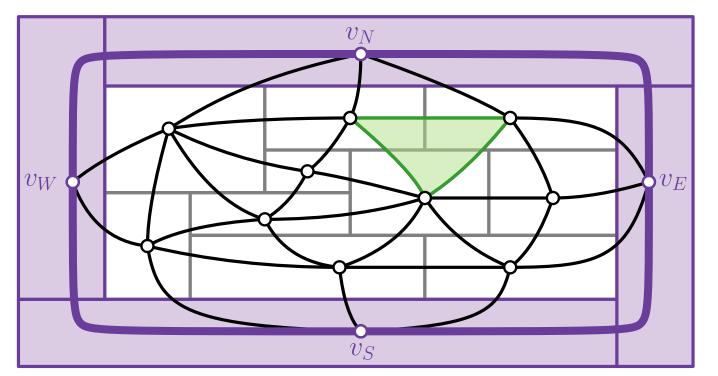


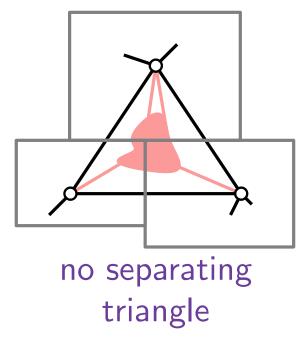
Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face

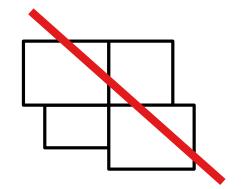






A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

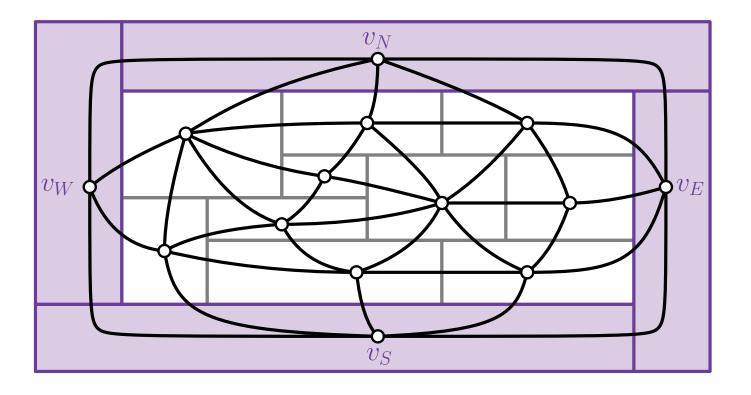
- no four rectangles share a point, and
- the union of all rectangles is a rectangle



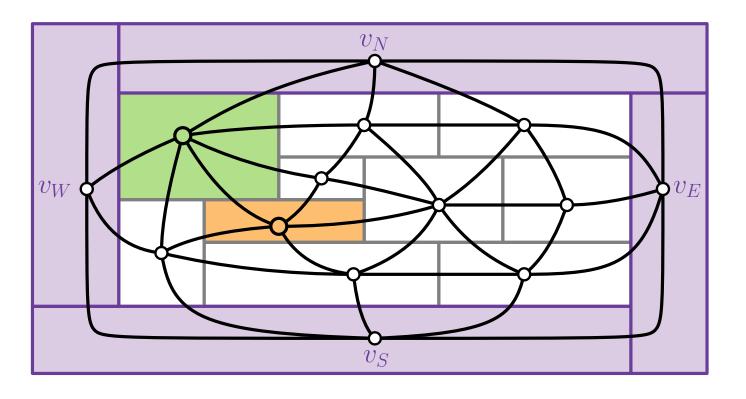
Theorem.

[Koźmiński, Kinnen '85]

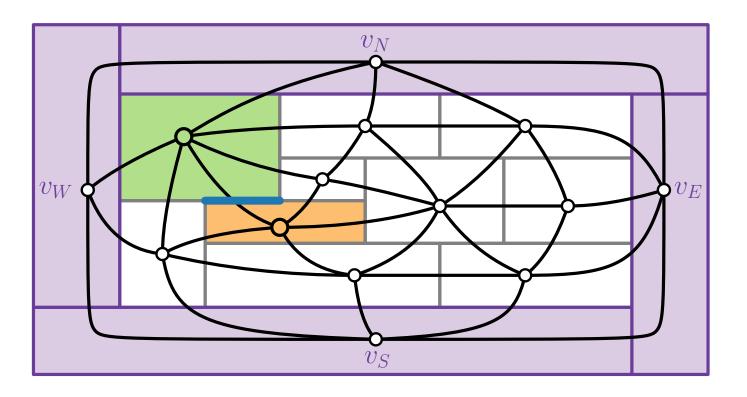
Properly Triangulated Planar Graph ${\cal G}$



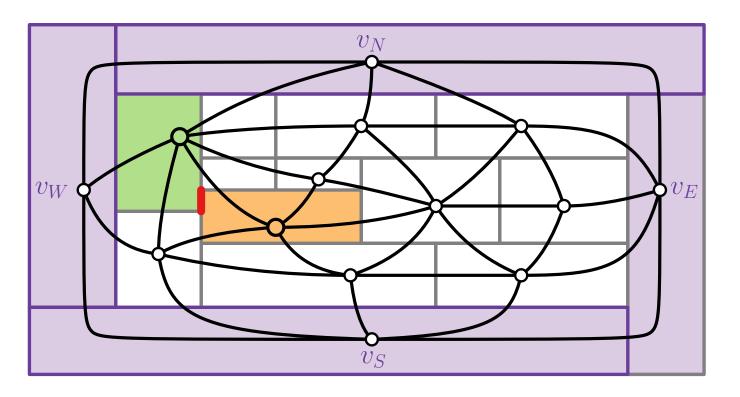
Properly Triangulated Planar Graph ${\cal G}$



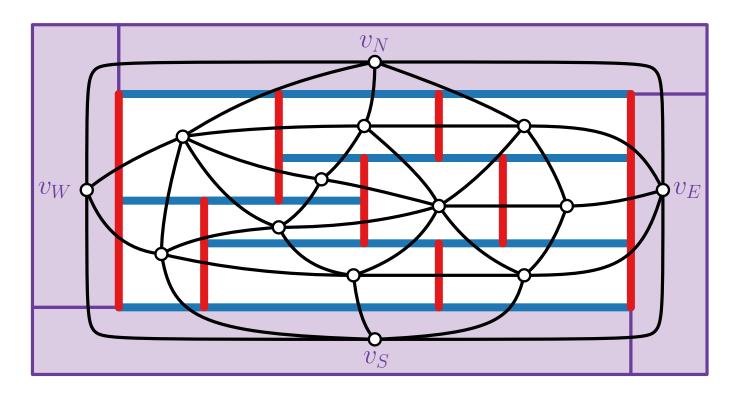
Properly Triangulated Planar Graph ${\cal G}$



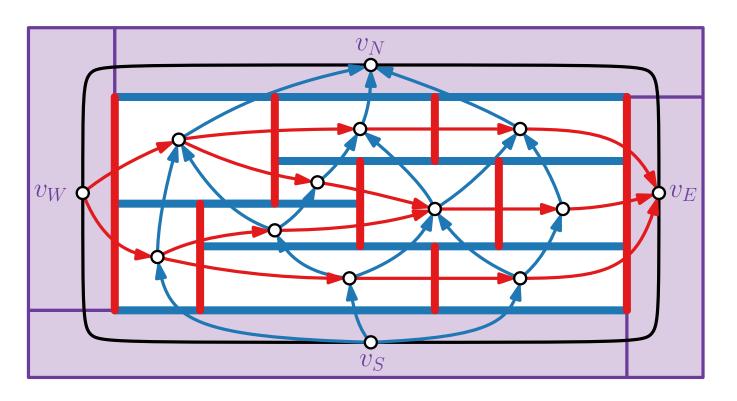
Properly Triangulated Planar Graph ${\cal G}$



Properly Triangulated Planar Graph ${\cal G}$



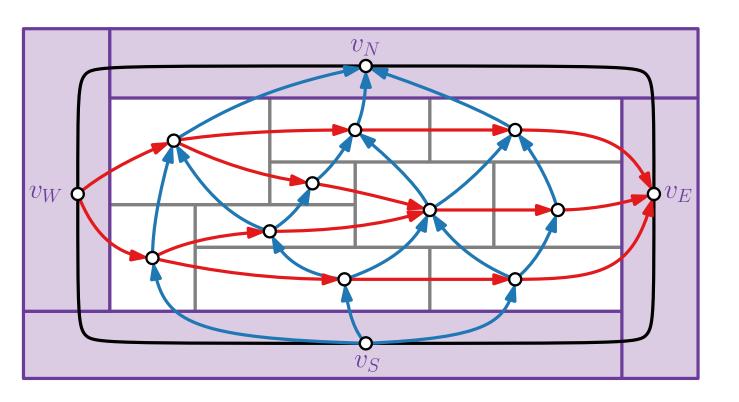
Properly Triangulated Planar Graph ${\cal G}$



Properly Triangulated ${\sf Planar} \,\, {\sf Graph} \,\, G$

Regular Edge Labeling

RD

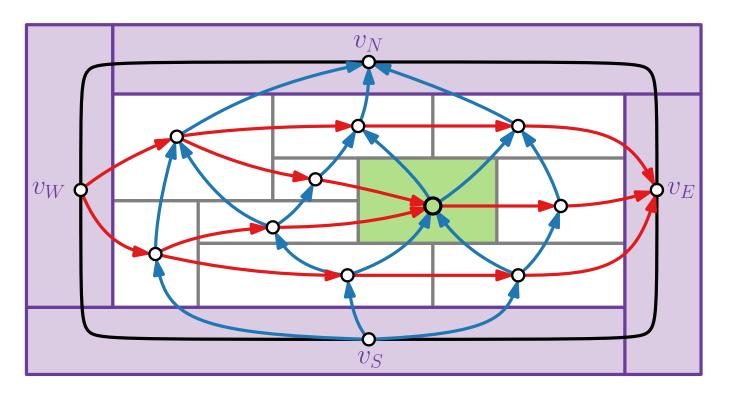


Properly Triangulated ${\sf Planar} \,\, {\sf Graph} \,\, G$

Regular Edge Labeling

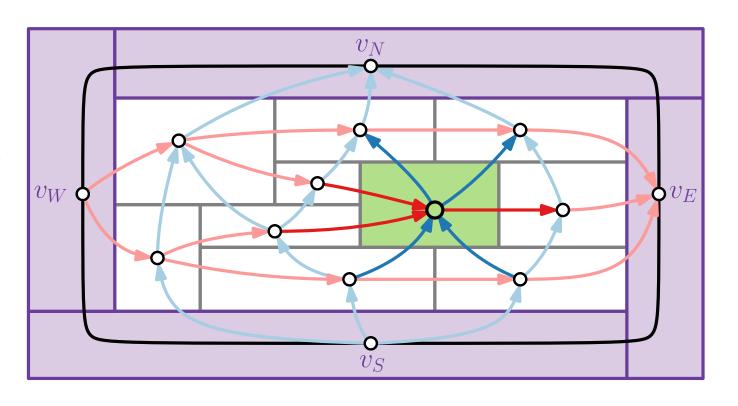
RD





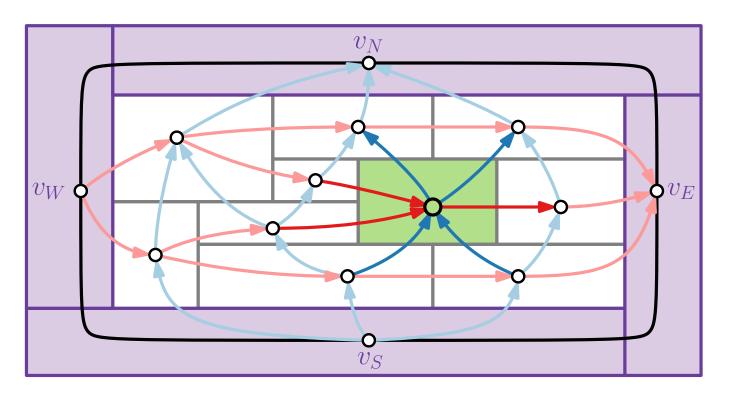
Properly Triangulated ${\sf Planar} \,\, {\sf Graph} \,\, G$

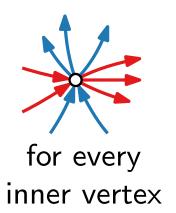
Regular Edge Labeling



Properly Triangulated ${\sf Planar} \,\, {\sf Graph} \,\, G$

Regular Edge Labeling

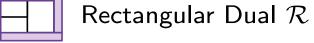


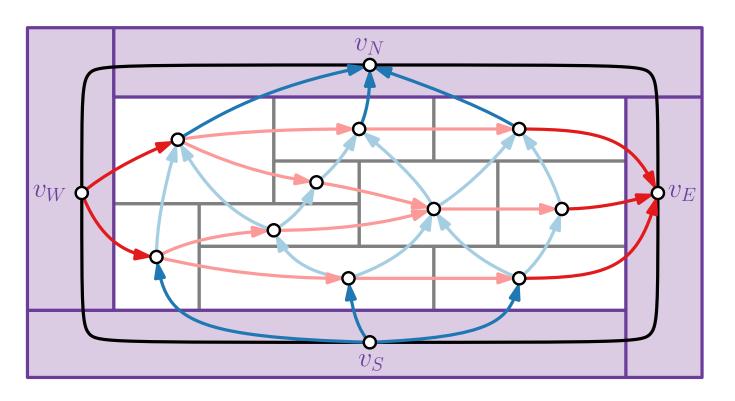


Properly Triangulated ${\sf Planar} \,\, {\sf Graph} \,\, G$

Regular Edge Labeling

RD



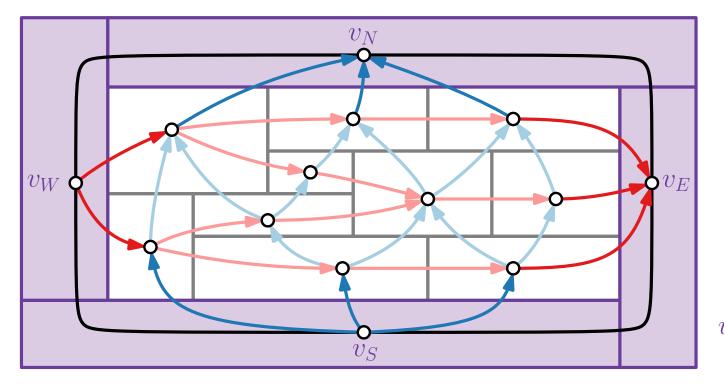


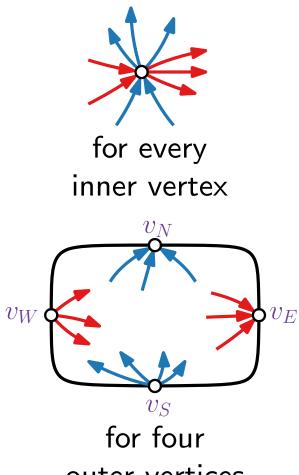


Properly Triangulated Planar Graph ${\cal G}$

Regular Edge Labeling

RD



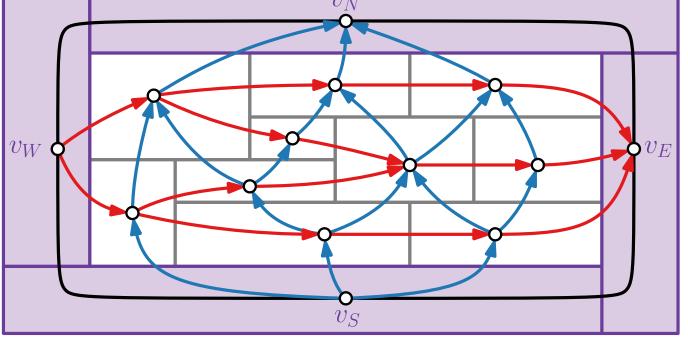


outer vertices

Properly Triangulated Planar Graph ${\cal G}$

Regular Edge Labeling

Rectangular Dual ${\mathcal R}$



 v_W v_E

for every

inner vertex

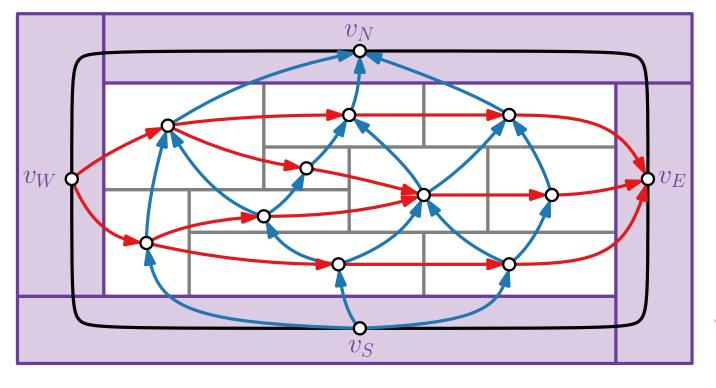
[Kant, He '94]: In linear time

for four outer vertices

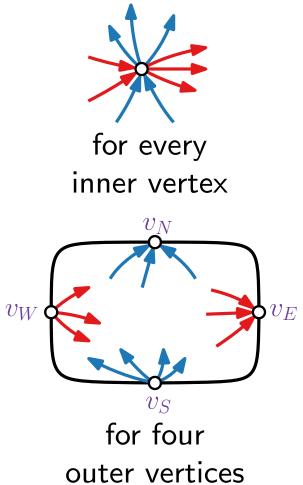
Properly Triangulated Planar Graph ${\cal G}$

Regular Edge Labeling

Rectangular Dual ${\mathcal R}$



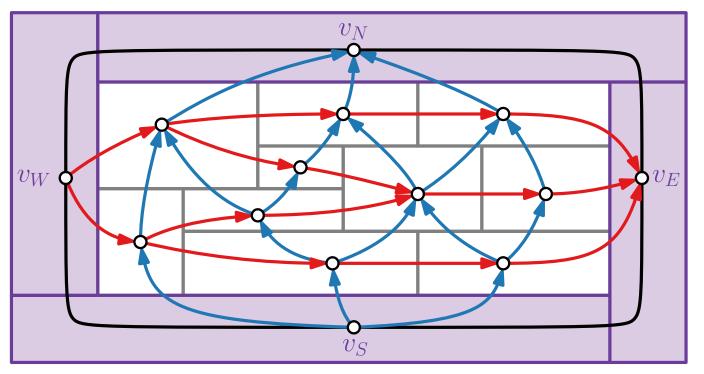
[Kant, He '94]: In linear time



Properly Triangulated Planar Graph G

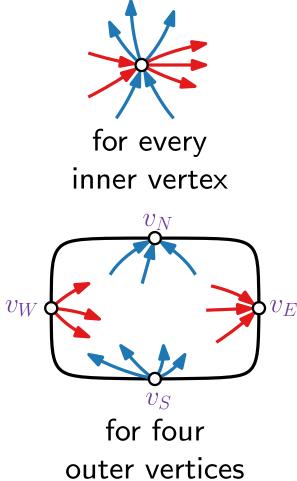
Regular Edge Labeling

Rectangular Dual ${\mathcal R}$



[Kant, He '94]: In linear time

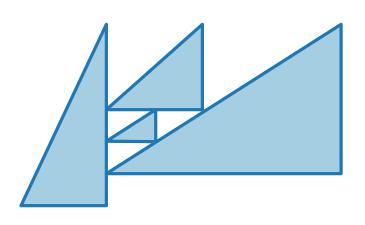




Visualization of Graphs

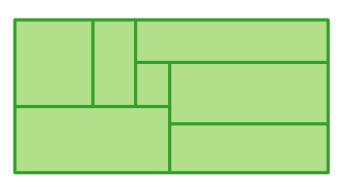
Lecture 8:

Conact Representations of Planar Graphs: Triangle Contacts and Rectangular Duals



Part IV: Computing a REL

Jonathan Klawitter



Theorem.

Let G be a PTP graph.

Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G s

Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

Theorem.

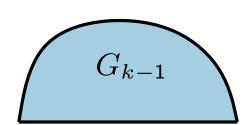
Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

■ The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected

Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

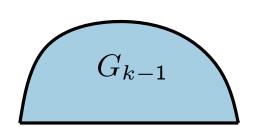
■ The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected



Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

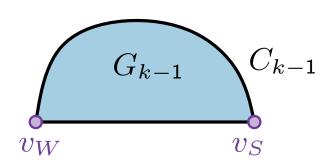
The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .



Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

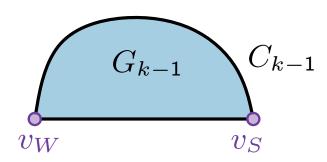
The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .



Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

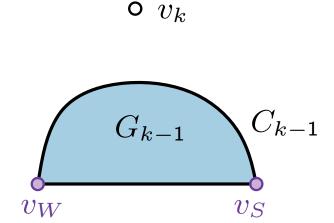
- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- lacksquare v_k is in exterior face of G_{k-1}



Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

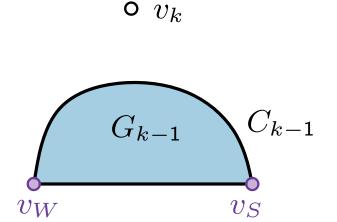
- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- lacksquare v_k is in exterior face of G_{k-1}



Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

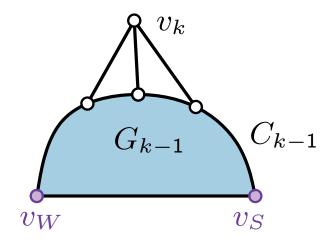
- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in exterior face of G_{k-1} , and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.



Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in exterior face of G_{k-1} , and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.

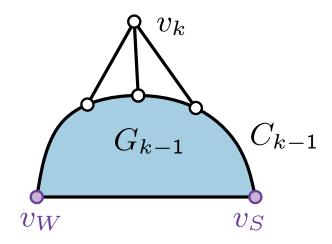


Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in exterior face of G_{k-1} , and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.
- If $k \le k-2$, then v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

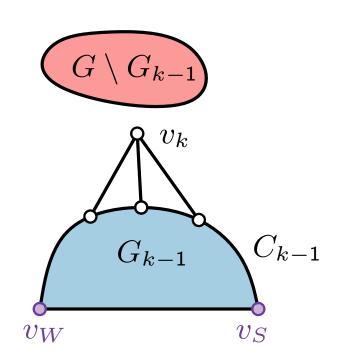


Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in exterior face of G_{k-1} , and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.
- If $k \le k-2$, then v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

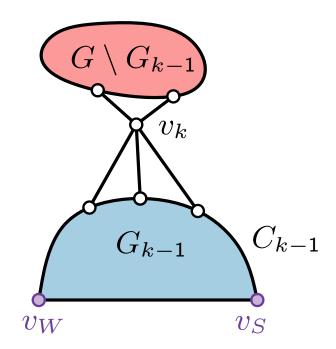


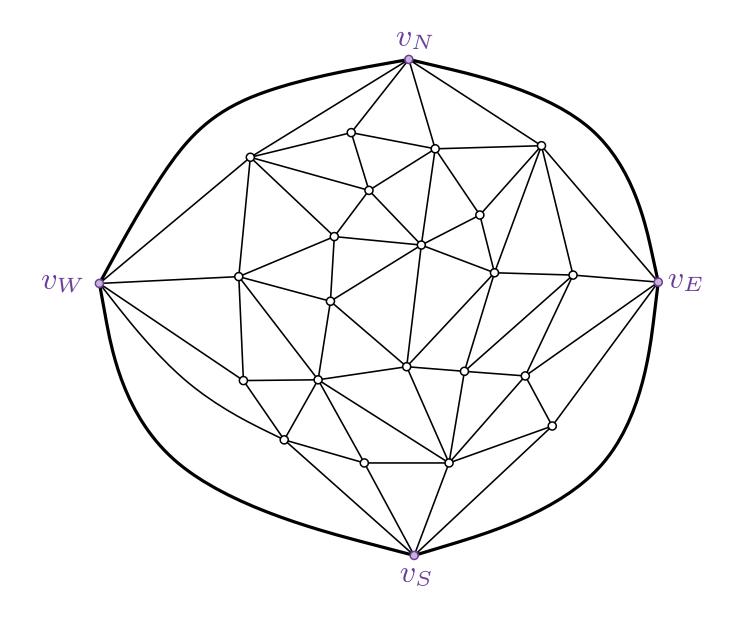
Refined Canonical Order

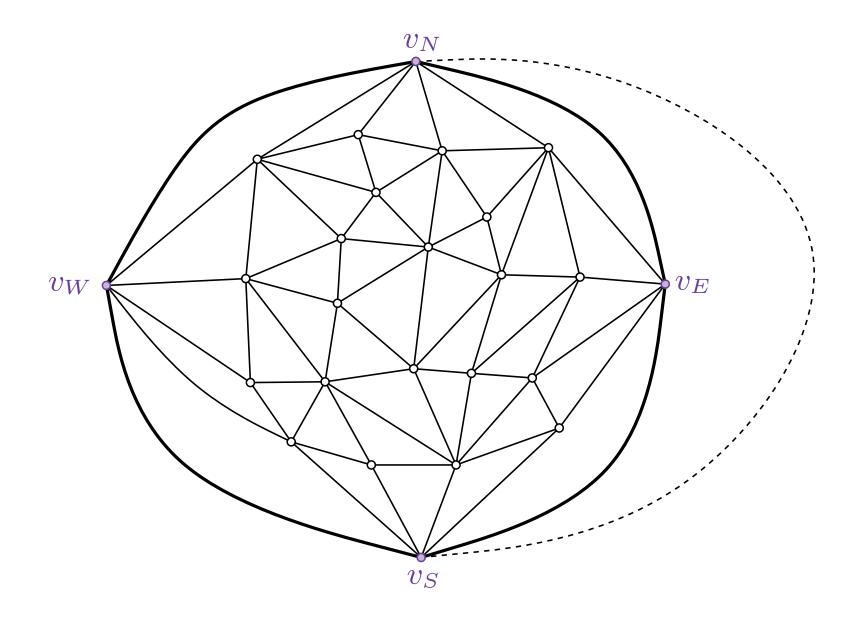
Theorem.

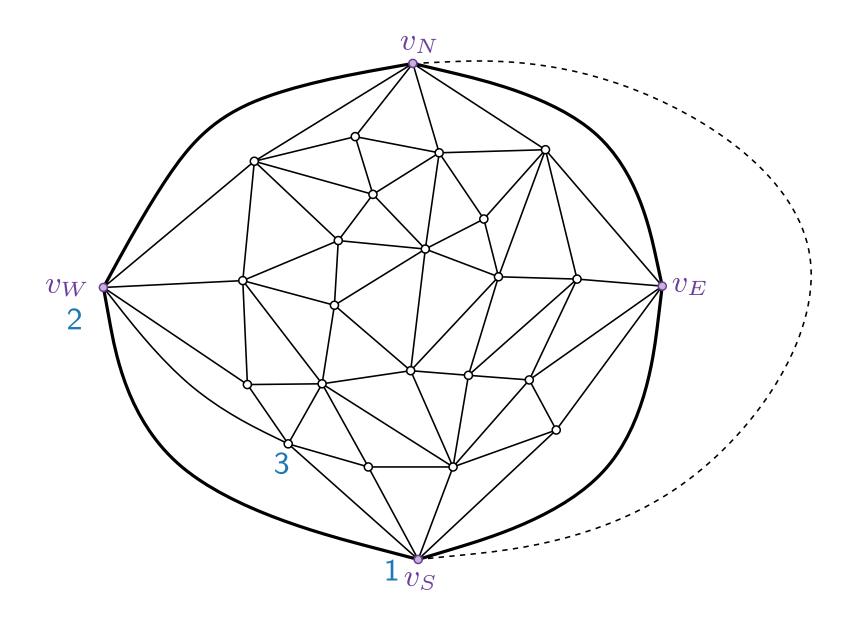
Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

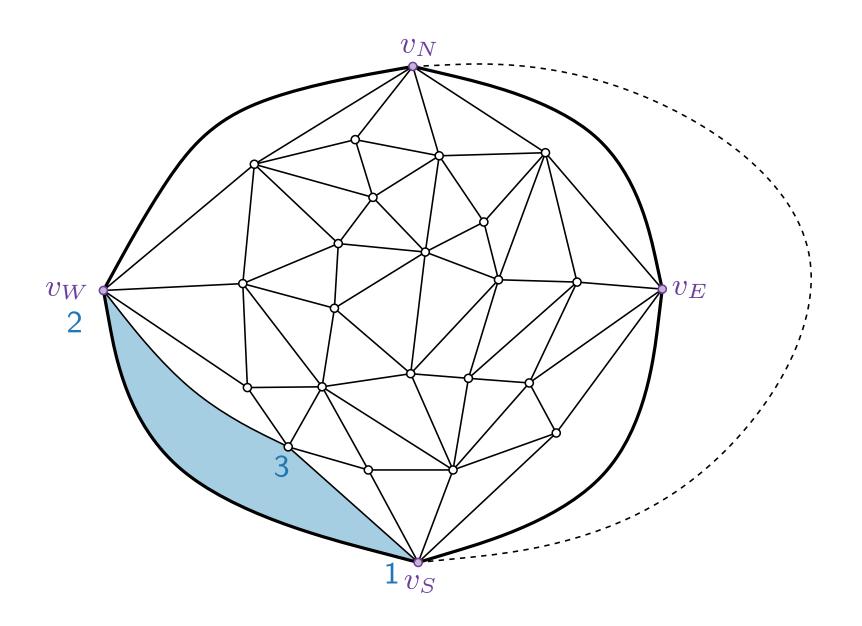
- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in exterior face of G_{k-1} , and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.
- If $k \le k-2$, then v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

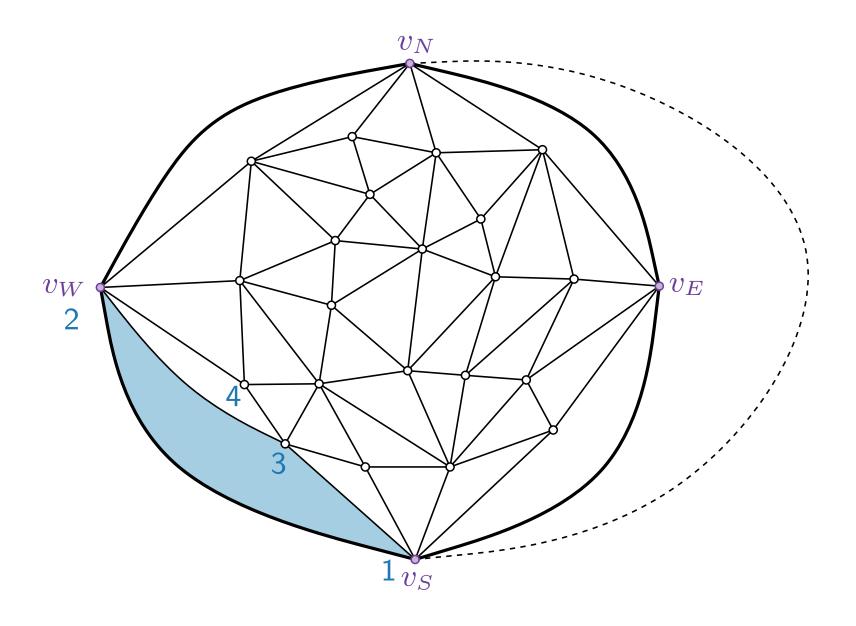


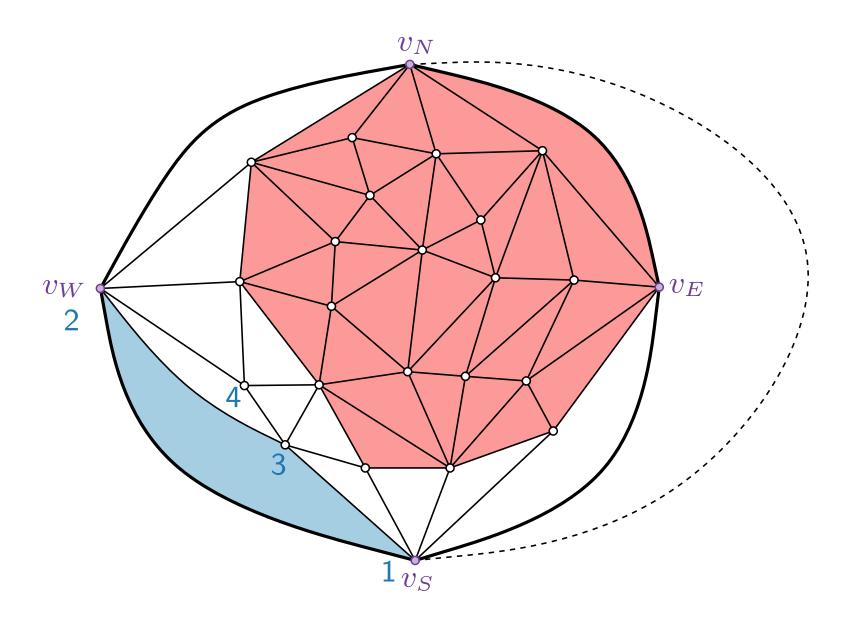


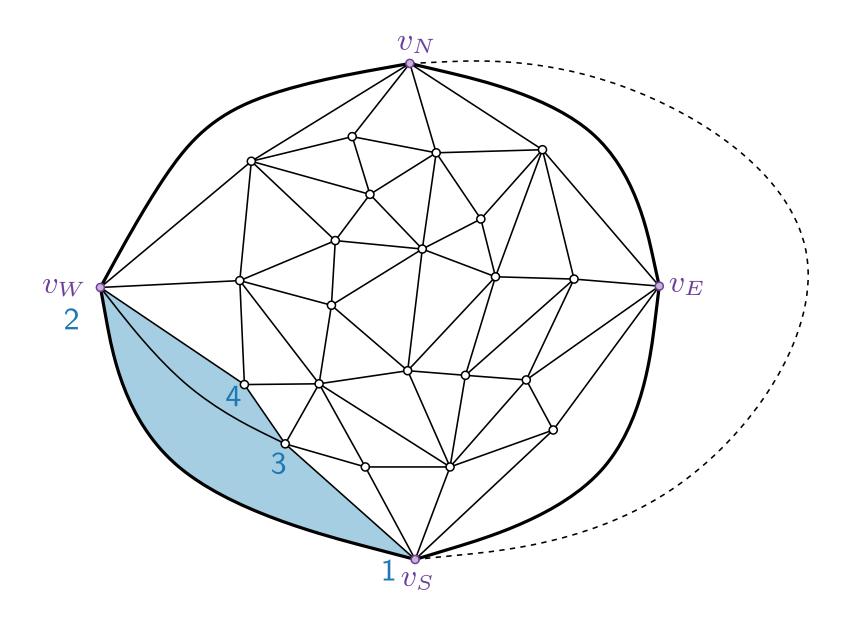


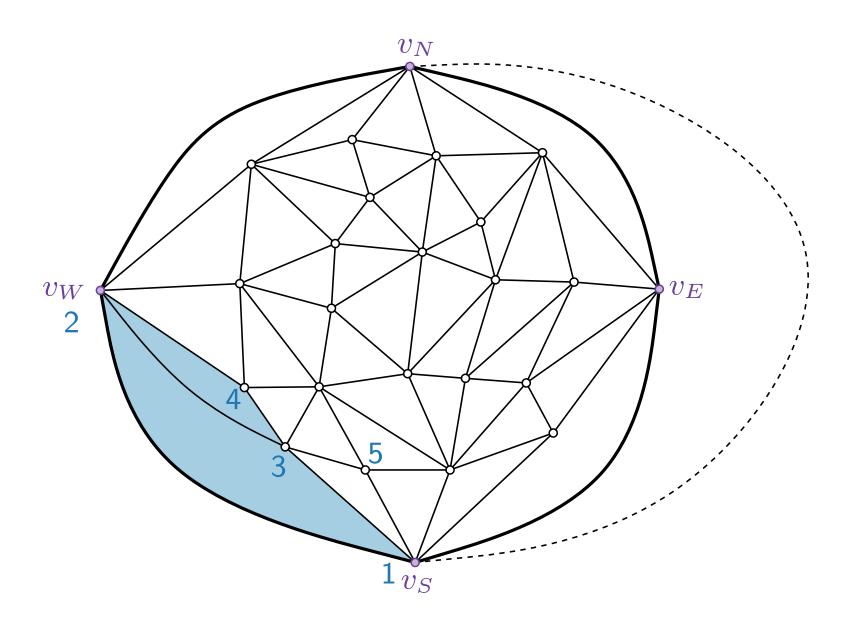


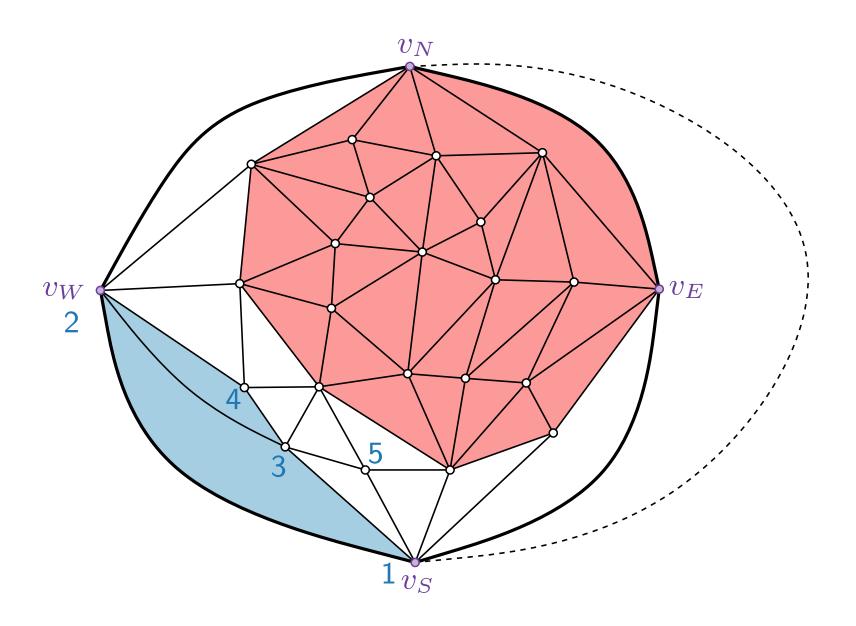


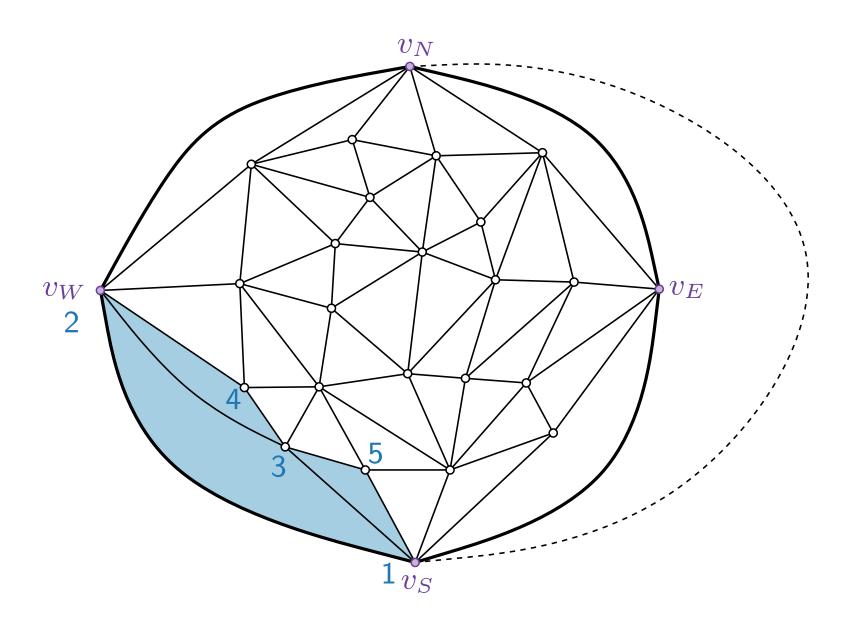


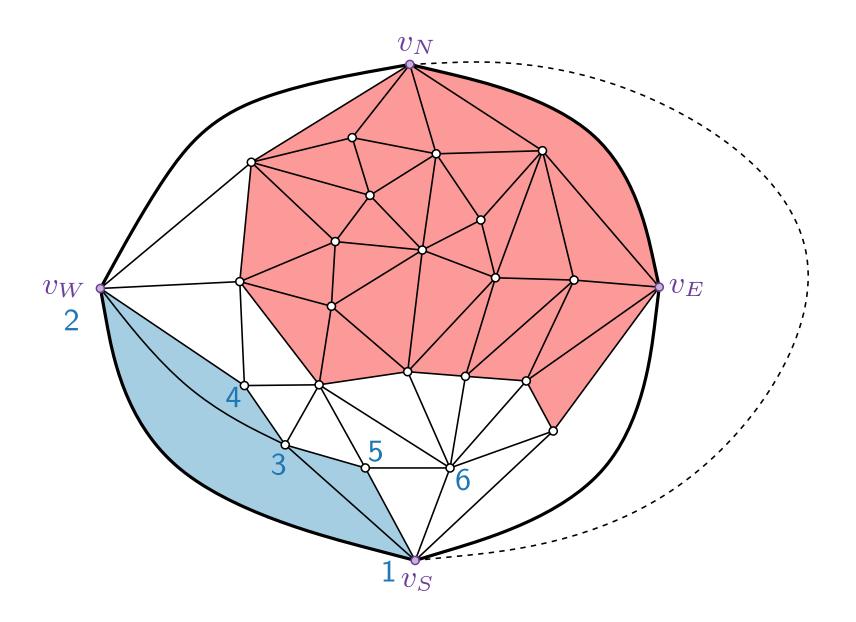


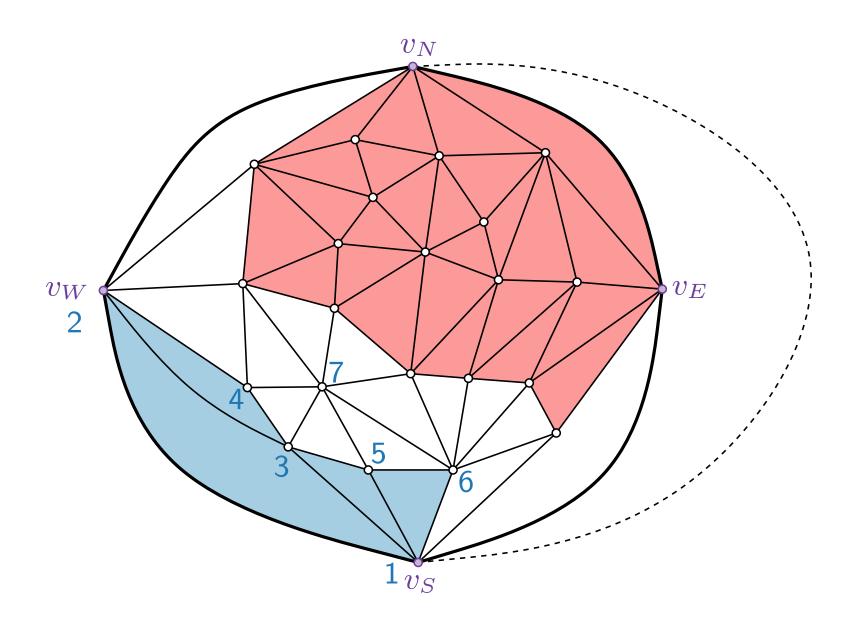




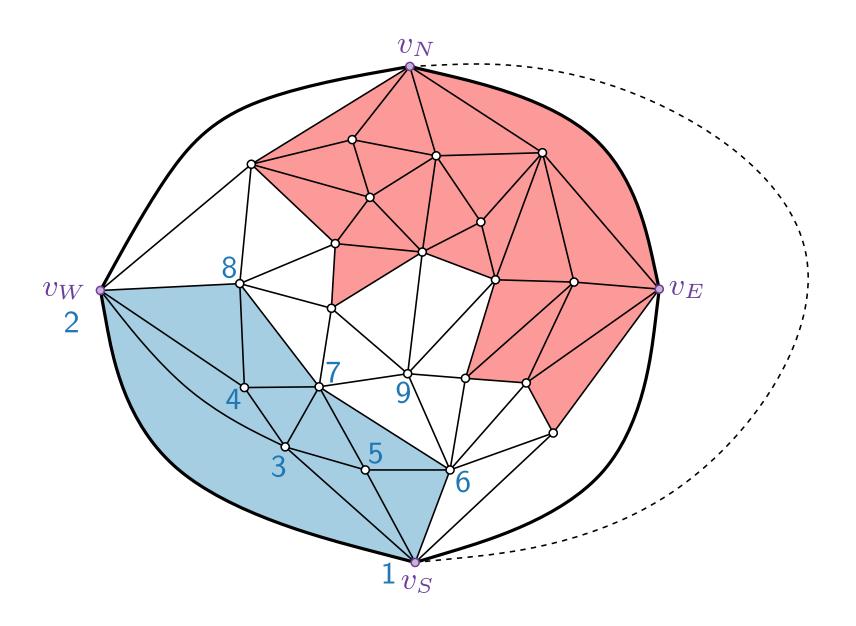


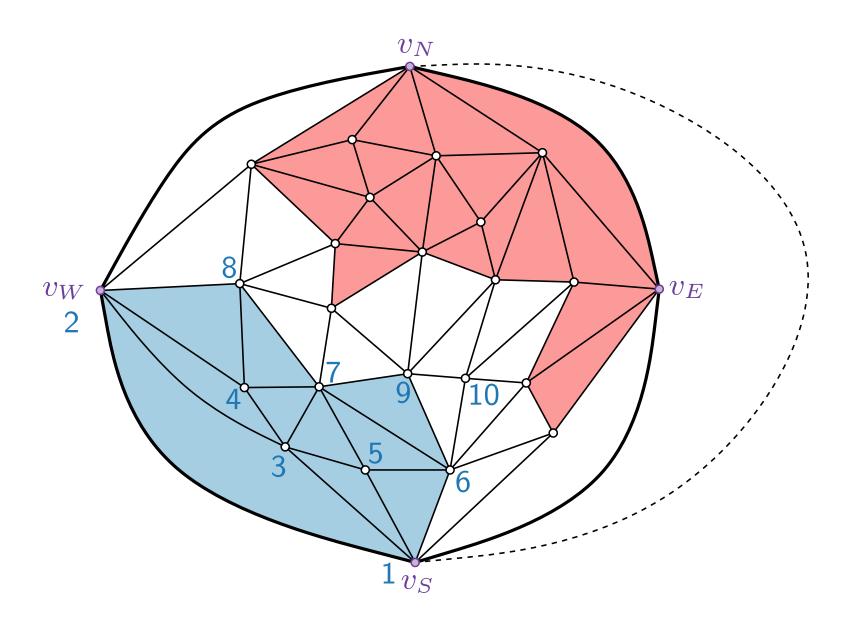


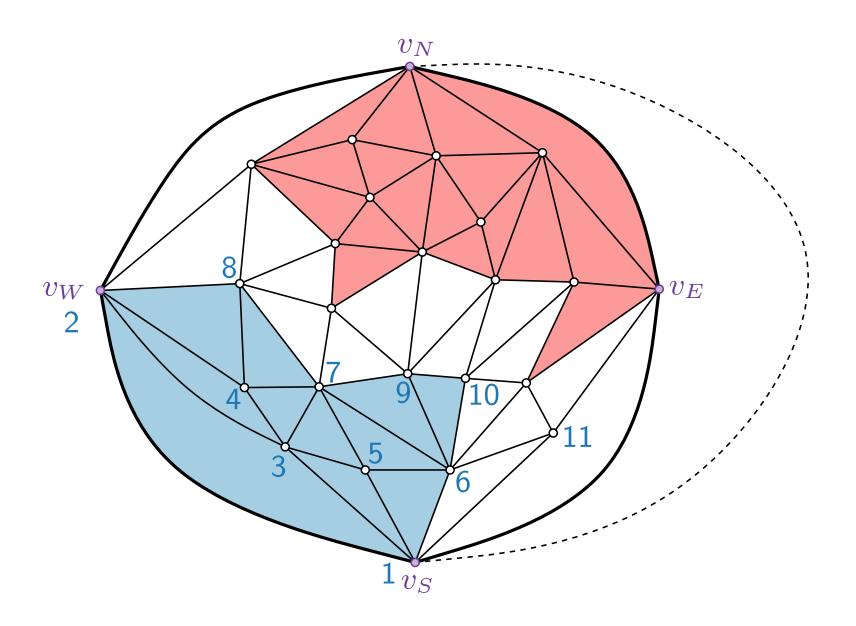


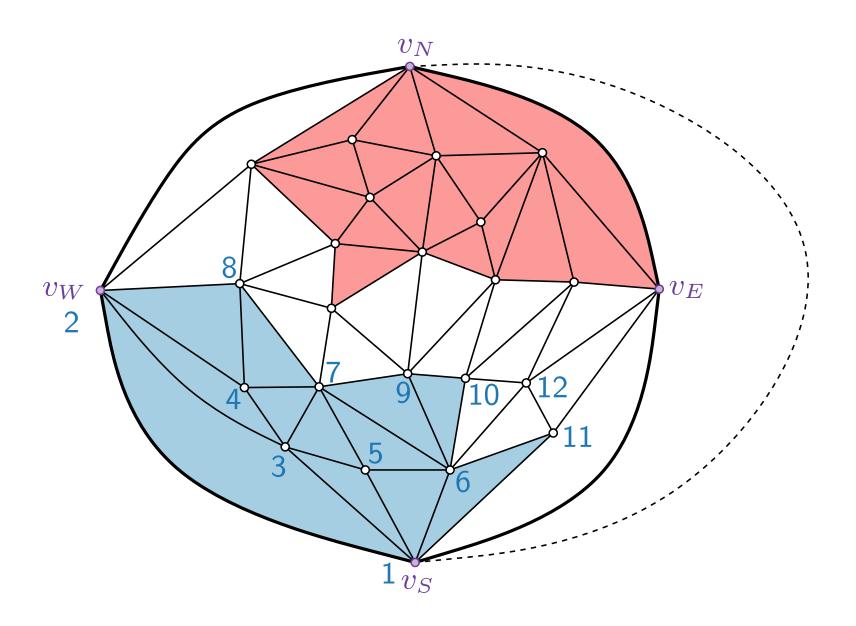


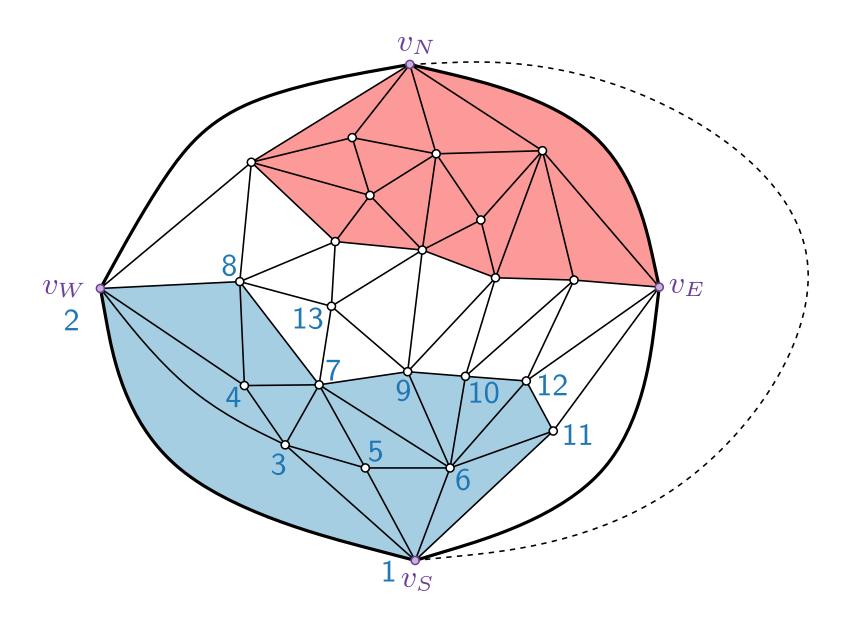


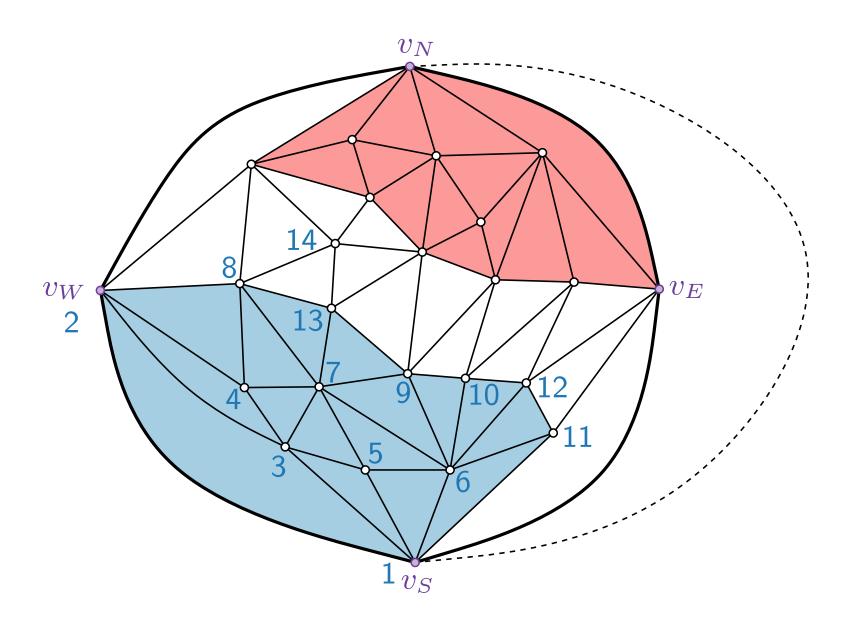


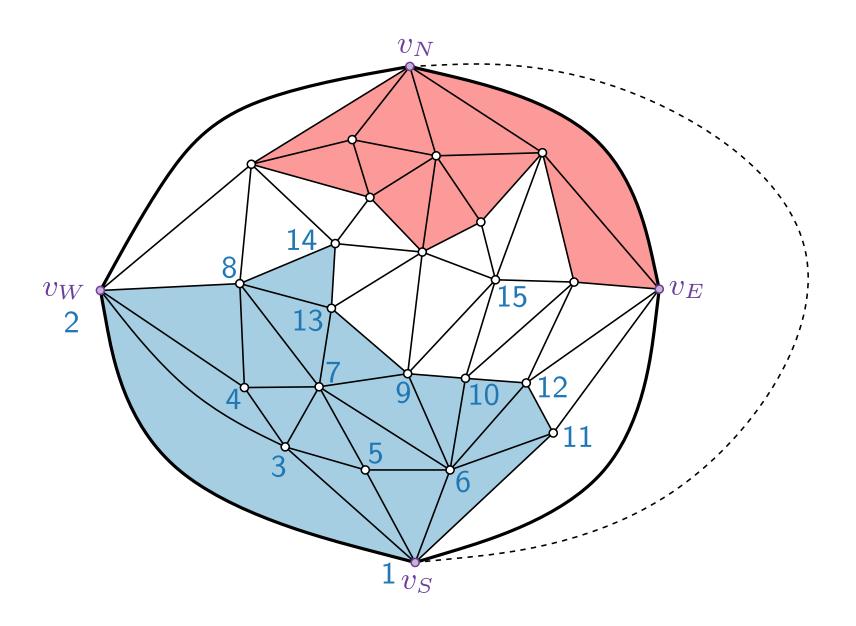


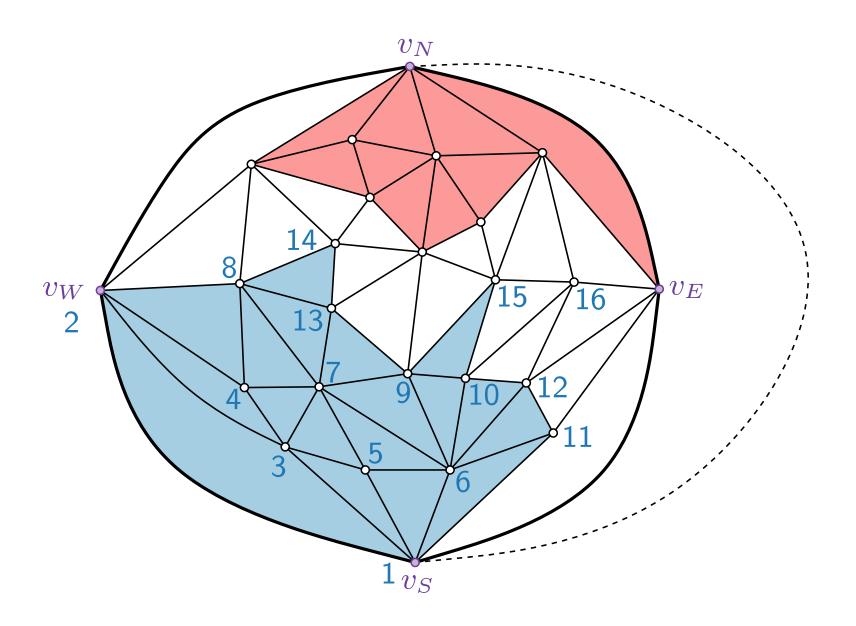


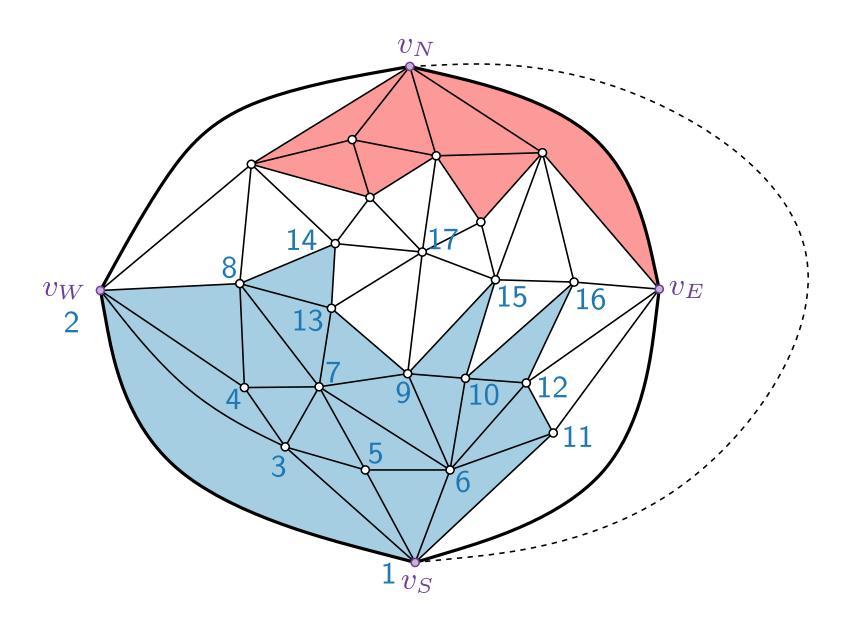


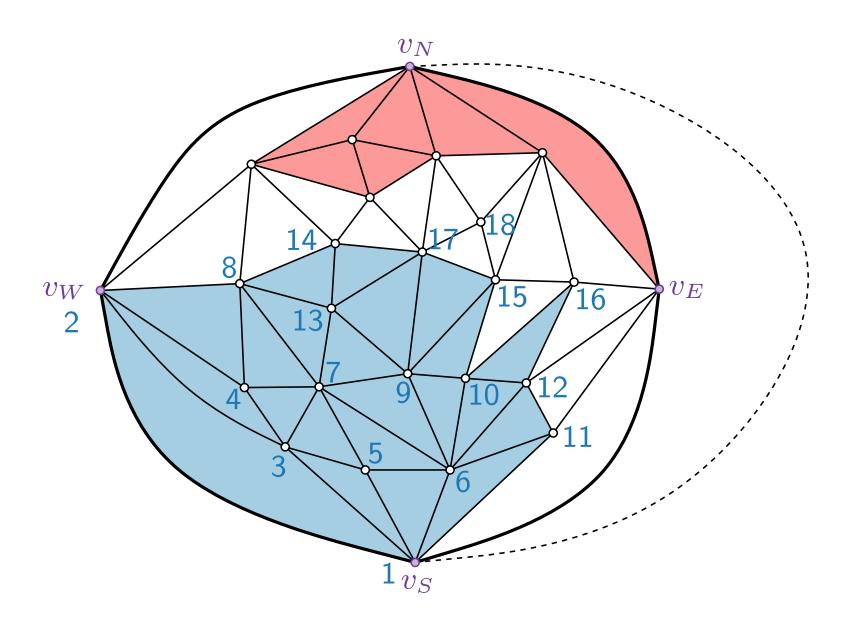


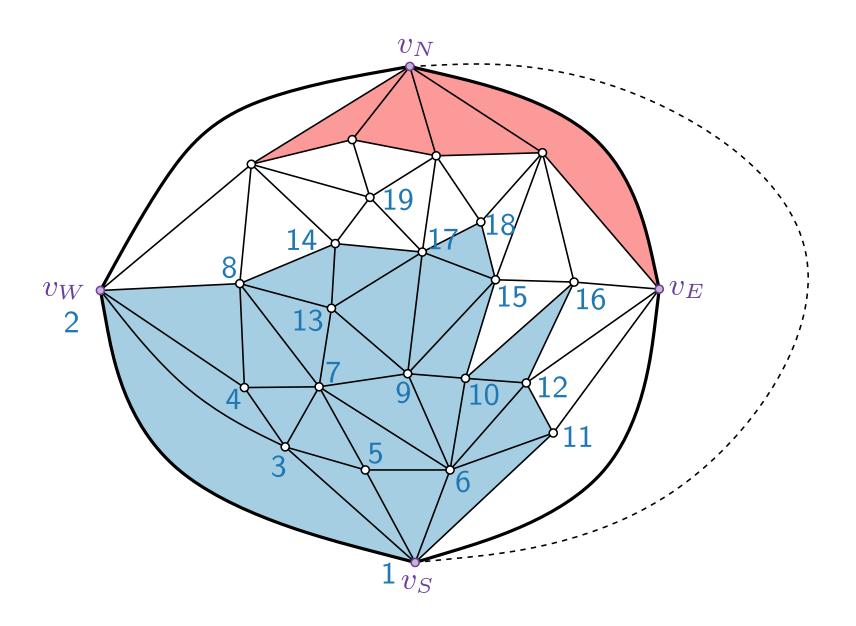


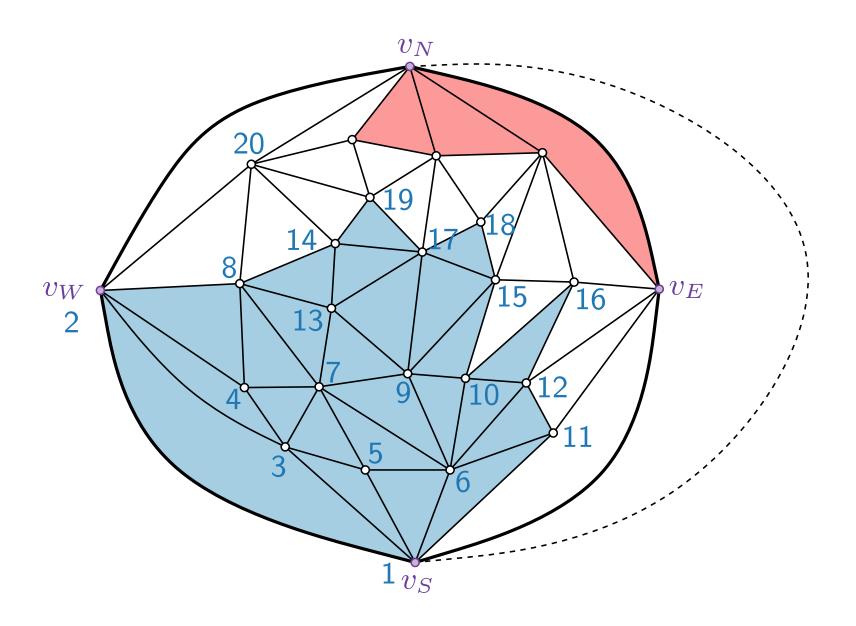


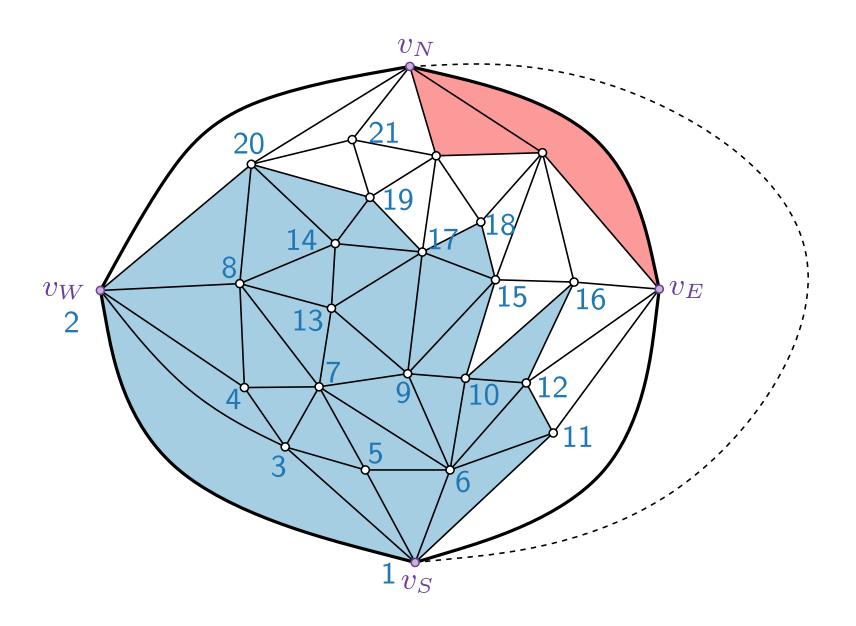


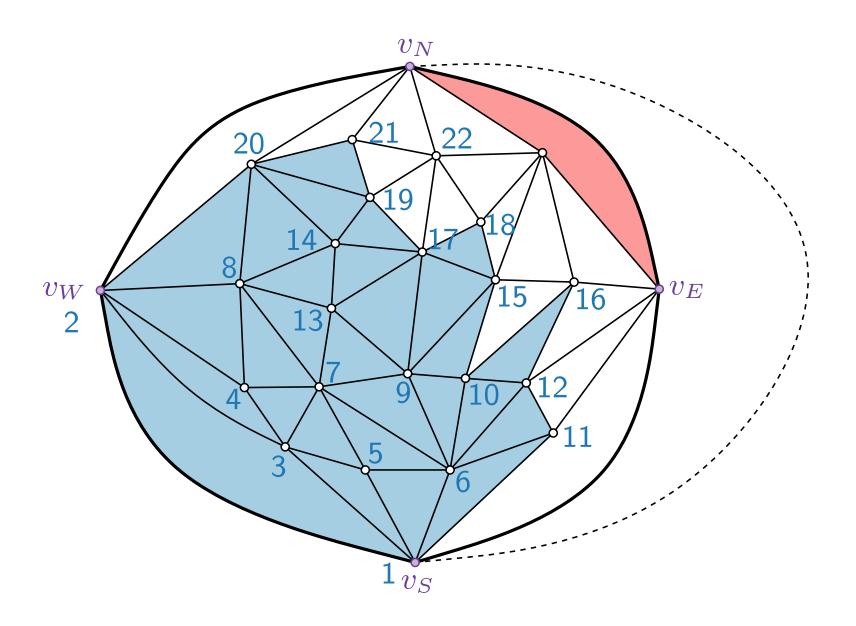




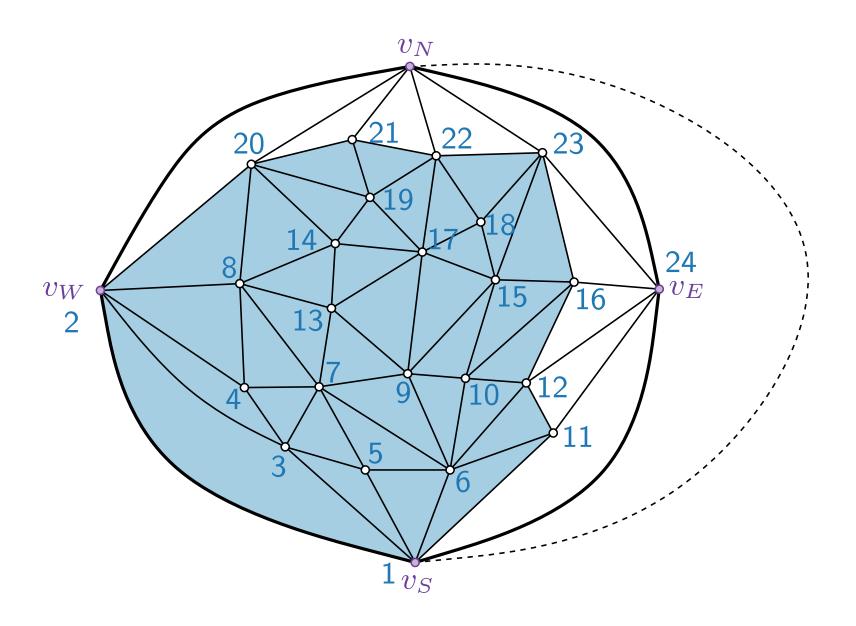


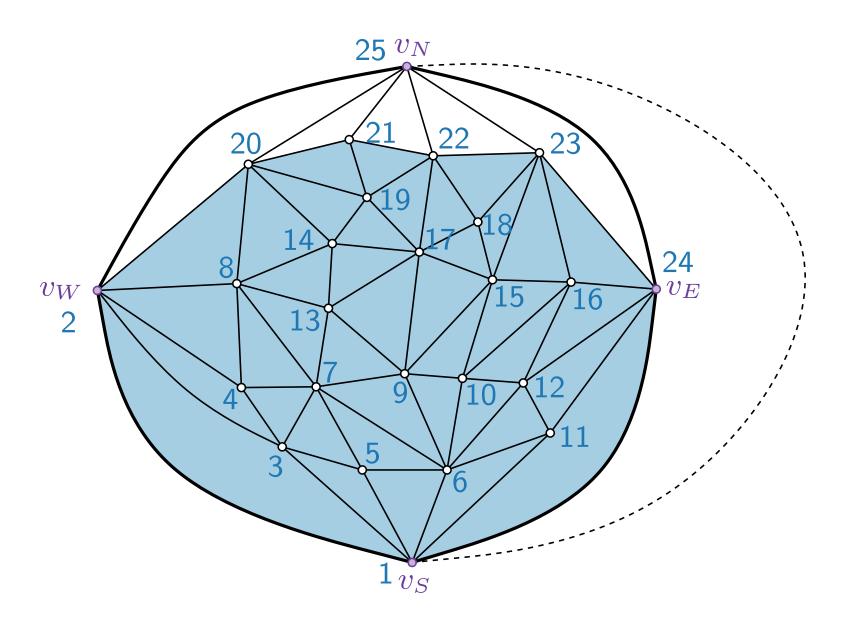


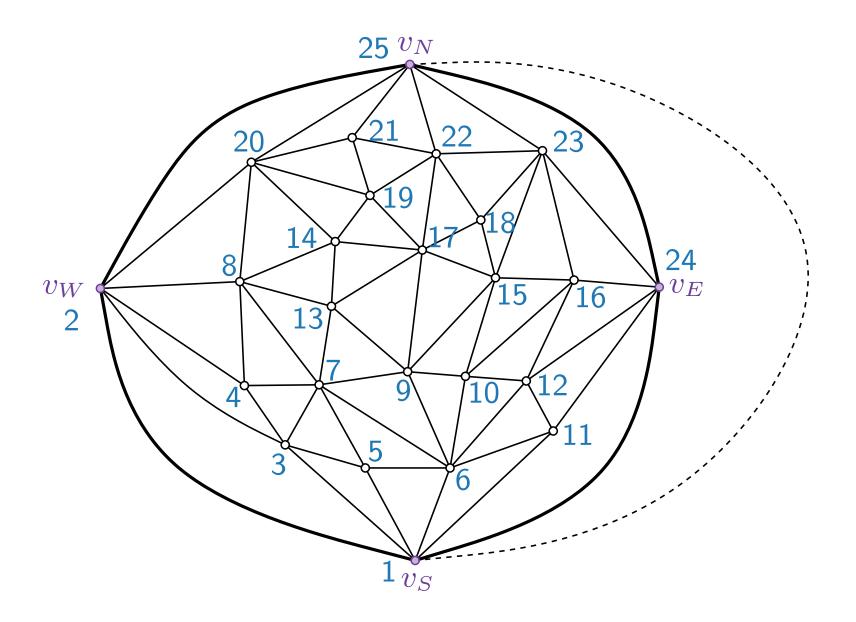






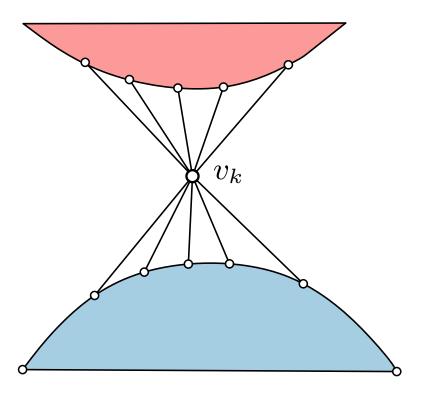






Refined Canonical Order \rightarrow REL

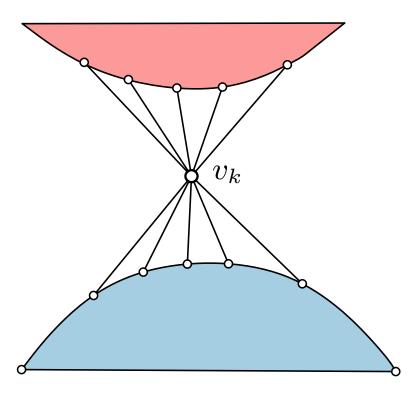
We construct a REL as follows:



Refined Canonical Order \rightarrow REL

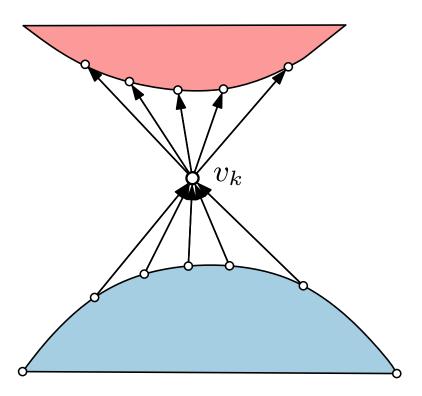
We construct a REL as follows:

For i < j, orient (v_i, v_j) from v_i to v_j ;

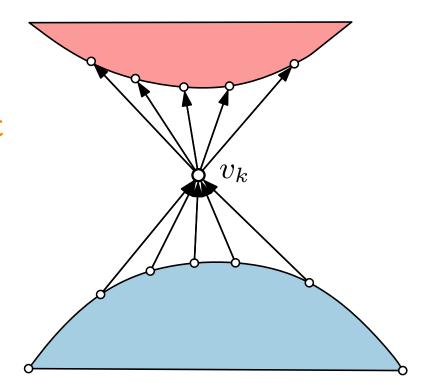


We construct a REL as follows:

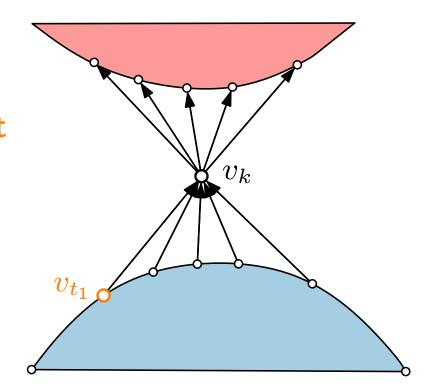
For i < j, orient (v_i, v_j) from v_i to v_j ;



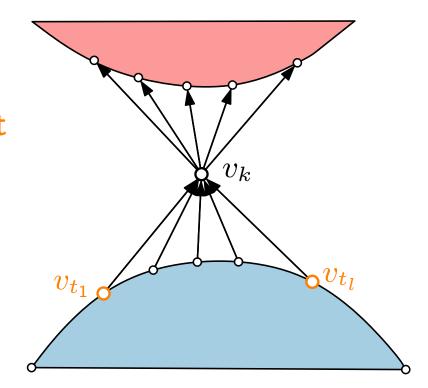
- For i < j, orient (v_i, v_j) from v_i to v_j ;
- $lackbox{$ v_k$ has incoming edges from v_{t_1},\ldots,v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.$



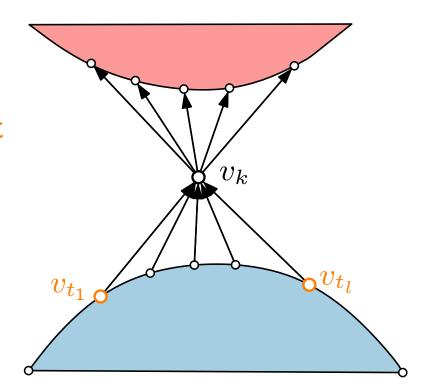
- For i < j, orient (v_i, v_j) from v_i to v_j ;
- $lackbox{$ v_k$ has incoming edges from v_{t_1},\ldots,v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.$



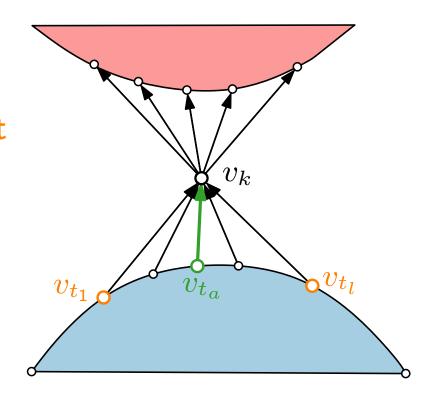
- For i < j, orient (v_i, v_j) from v_i to v_j ;
- $lackbox{$ v_k$ has incoming edges from v_{t_1},\ldots,v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.$



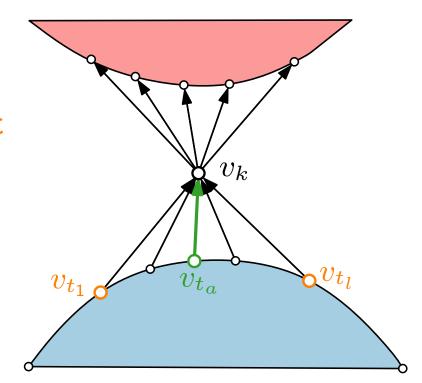
- For i < j, orient (v_i, v_j) from v_i to v_j ;
- $lackbox{v}_k$ has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.



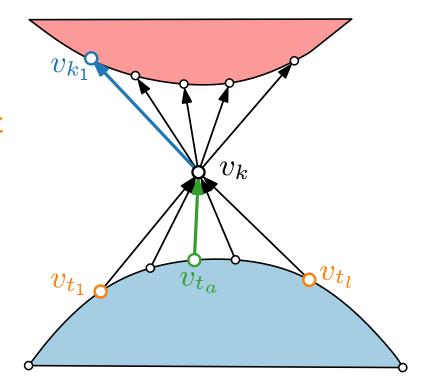
- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.



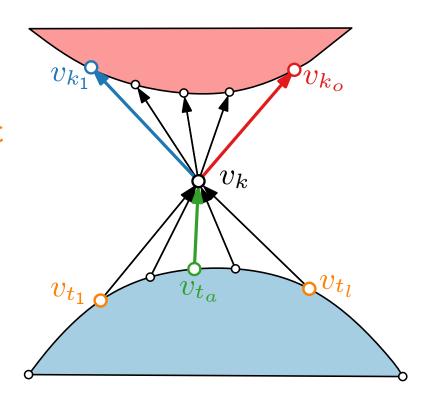
- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.



- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.



- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.



We construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.

v_{k_1} v_{k_2} v_{k_3} v_{k_4} v_{k_5}

Lemma 1.

A left edge or right edge cannot be a base edge.

We construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- $lackbox{v}_k$ has incoming edges from v_{t_1}, \dots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.

v_{k_1} v_k v_{t_1} v_{t_2} v_{t_3} v_{t_4}

Lemma 1.

A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (v_k, v_{k_1}) is base edge of v_{k_1} .

We construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.

v_{k_1} v_k v_{t_1} v_{t_a} v_{t_l}

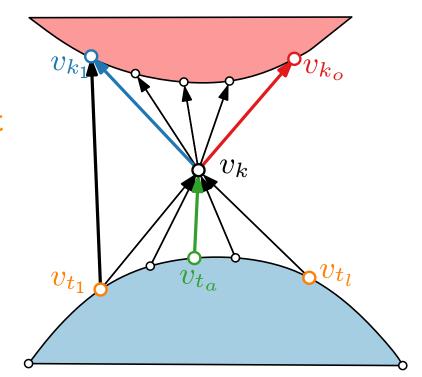
Lemma 1.

A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (v_k, v_{k_1}) is base edge of v_{k_1} . Since G triangulated, $(v_{t_1}, v_{k_1}) \in E(G)$.

We construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.



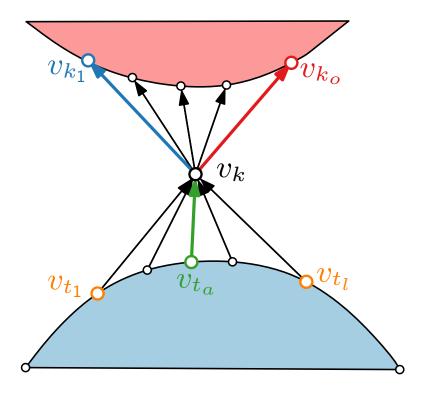
Lemma 1.

A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (v_k, v_{k_1}) is base edge of v_{k_1} . Since G triangulated, $(v_{t_1}, v_{k_1}) \in E(G)$. Contradiction since $v_k > v_{t_1}$.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

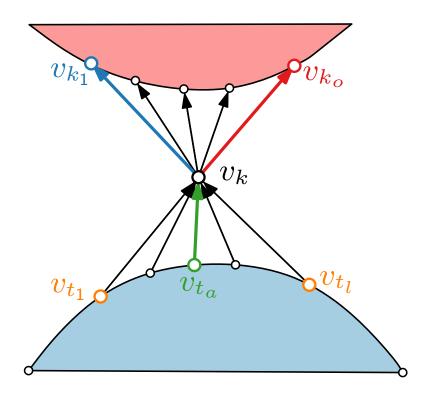


Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

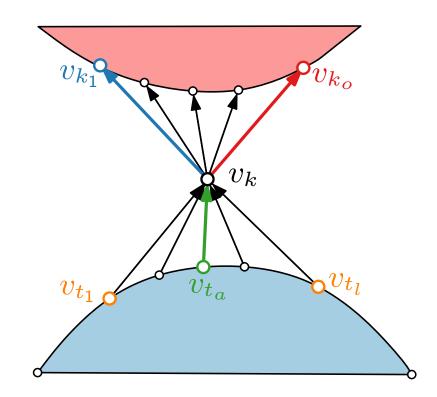
Exclusive "or" follows from Lemma 1.



Lemma 2.

An edge is either a left edge, a right edge or a base edge.

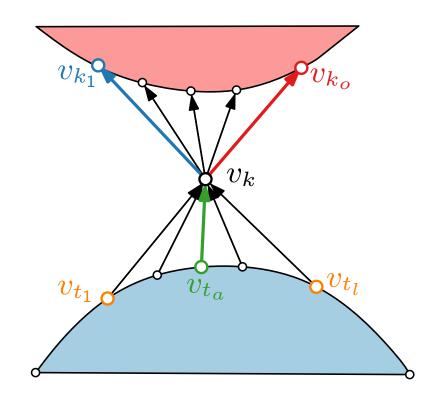
- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .



Lemma 2.

An edge is either a left edge, a right edge or a base edge.

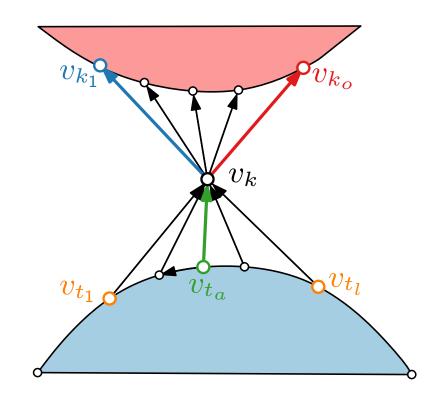
- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- lacksquare v_{t_a} is right point of $v_{t_{a-1}}$



Lemma 2.

An edge is either a left edge, a right edge or a base edge.

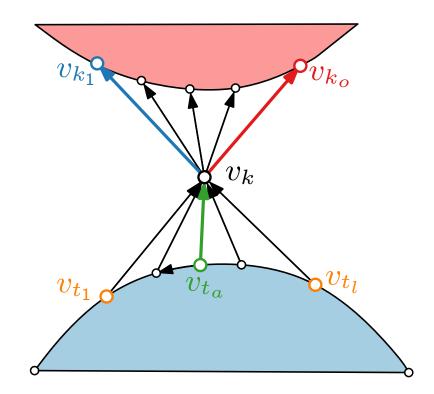
- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- lacksquare v_{t_a} is right point of $v_{t_{a-1}}$



Lemma 2.

An edge is either a left edge, a right edge or a base edge.

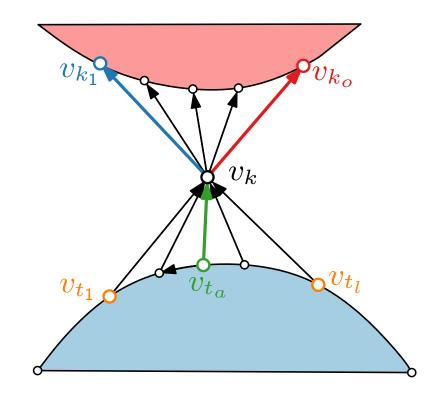
- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:



Lemma 2.

An edge is either a left edge, a right edge or a base edge.

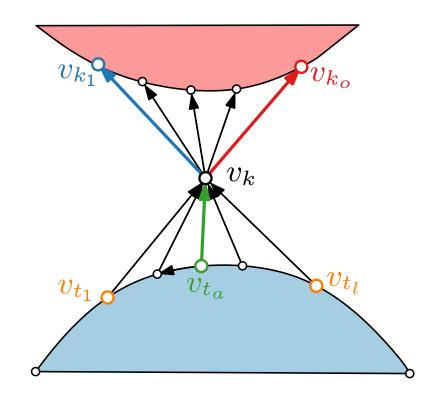
- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - lacksquare v_{t_i} has at least two higher-numbered neighbors.



Lemma 2.

An edge is either a left edge, a right edge or a base edge.

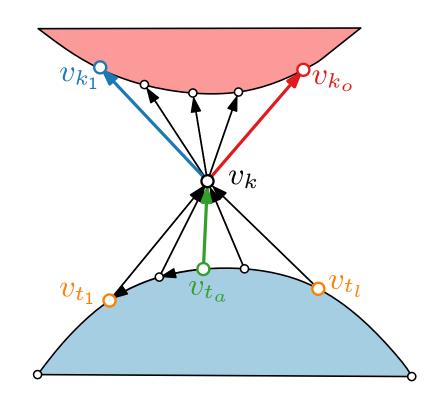
- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbrack v_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - lacksquare v_{t_i} has at least two higher-numbered neighbors.
 - lacksquare One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.



Lemma 2.

An edge is either a left edge, a right edge or a base edge.

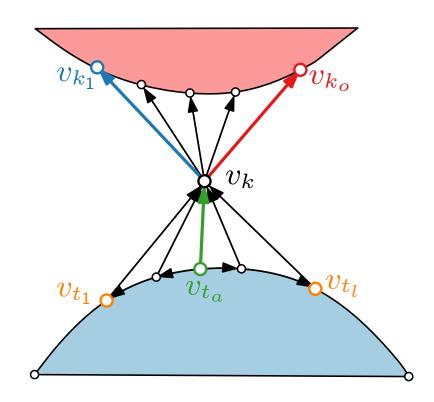
- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbrack v_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - $lacktriangleq v_{t_i}$ has at least two higher-numbered neighbors.
 - lacksquare One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
 - For $1 \leq i < a-1$, it is $v_{t_{i-1}}$.



Lemma 2.

An edge is either a left edge, a right edge or a base edge.

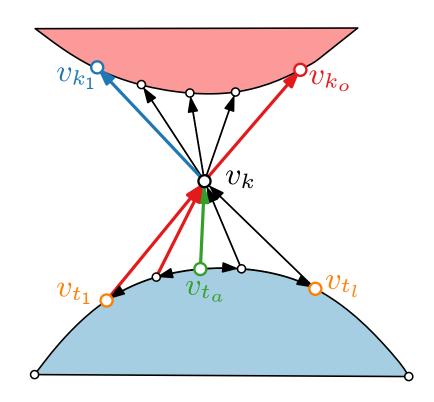
- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - lacksquare v_{t_i} has at least two higher-numbered neighbors.
 - lacksquare One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
 - For $1 \leq i < a-1$, it is $v_{t_{i-1}}$.
- lacksquare Analogously, $v_{t_{i\geq a}}$ is left point of $v_{t_{i+1}}$



Lemma 2.

An edge is either a left edge, a right edge or a base edge.

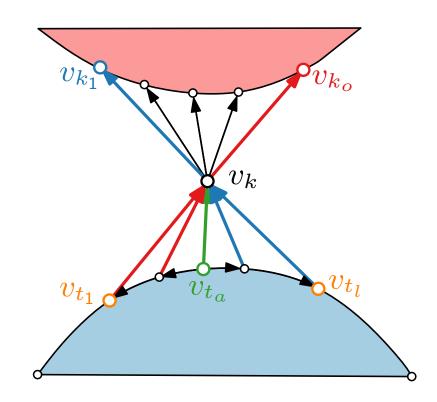
- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - lacksquare v_{t_i} has at least two higher-numbered neighbors.
 - One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
 - For $1 \leq i < a-1$, it is $v_{t_{i-1}}$.
- lacksquare Analogously, $v_{t_{i\geq a}}$ is left point of $v_{t_{i+1}}$
- Edges (v_{t_i}, v_k) , $1 \le i < a 1$, are right edges.

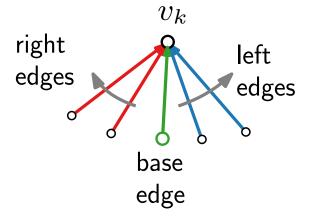


Lemma 2.

An edge is either a left edge, a right edge or a base edge.

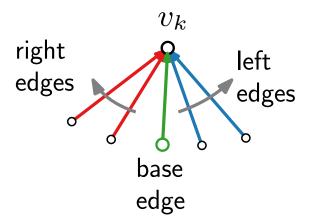
- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - lacksquare v_{t_i} has at least two higher-numbered neighbors.
 - lacksquare One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
 - For $1 \leq i < a-1$, it is $v_{t_{i-1}}$.
- lacksquare Analogously, $v_{t_{i\geq a}}$ is left point of $v_{t_{i+1}}$
- Edges (v_{t_i}, v_k) , $1 \le i < a 1$, are right edges.
- Similarly, (v_{t_i}, v_k) , for $a + 1 \le i \le l$, are left edges.





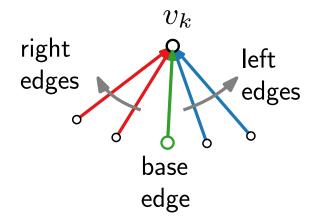
Coloring.

Color right (left) edges in red (blue).



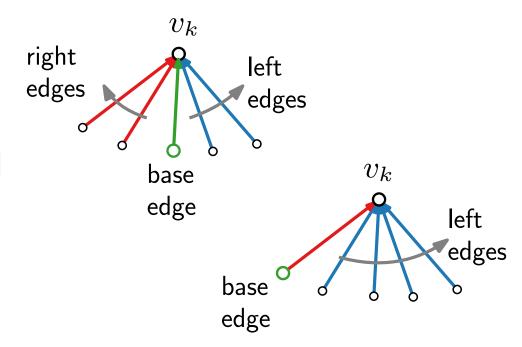
Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.



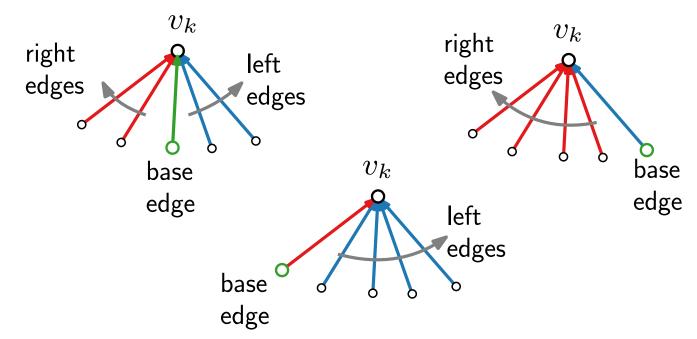
Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.



Coloring.

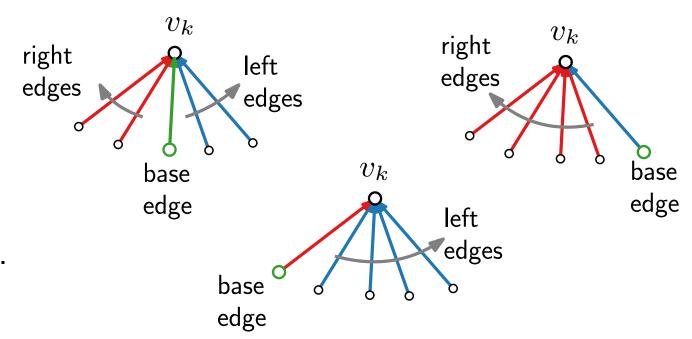
- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.



Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.



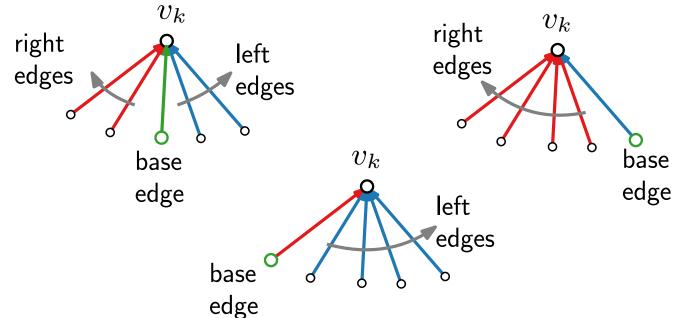
Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.



Coloring.

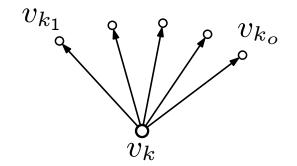
- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

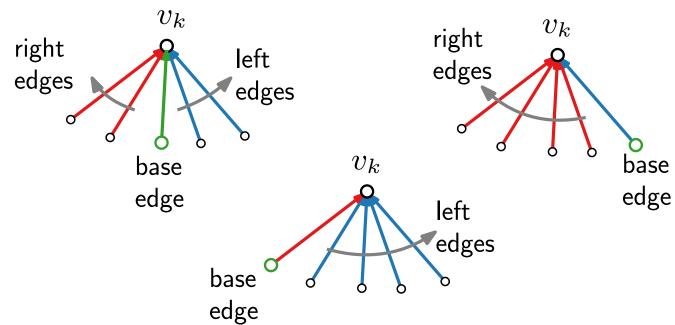
Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$





Coloring.

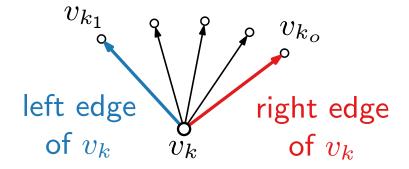
- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

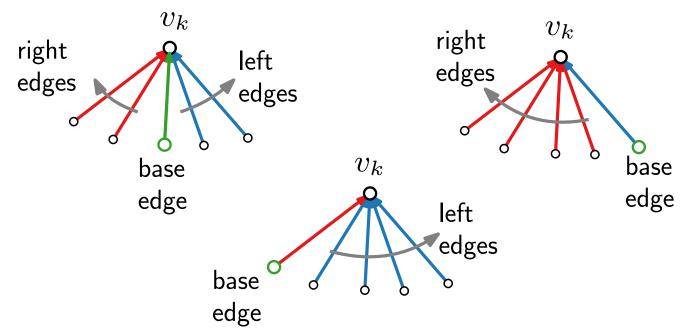
Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$





Coloring.

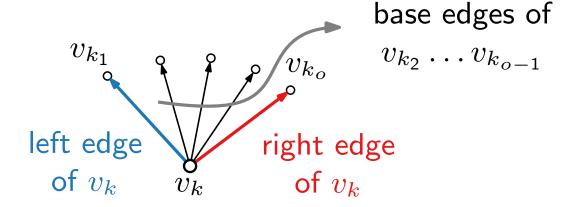
- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

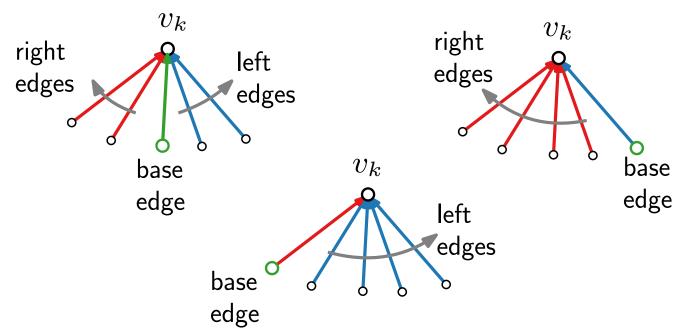
Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$





Coloring.

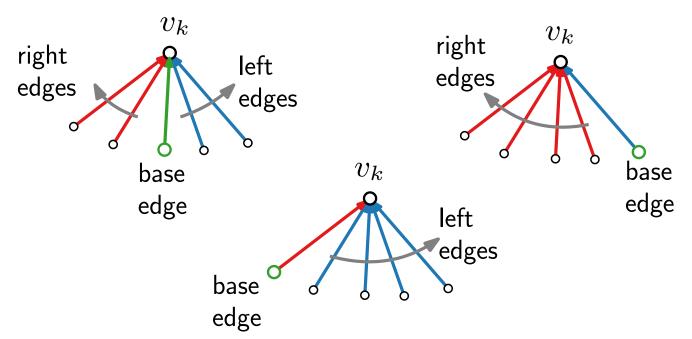
- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

Proof. $k_d = \max\{v_{k_1}\dots v_{k_o}\}$ base edges of $v_{k_1}\dots v_{k_{o-1}}$ left edge of v_k of v_k of v_k



Coloring.

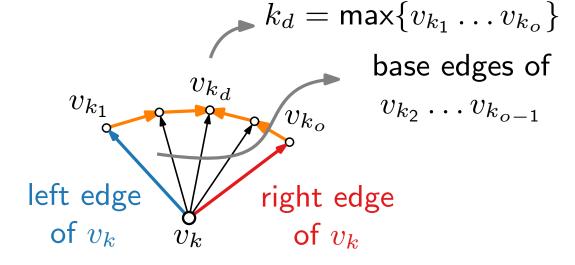
- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

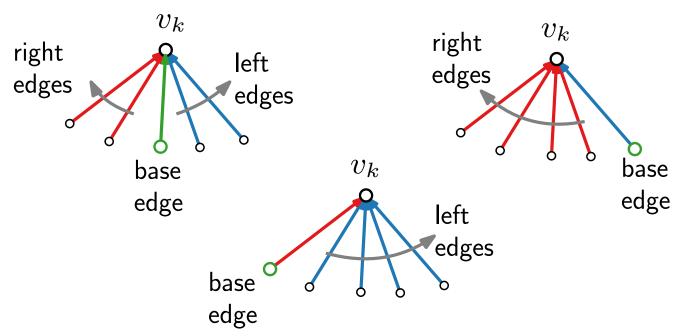
Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$





$$k_d = \max\{v_{k_1}\dots v_{k_o}\}$$
 $k_1 < k_2 < \dots < k_d \text{ and}$ base edges of $k_d > k_{d+1} > \dots > k_o$

Coloring.

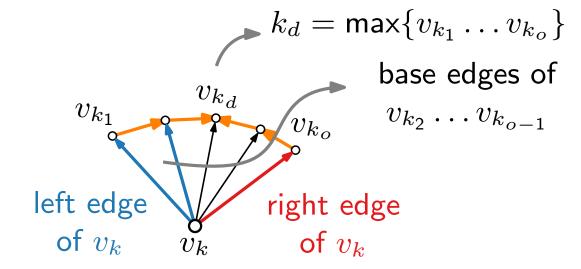
- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

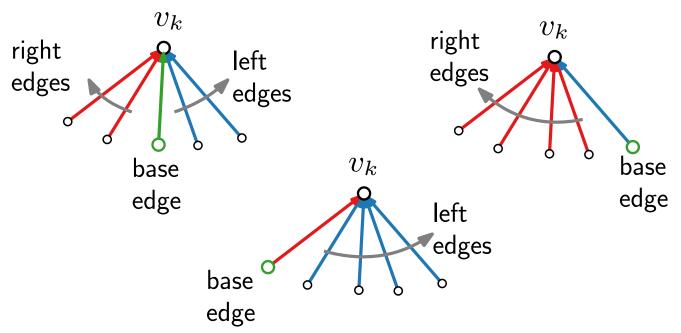
Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$





- $k_1 < k_2 < \ldots < k_d \text{ and } k_d > k_{d+1} > \ldots > k_o$
- (v_k, v_{k_i}) , $2 \le i \le d-1$ are blue

Coloring.

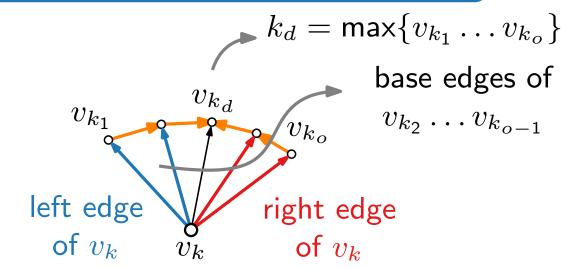
- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

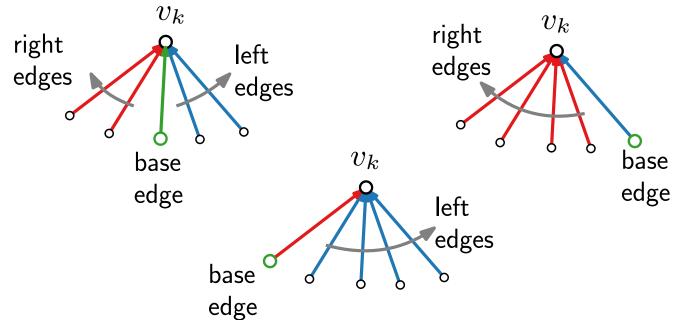
Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$





- $k_1 < k_2 < \ldots < k_d \text{ and } k_d > k_{d+1} > \ldots > k_o$
- (v_k, v_{k_i}) , $2 \le i \le d-1$ are blue
- $(v_k, v_{k_i}), d+1 \le i \le o-1 \text{ are red}$

Coloring.

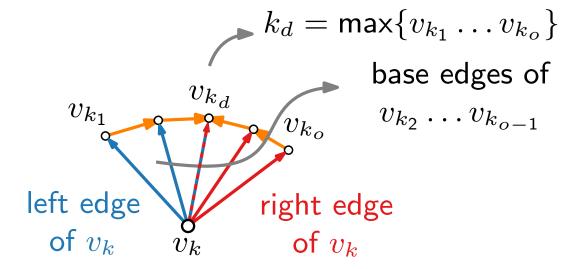
- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

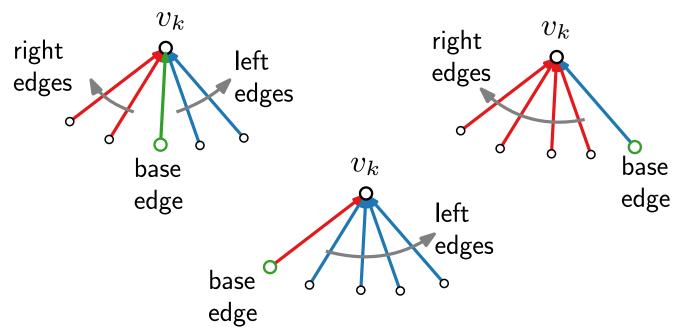
Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$





- $k_1 < k_2 < \ldots < k_d$ and $k_d > k_{d+1} > \ldots > k_o$
- (v_k, v_{k_i}) , $2 \le i \le d-1$ are blue
- $(v_k, v_{k_i}), d+1 \le i \le o-1 \text{ are red}$
- (v_k, v_{k_d}) is either red or blue

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

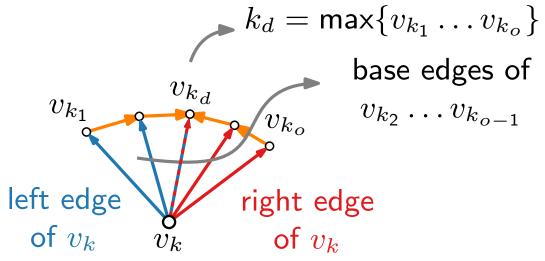
Let T_r be the red edges and T_b the blue edges.

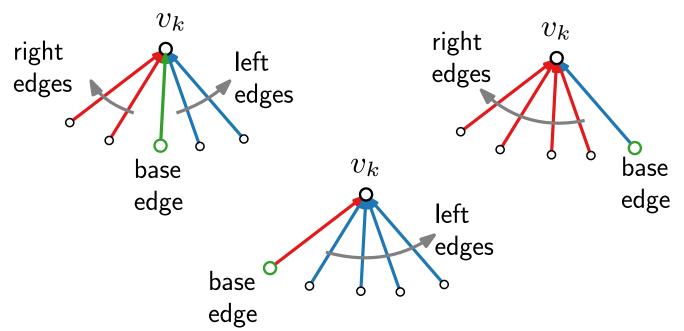
Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

Proof.

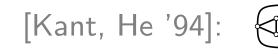
$$k_o \geq 2$$

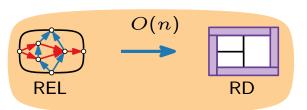




- $k_1 < k_2 < \ldots < k_d \text{ and } k_d > k_{d+1} > \ldots > k_o$
- (v_k, v_{k_i}) , $2 \le i \le d-1$ are blue
- $(v_k, v_{k_i}), d+1 \le i \le o-1 \text{ are red}$
- (v_k, v_{k_d}) is either red or blue

 \Rightarrow circular order of outgoing edges at v_k correct

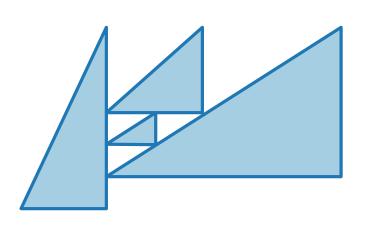




Visualization of Graphs

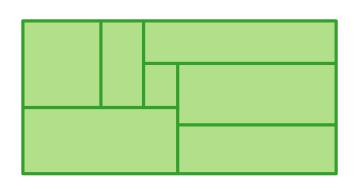
Lecture 8:

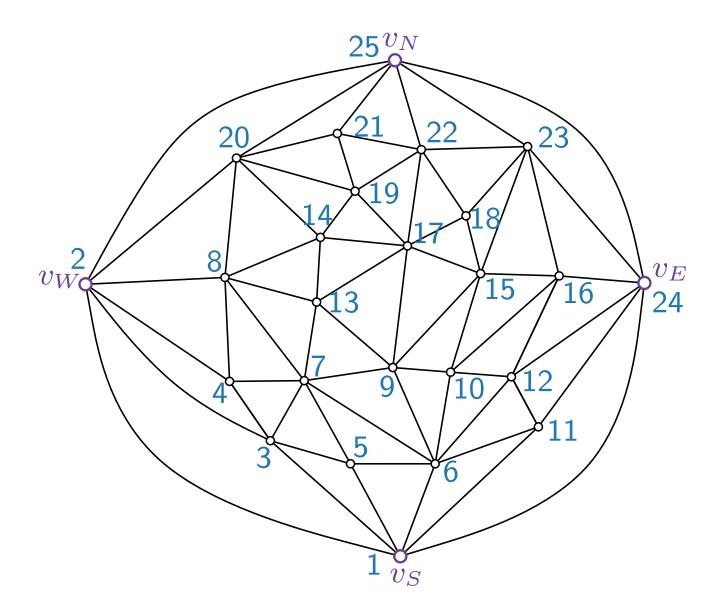
Conact Representations of Planar Graphs: Triangle Contacts and Rectangular Duals

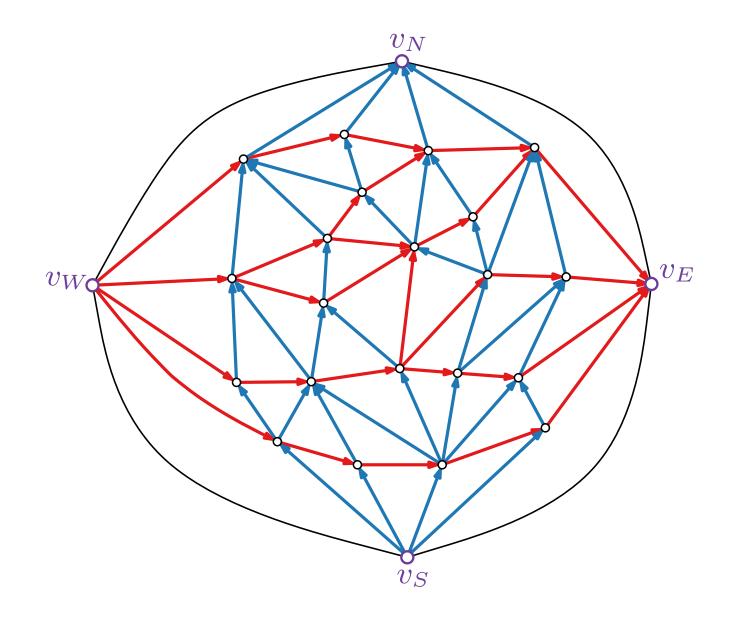


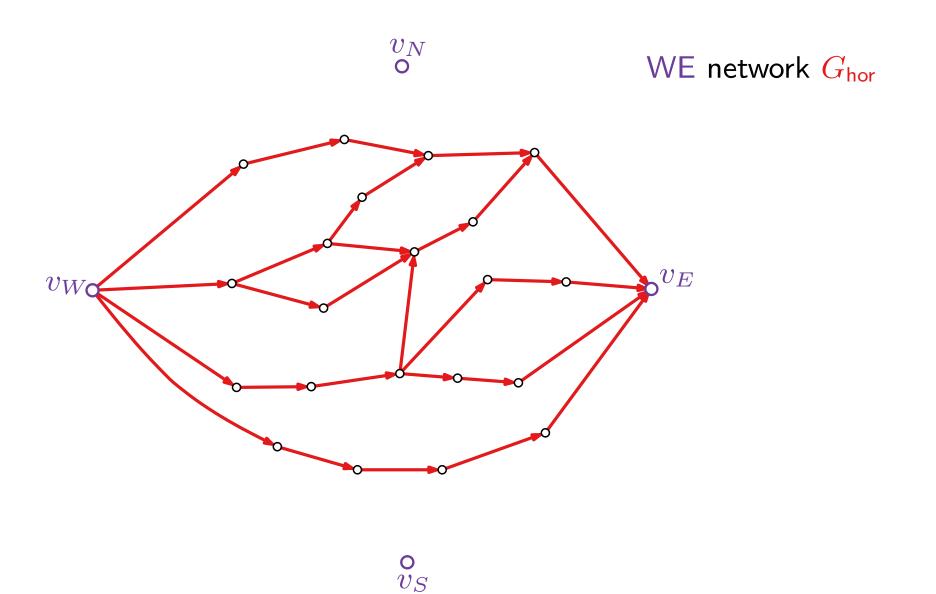
Part V: Computing the Coordinates

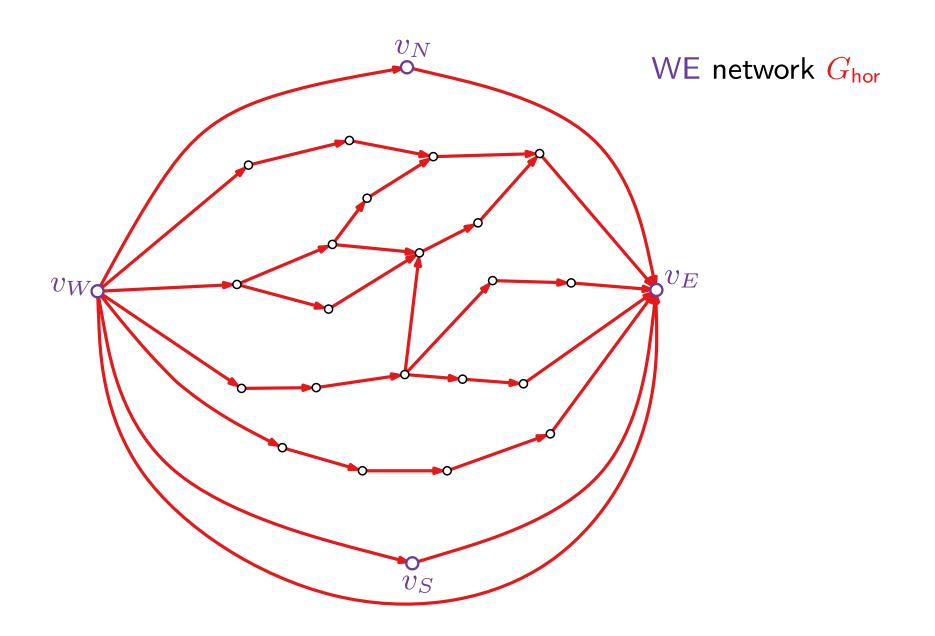
Jonathan Klawitter

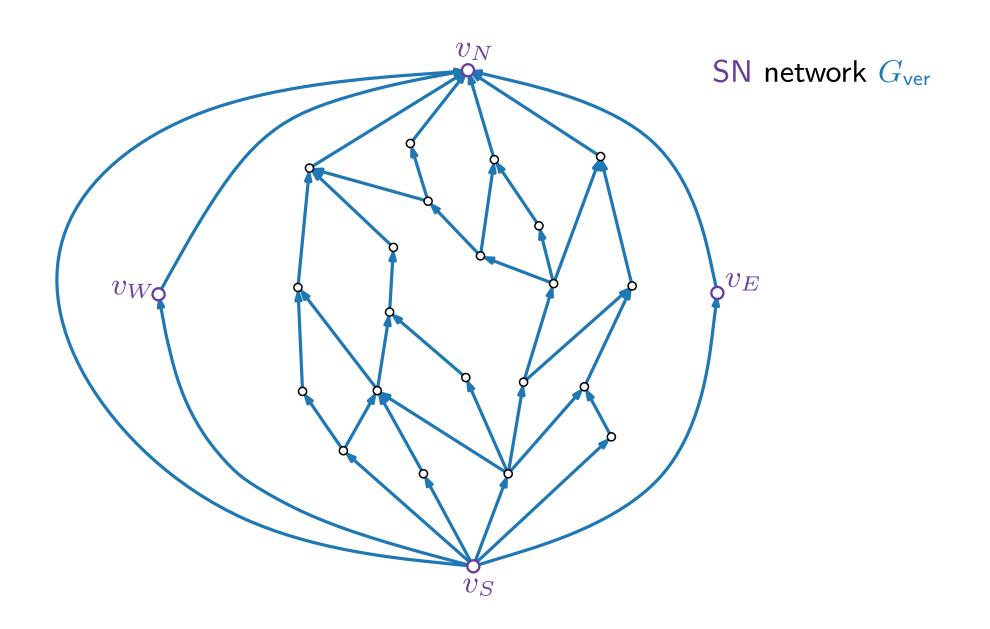


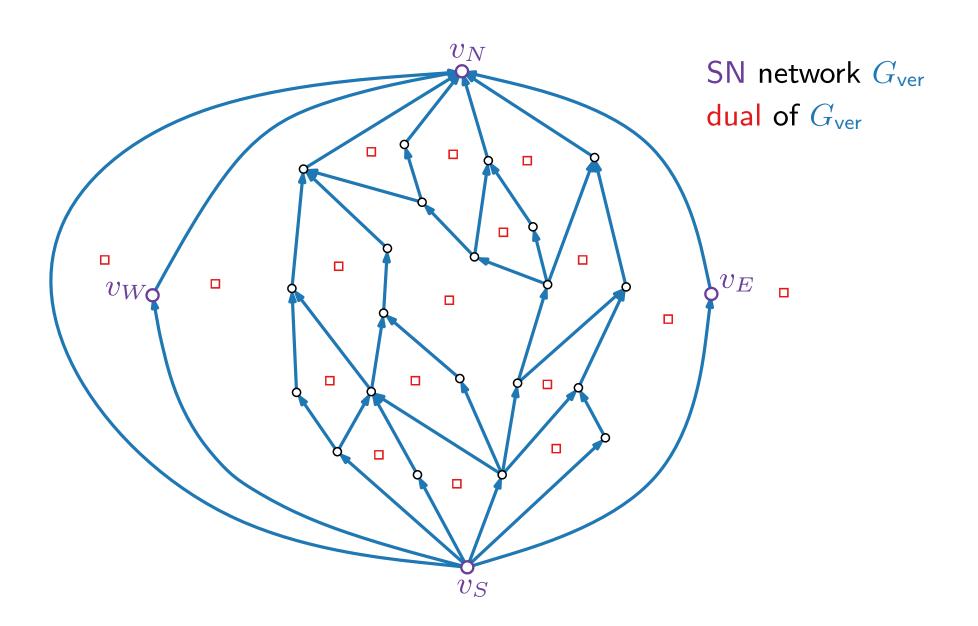


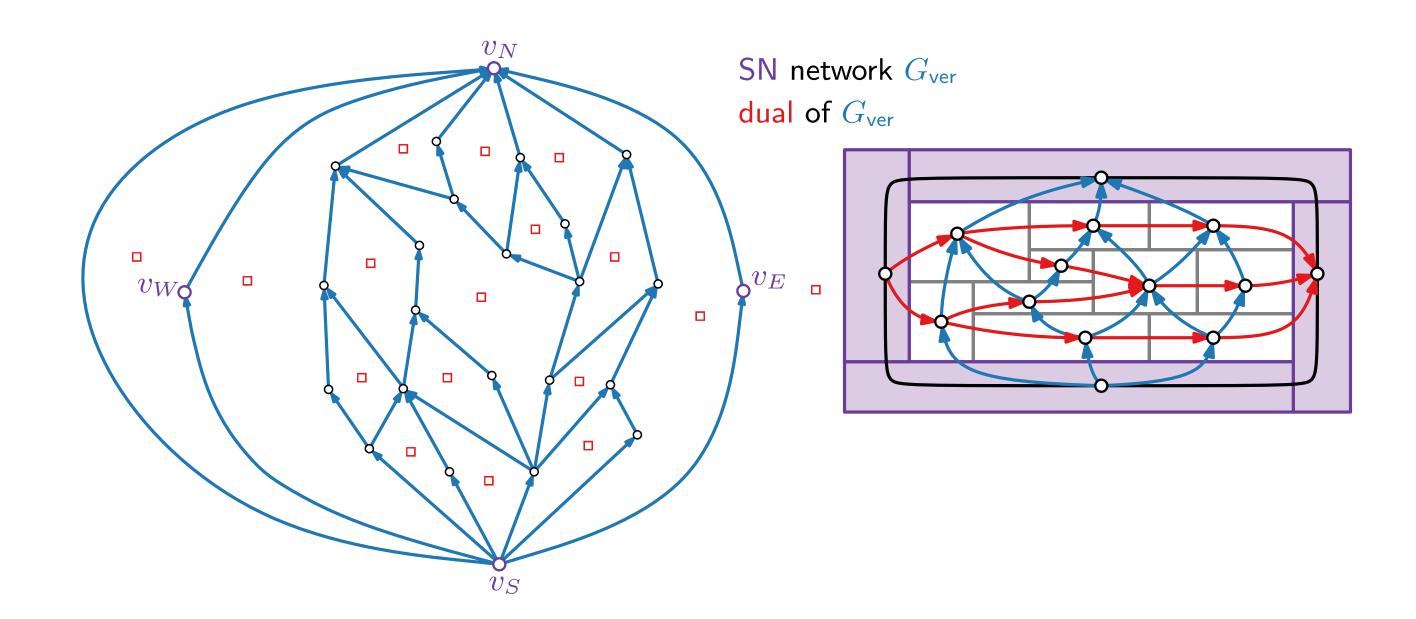


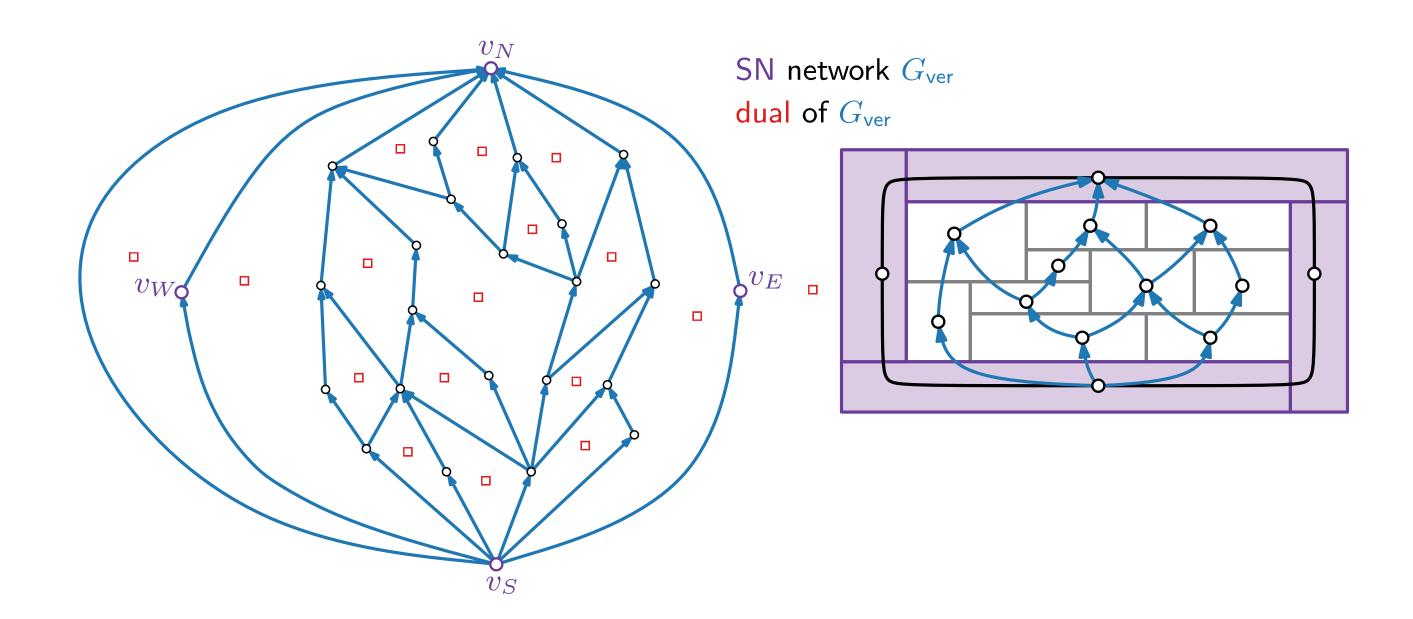


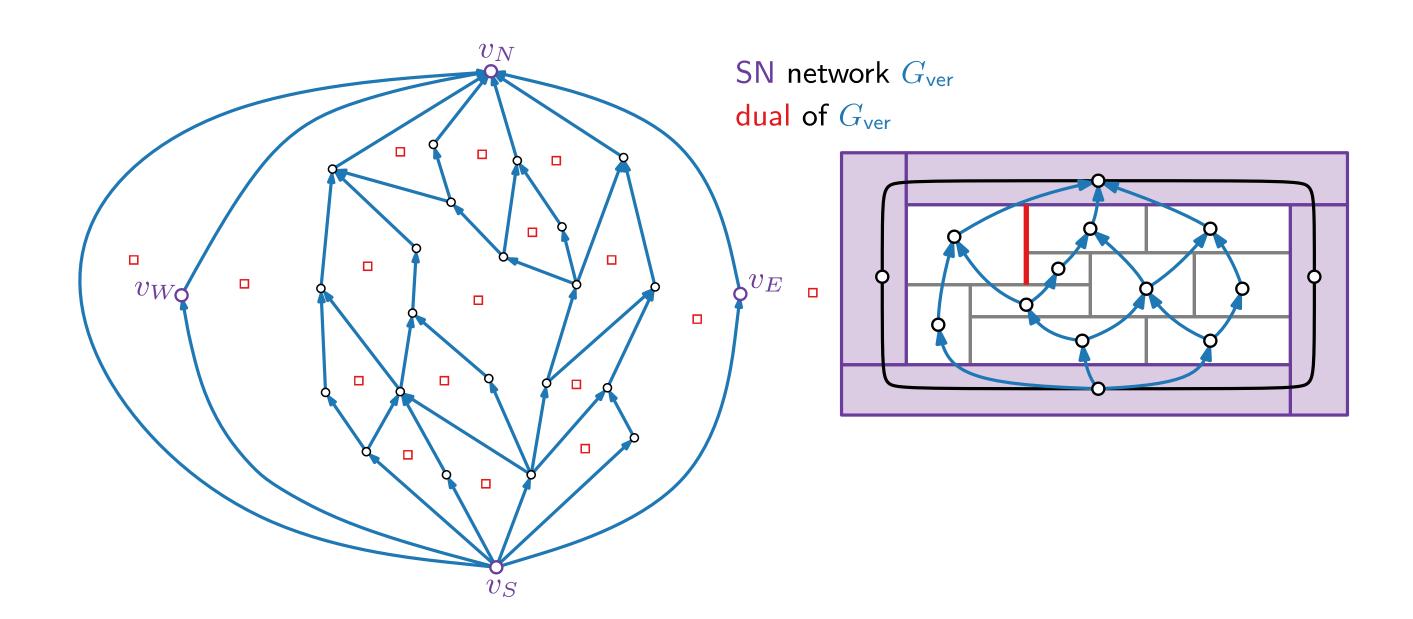


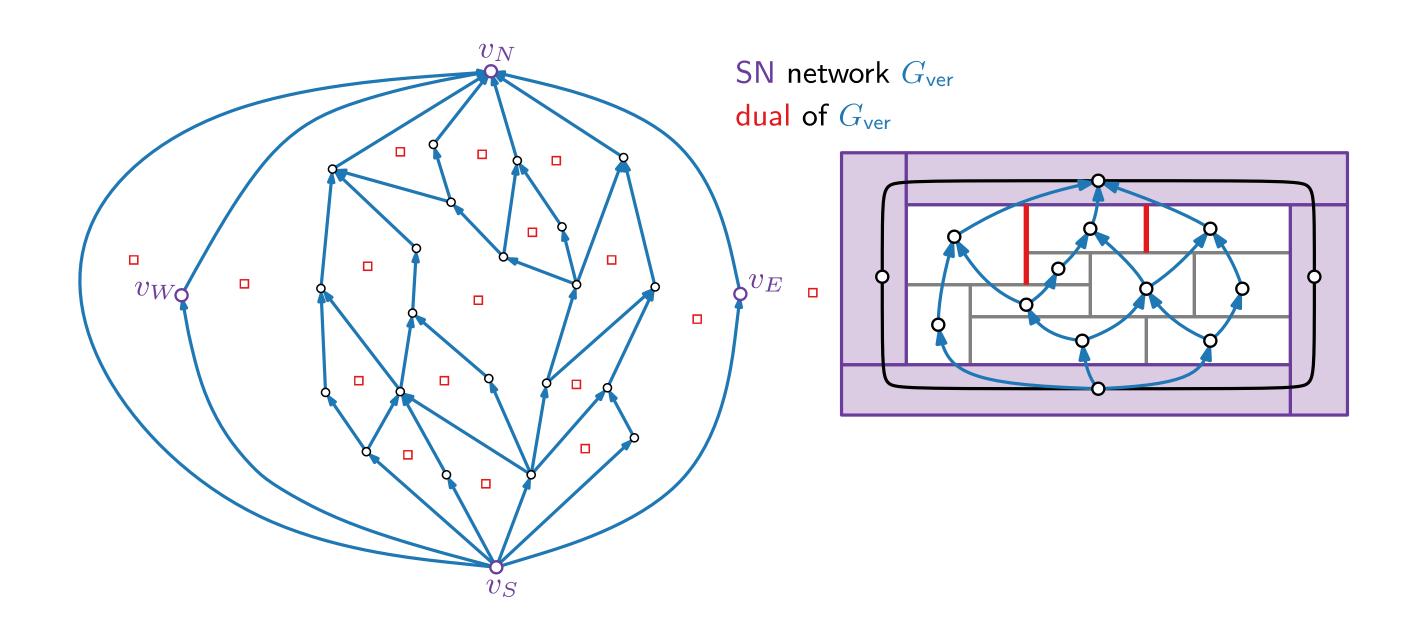


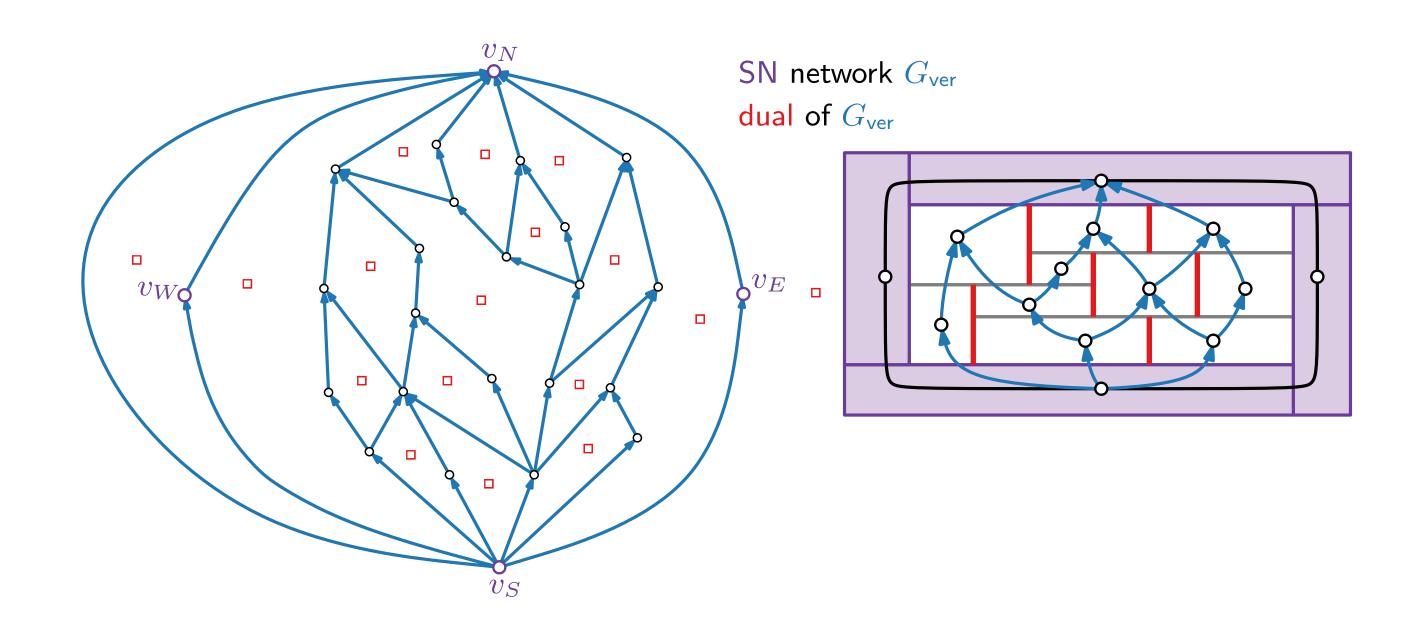


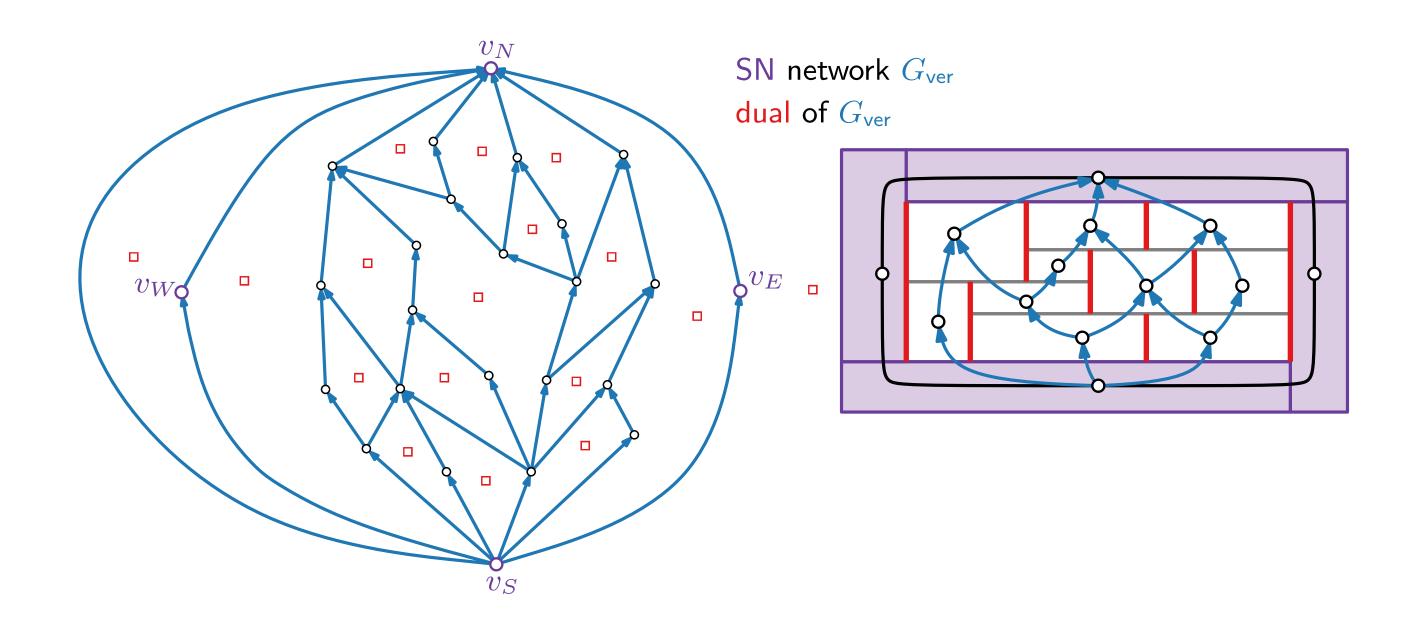


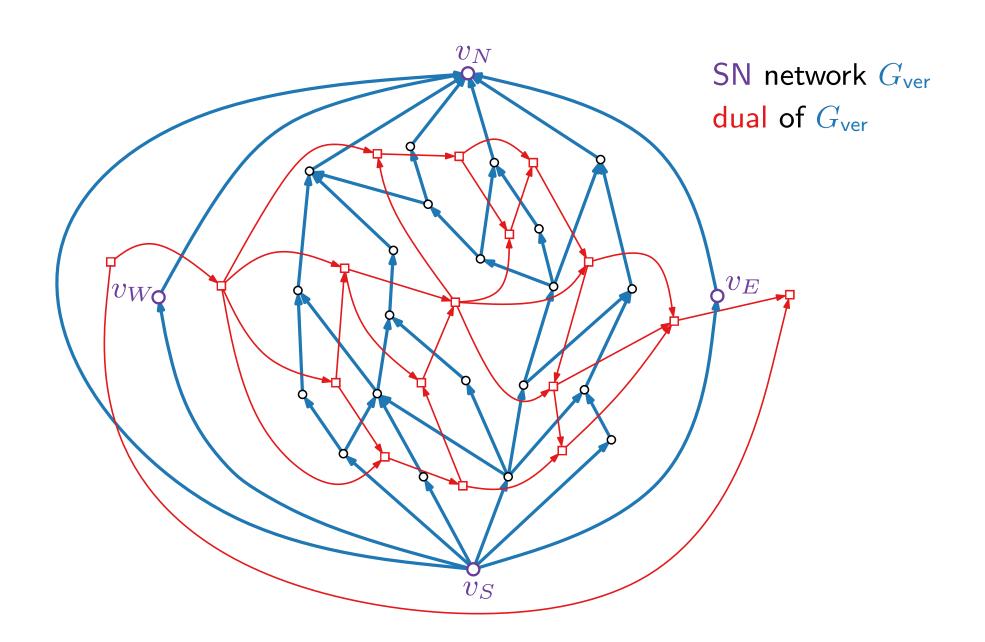


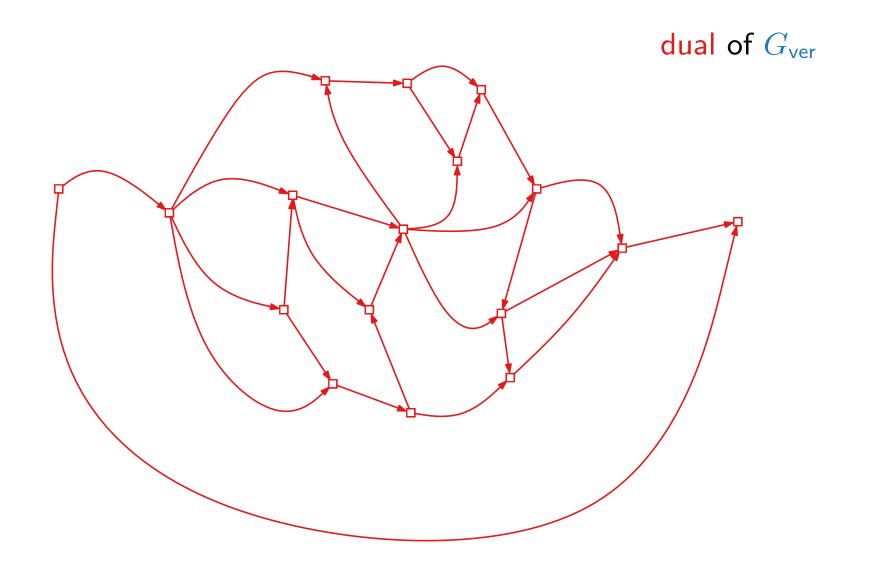


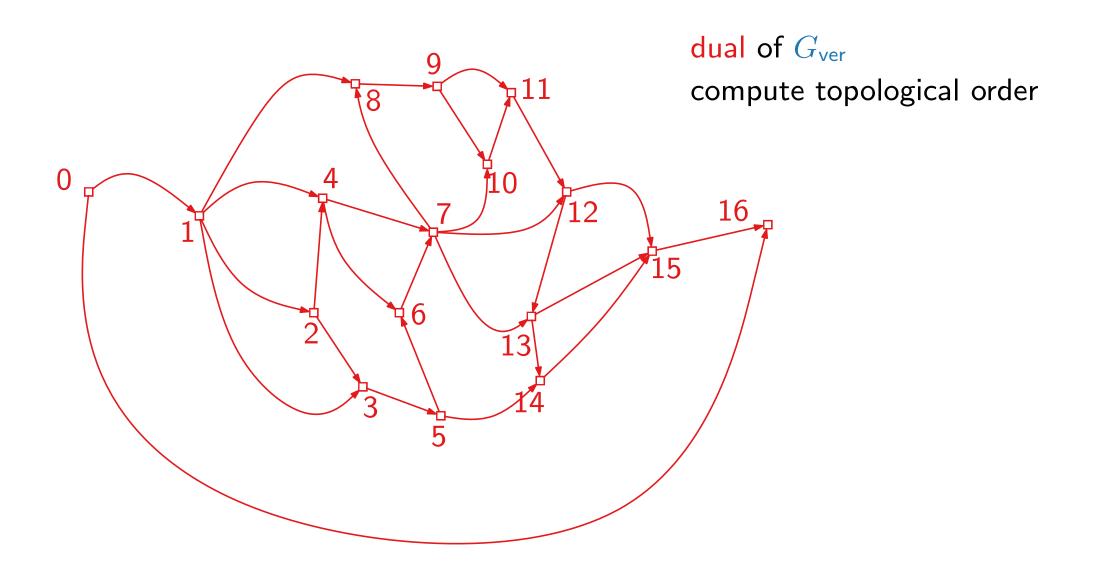


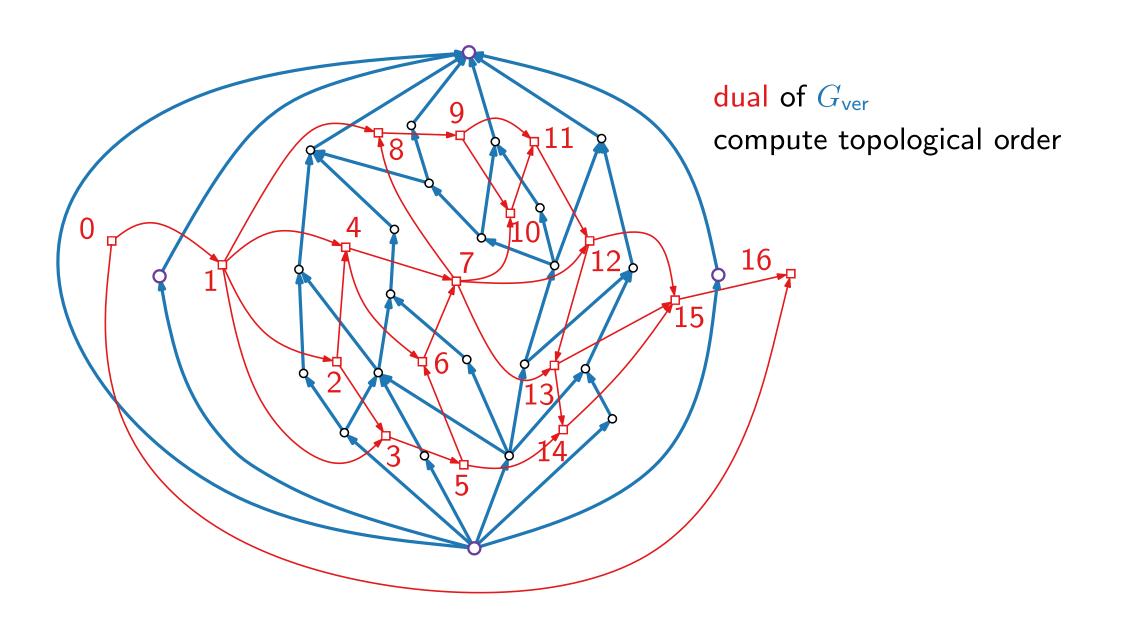


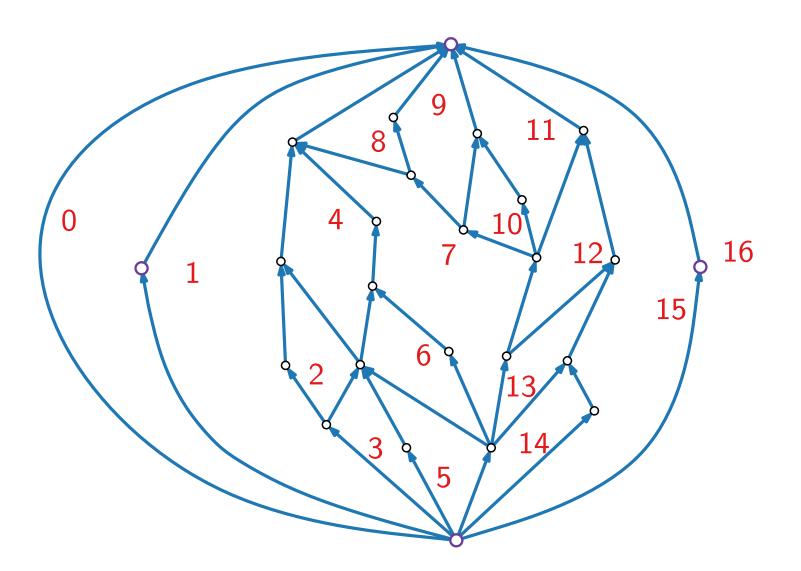


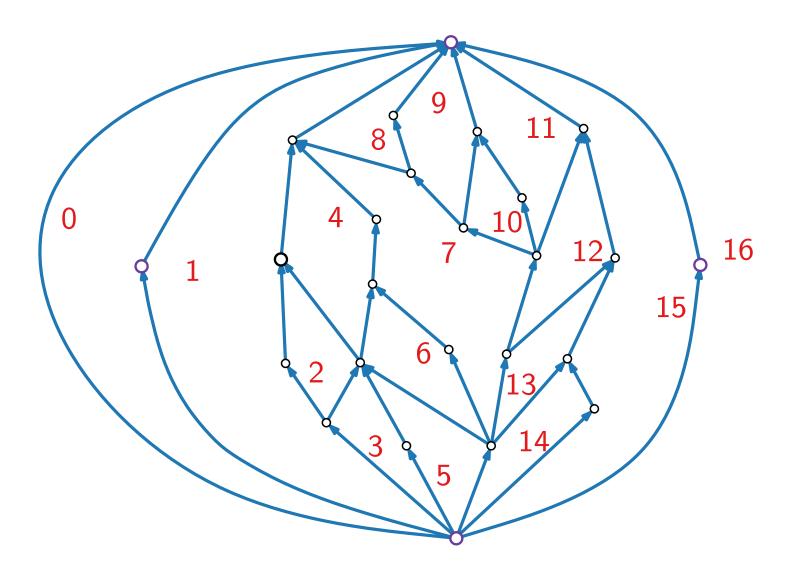


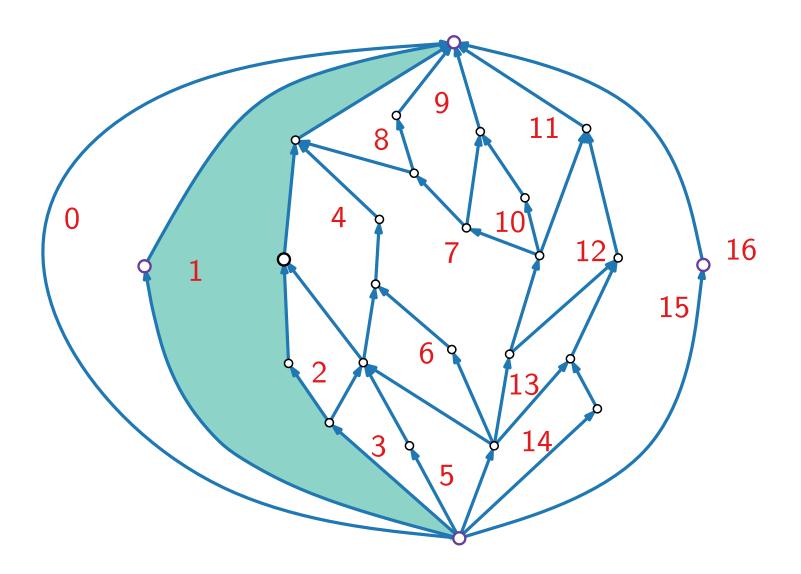


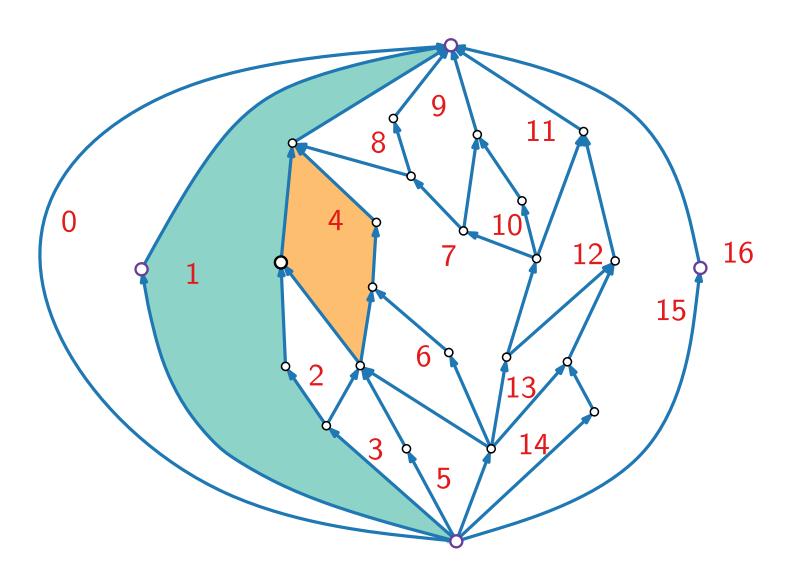


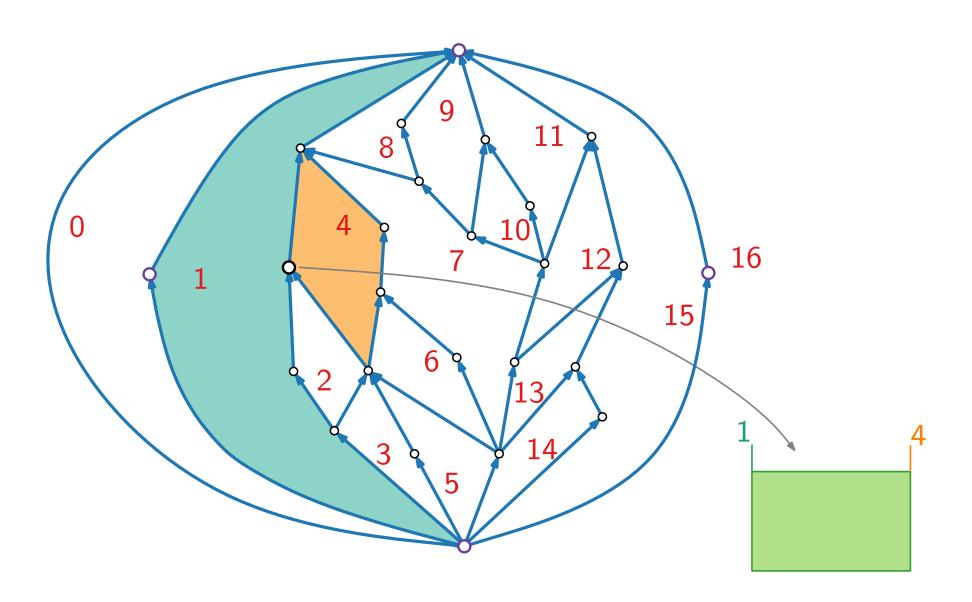


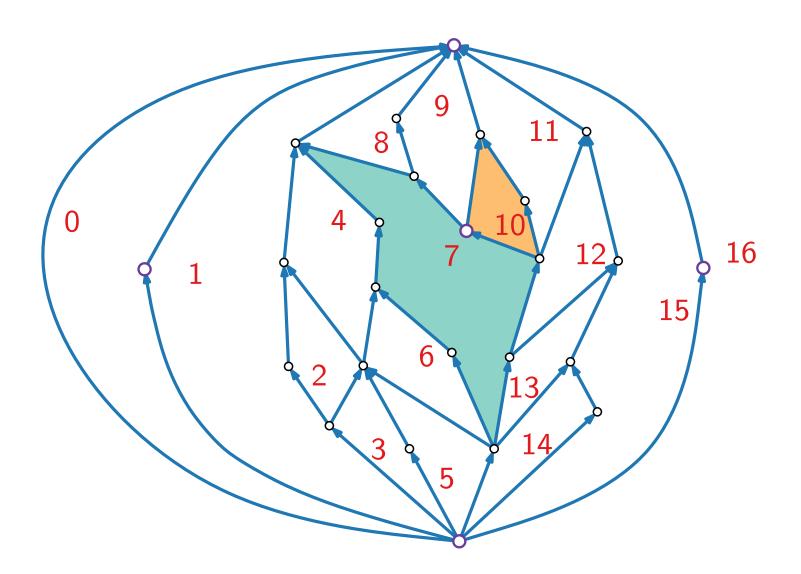


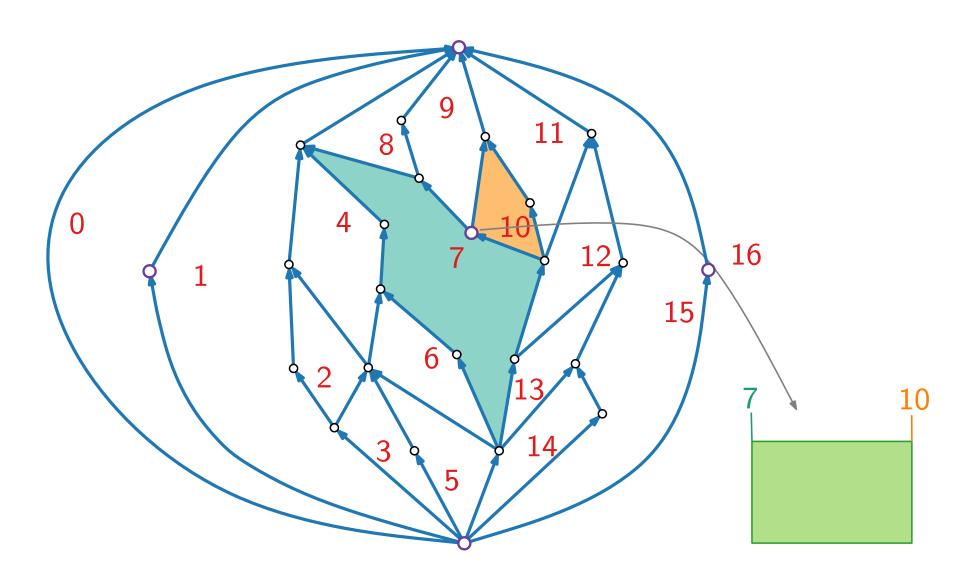












For a PTP graph G = (V, E):

```
For a PTP graph G = (V, E):
```

■ Find a REL $\{T_r, T_b\}$ of G;

```
For a PTP graph G = (V, E):
```

- Find a REL $\{T_r, T_b\}$ of G;
- Construct a SN network G_{ver} of G (consists of T_b plus outer edges)

```
For a PTP graph G = (V, E):
```

- Find a REL $\{T_r, T_b\}$ of G;
- lacktriangle Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}

```
For a PTP graph G = (V, E):
```

- Find a REL $\{T_r, T_b\}$ of G;
- Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v.

```
For a PTP graph G = (V, E):
```

- Find a REL $\{T_r, T_b\}$ of G;
- Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.

For a PTP graph G = (V, E):

- Find a REL $\{T_r, T_b\}$ of G;
- \blacksquare Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.
- Define $x_1(v_N)=1, x_1(v_S)=2$ and $x_2(v_N)=\max f_{\mathsf{ver}}-1, x_2(v_S)=\max f_{\mathsf{ver}}$

Rectangular Dual Algorithm

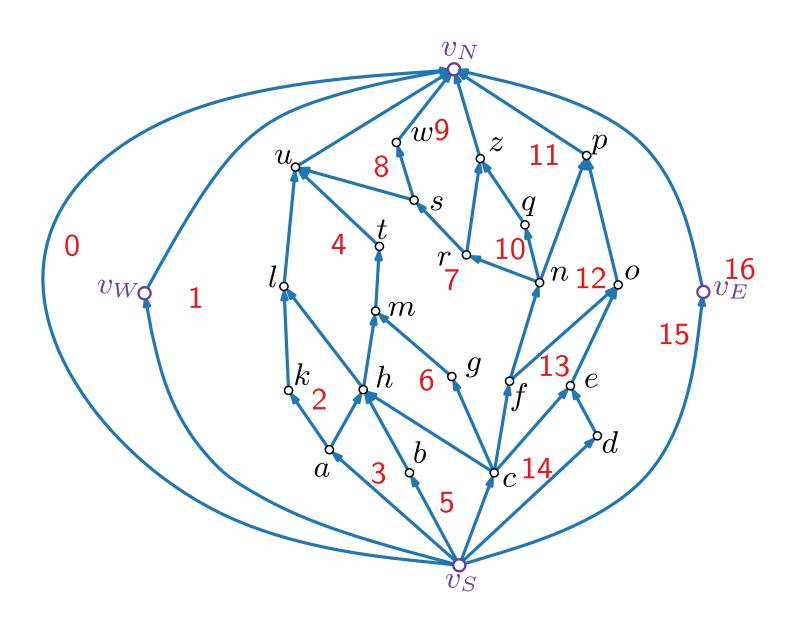
For a PTP graph G = (V, E):

- Find a REL $\{T_r, T_b\}$ of G;
- \blacksquare Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.
- Define $x_1(v_N)=1, x_1(v_S)=2$ and $x_2(v_N)=\max f_{\mathsf{ver}}-1, x_2(v_S)=\max f_{\mathsf{ver}}$
- Analogously compute y_1 and y_2 with G_{hor} .

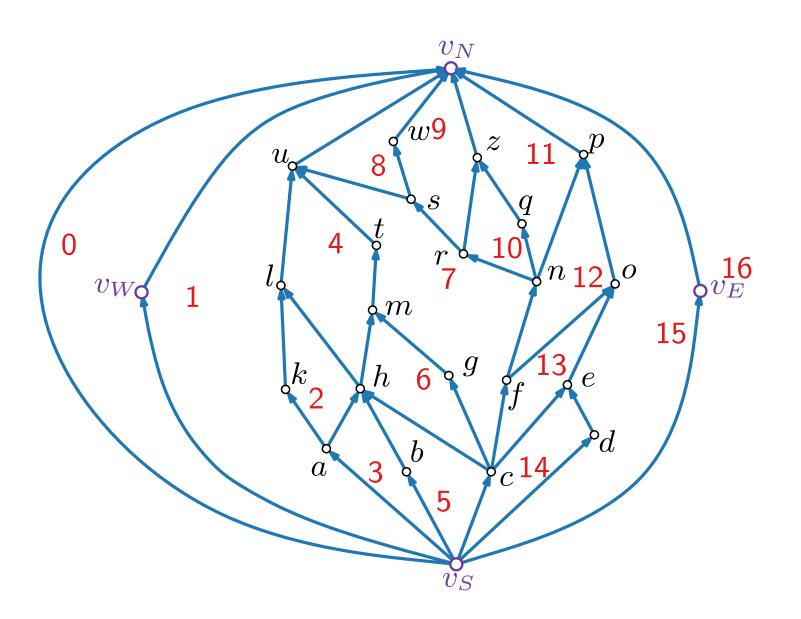
Rectangular Dual Algorithm

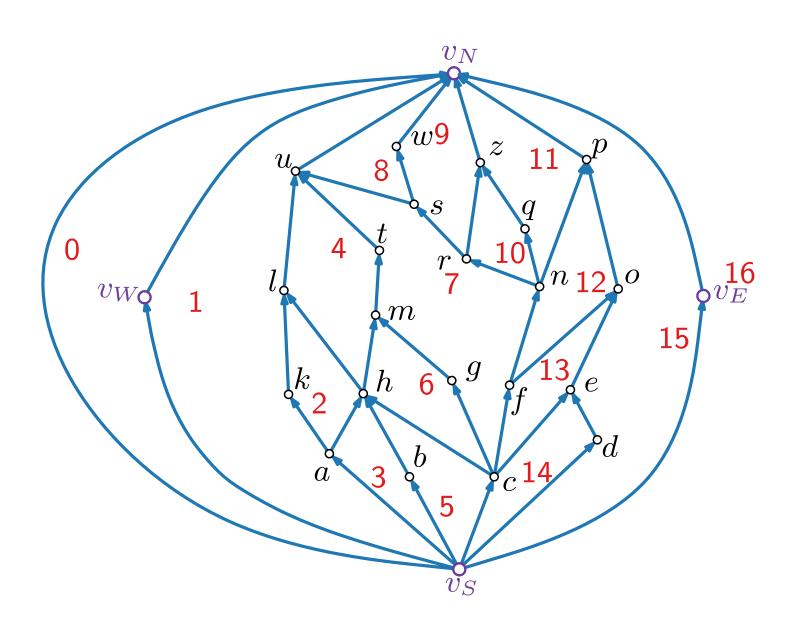
For a PTP graph G = (V, E):

- Find a REL $\{T_r, T_b\}$ of G;
- \blacksquare Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.
- Define $x_1(v_N)=1, x_1(v_S)=2$ and $x_2(v_N)=\max f_{\mathsf{ver}}-1, x_2(v_S)=\max f_{\mathsf{ver}}$
- Analogously compute y_1 and y_2 with G_{hor} .
- For each $v \in V$, assign a rectangle R(v) bounded by x-coordinates $x_1(v), x_2(v)$ and y-coordinates $y_1(v), y_2(v)$.



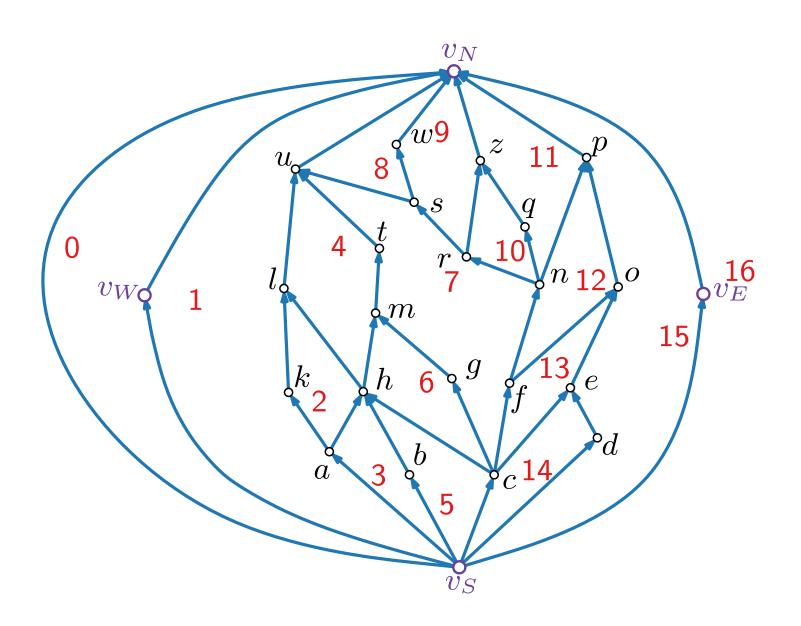
$$x_1(v_N) = 1, \ x_2(v_N) = 15$$





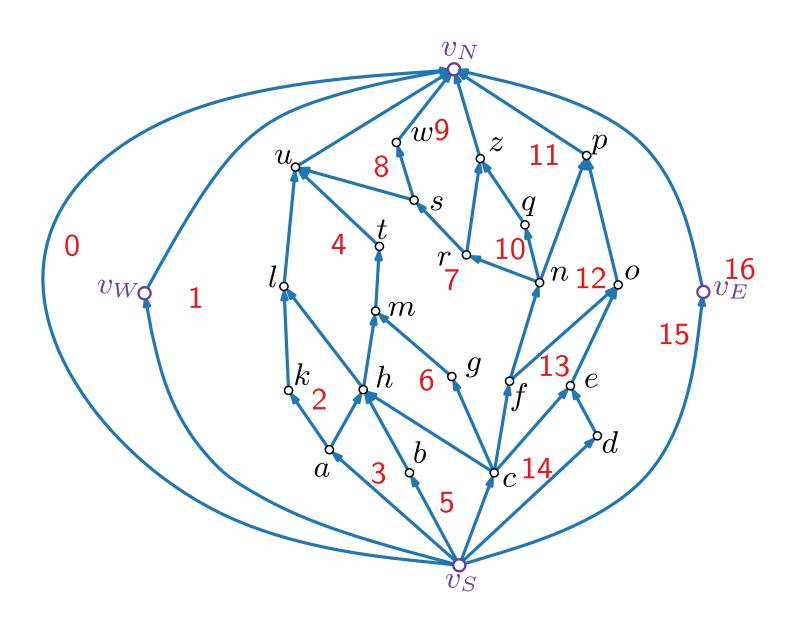
$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$



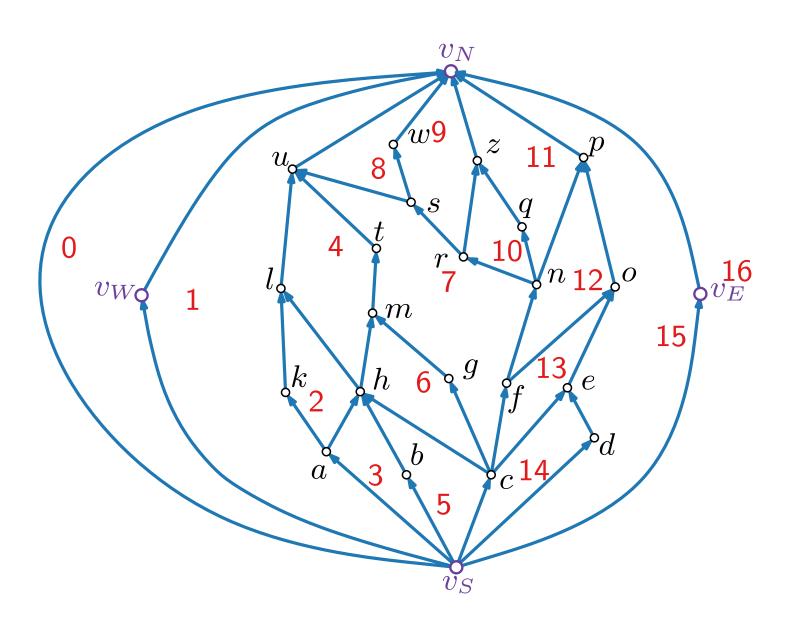
$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$



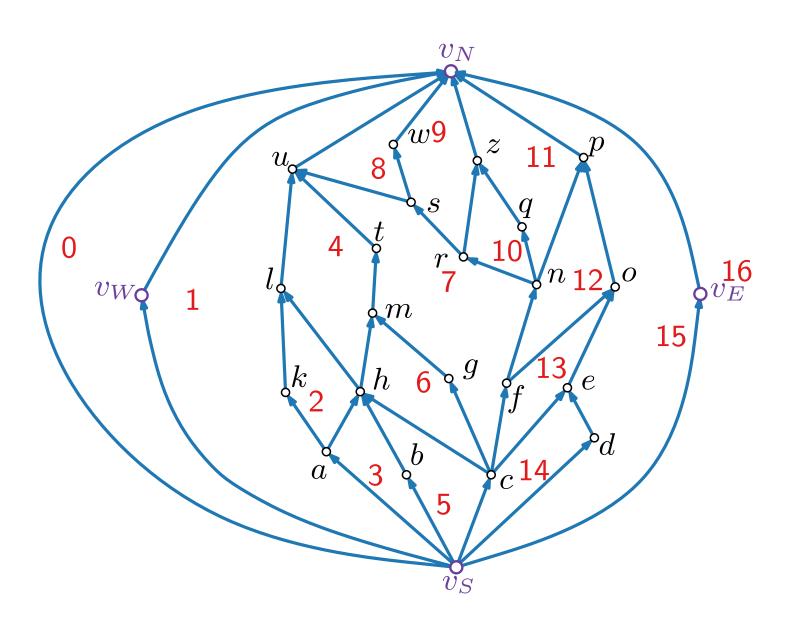
$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$



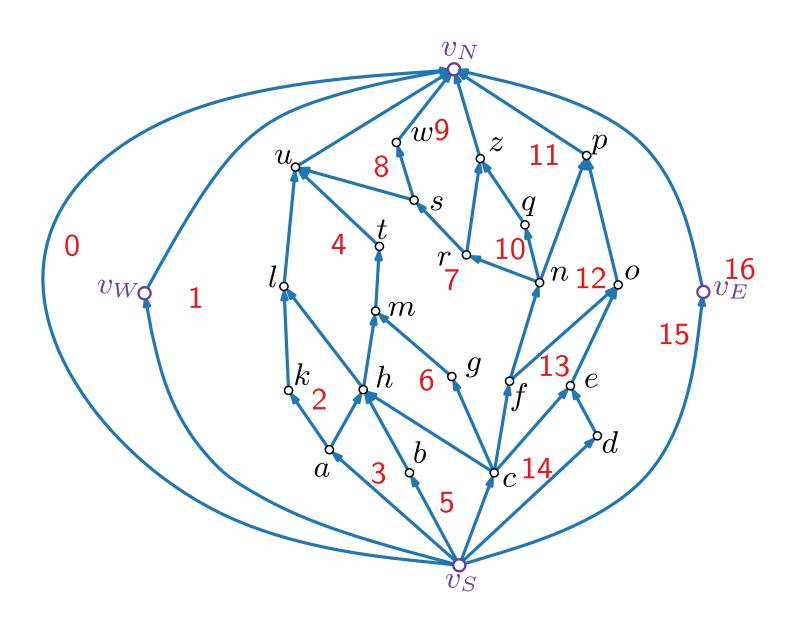
$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$

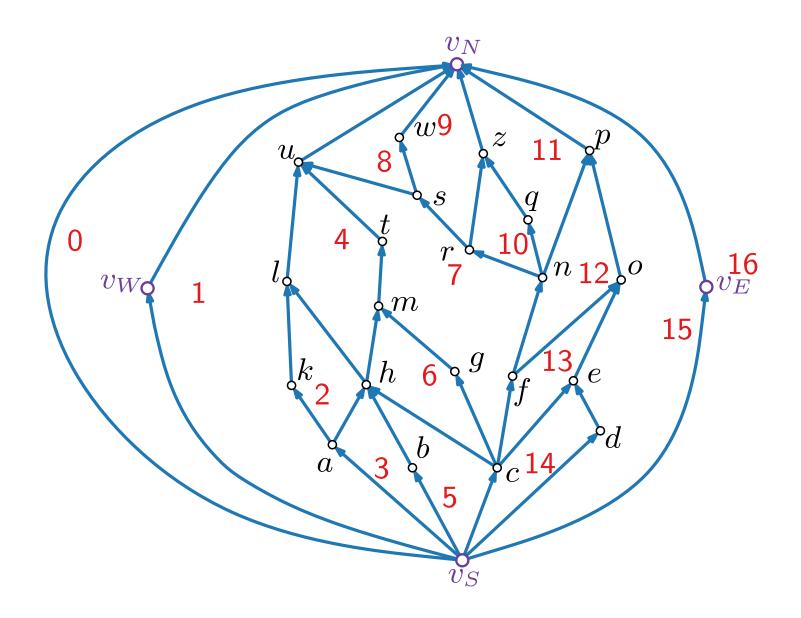


$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

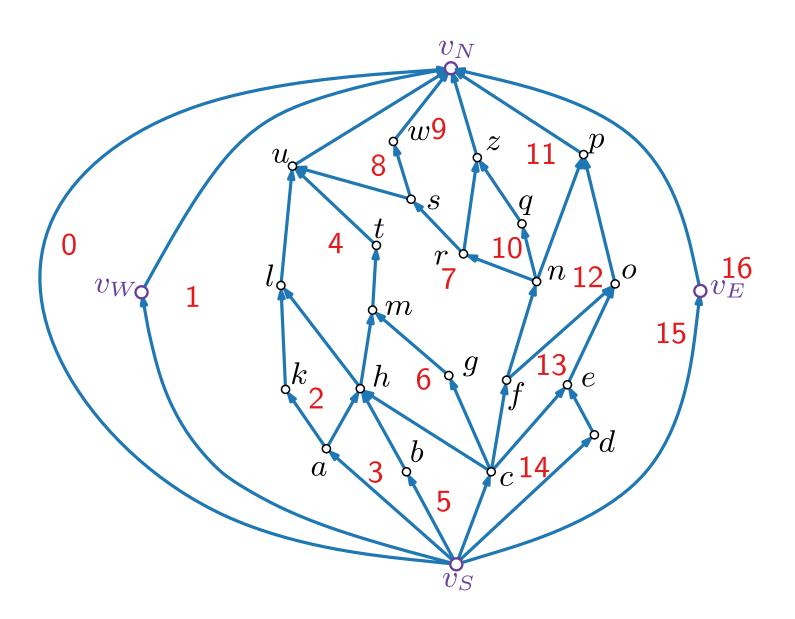
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$



$$x_1(v_N) = 1, \ x_2(v_N) = 15$$
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$

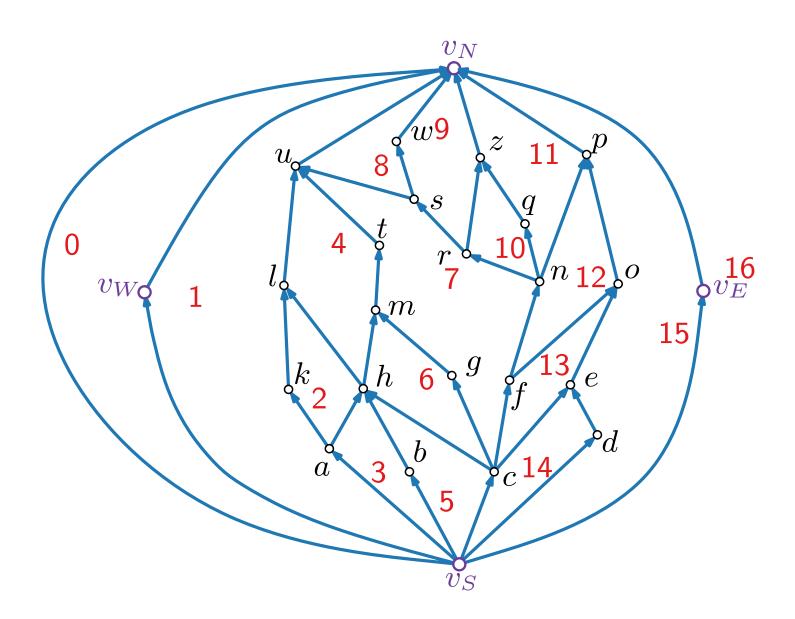


$$x_1(v_N) = 1, \ x_2(v_N) = 15$$
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$



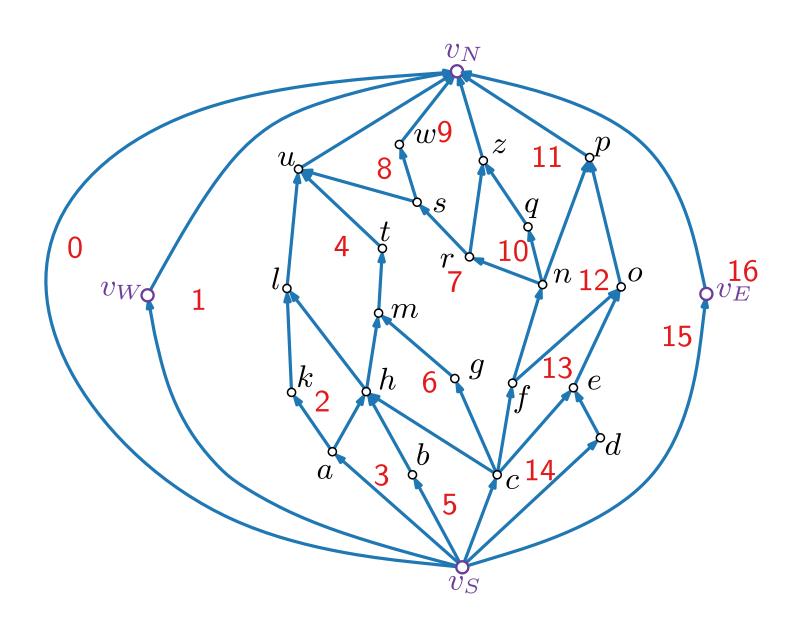
$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$



$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$



$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

```
10
5
```

```
x_1(v_N) = 1, \ x_2(v_N) = 15

x_1(v_S) = 2, \ x_2(v_S) = 16

x_1(v_W) = 0, x_2(v_W) = 1

x_1(v_E) = 15, \ x_2(v_E) = 16

x_1(a) = 1, \ x_2(a) = 3

x_1(b) = 3, \ x_2(b) = 5

x_1(c) = 5, \ x_2(c) = 14

x_1(d) = 14, \ x_2(d) = 15

x_1(e) = 13, \ x_2(e) = 15
```

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

. .

```
10
5
```

```
x_1(v_N) = 1, \ x_2(v_N) = 15

x_1(v_S) = 2, \ x_2(v_S) = 16

x_1(v_W) = 0, x_2(v_W) = 1

x_1(v_E) = 15, \ x_2(v_E) = 16

x_1(a) = 1, \ x_2(a) = 3

x_1(b) = 3, \ x_2(b) = 5

x_1(c) = 5, \ x_2(c) = 14

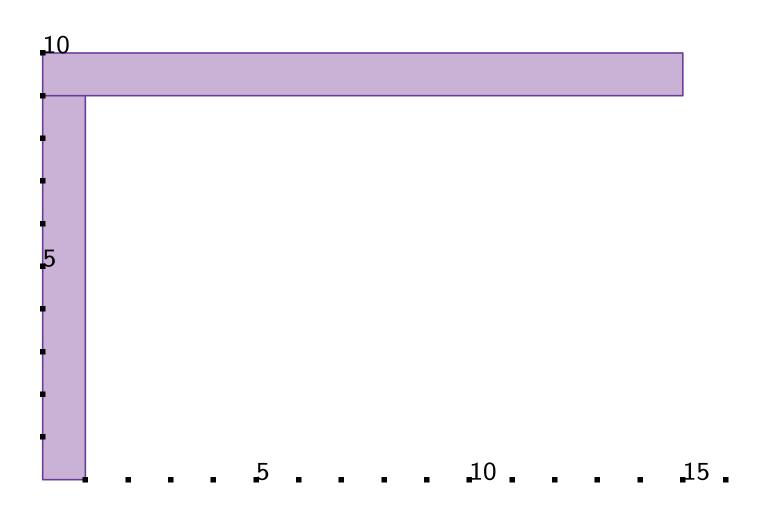
x_1(d) = 14, \ x_2(d) = 15

x_1(e) = 13, \ x_2(e) = 15
```

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

. .

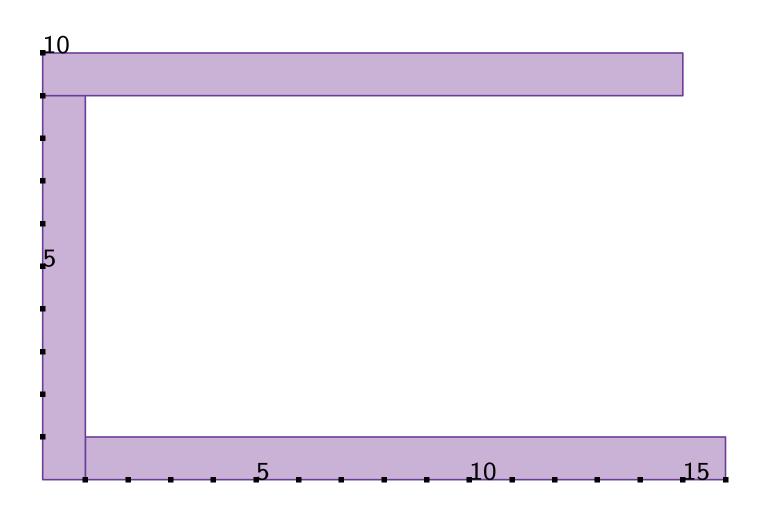


$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$



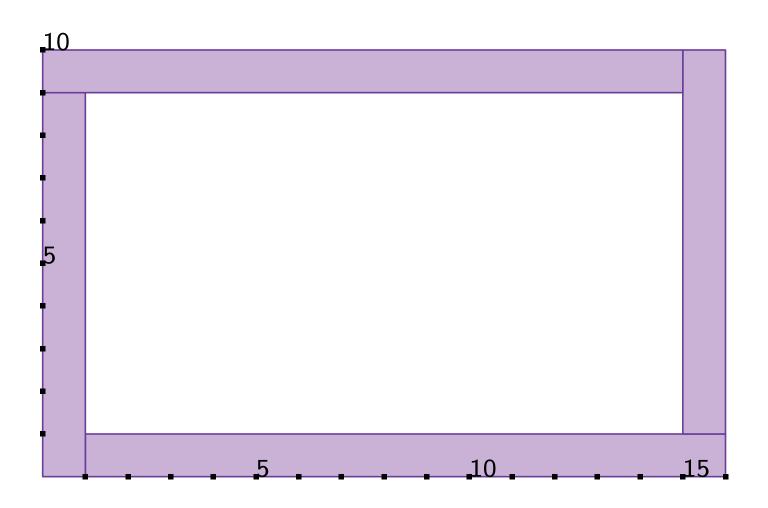
$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

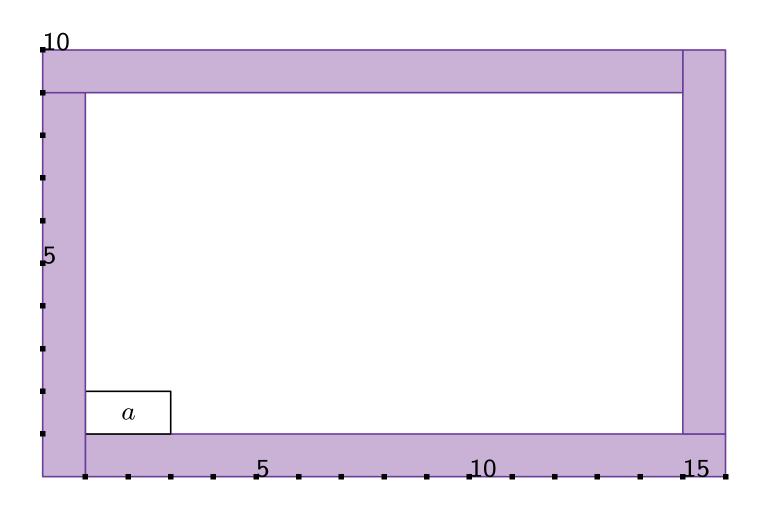
. .



$$x_1(v_N) = 1, \ x_2(v_N) = 15$$
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

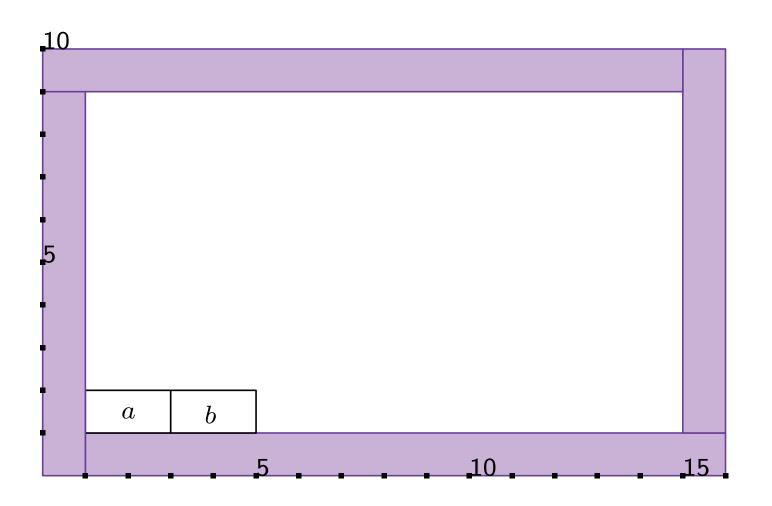


$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

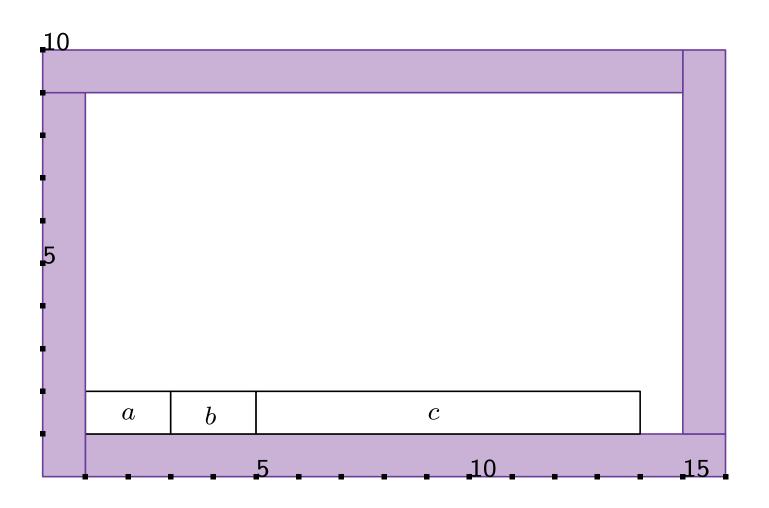


$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

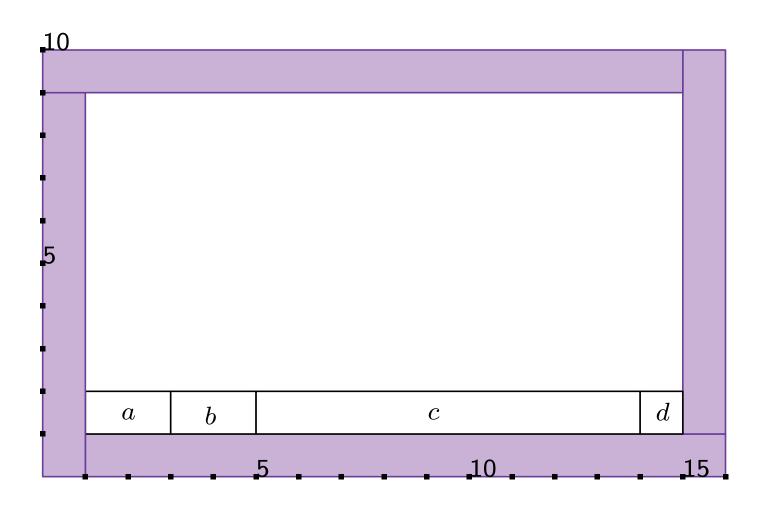
 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$



$$x_1(v_N) = 1, \ x_2(v_N) = 15$$
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

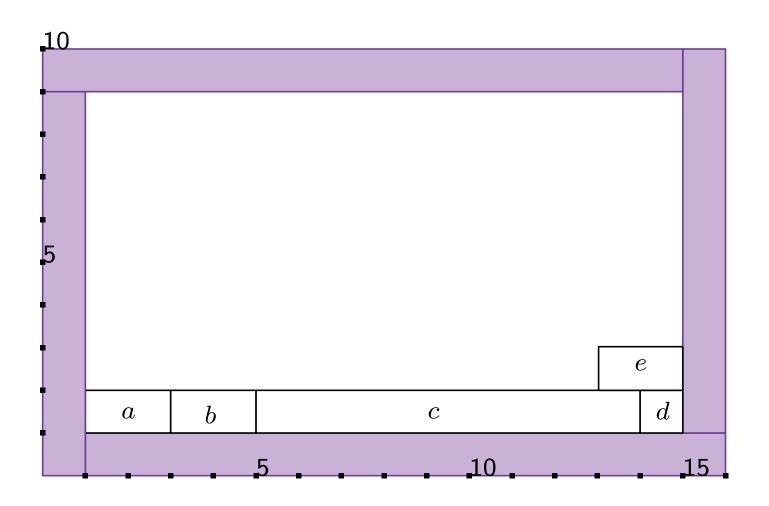
 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$



$$x_1(v_N) = 1, \ x_2(v_N) = 15$$
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

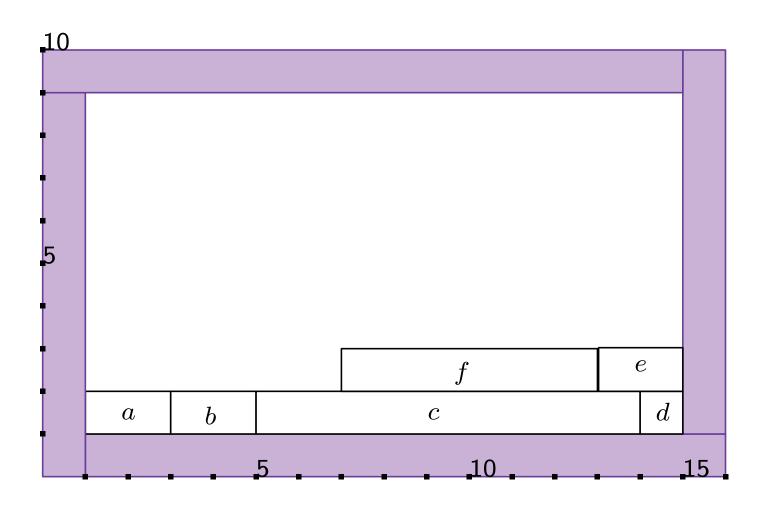


$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

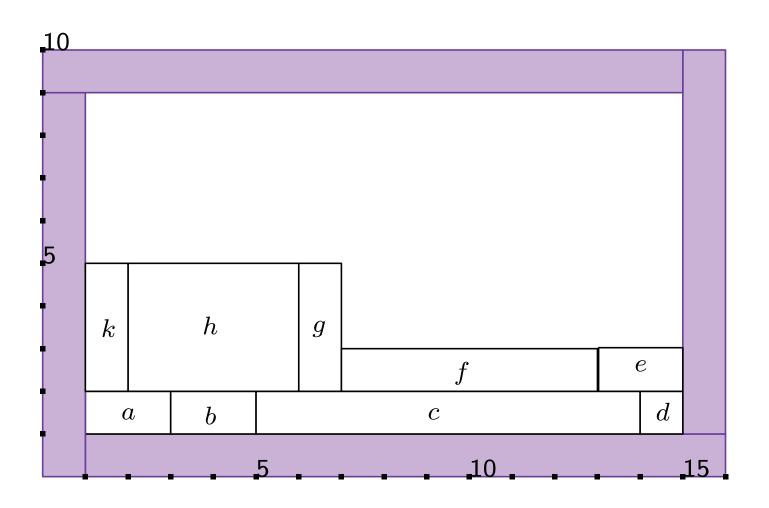


$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

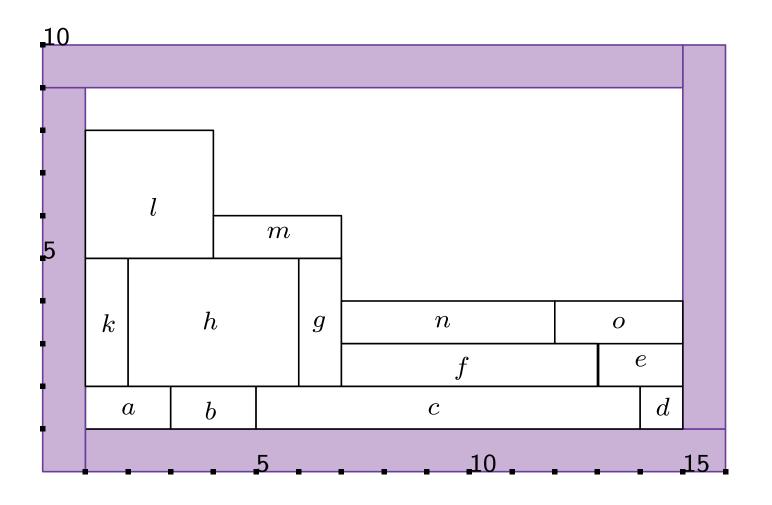


$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

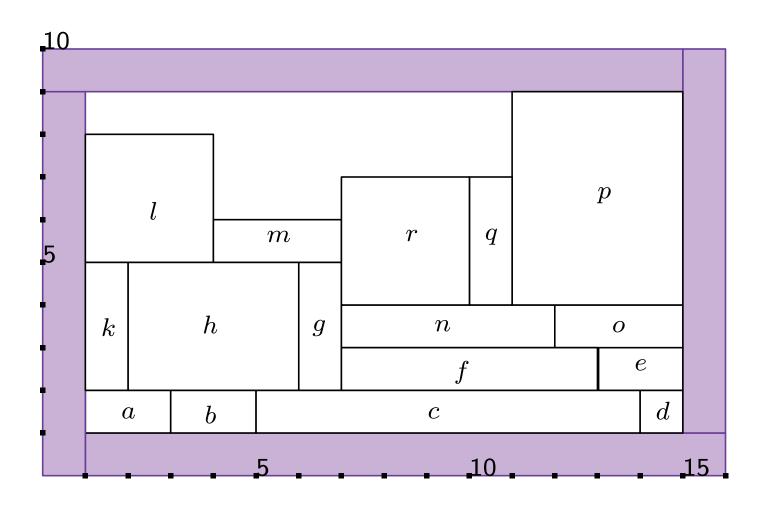


$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

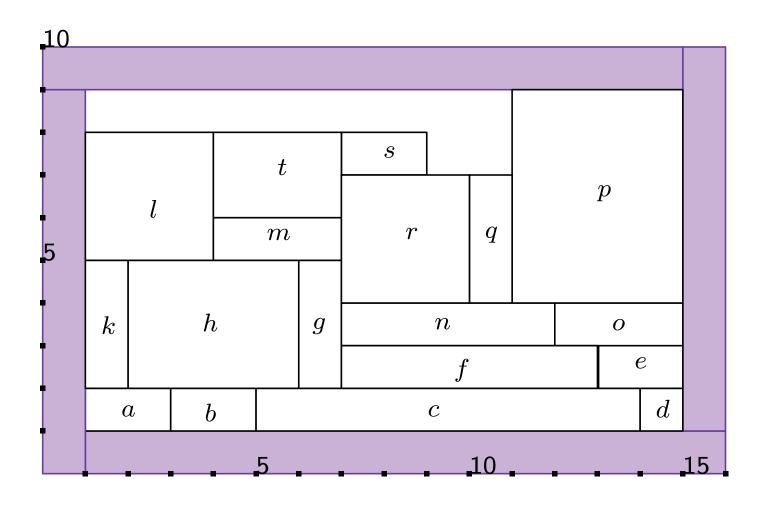


$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

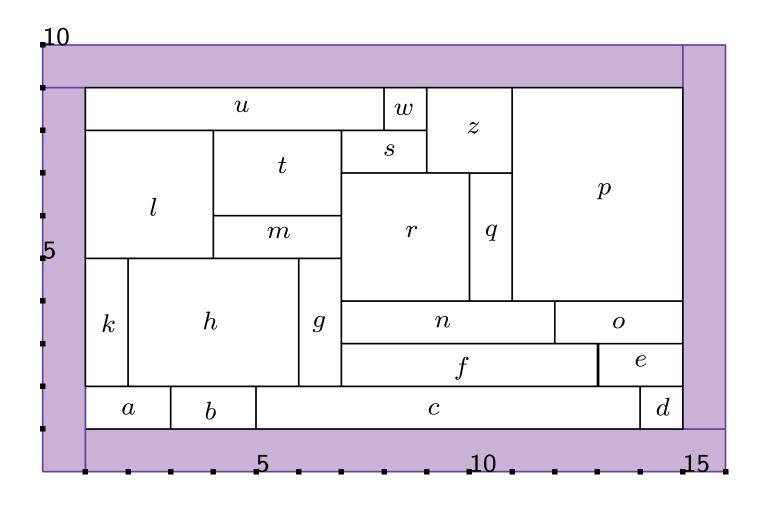


$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$



$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

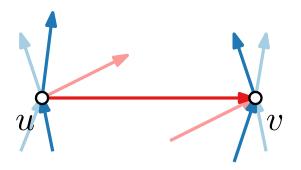
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

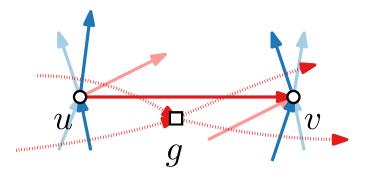
 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

If edge (u, v) exists, then $x_2(u) = x_1(v)$

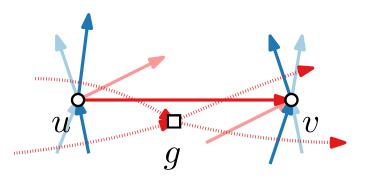
If edge (u, v) exists, then $x_2(u) = x_1(v)$



If edge (u, v) exists, then $x_2(u) = x_1(v)$

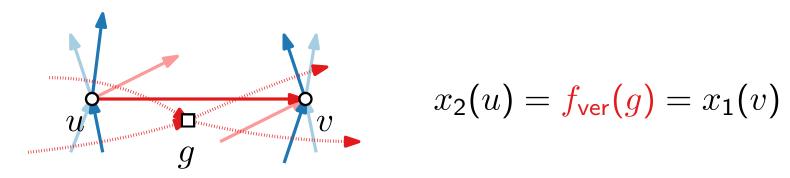


■ If edge (u, v) exists, then $x_2(u) = x_1(v)$

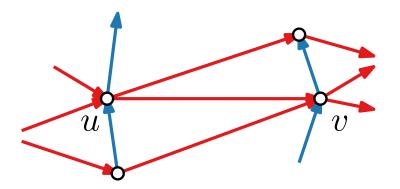


$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

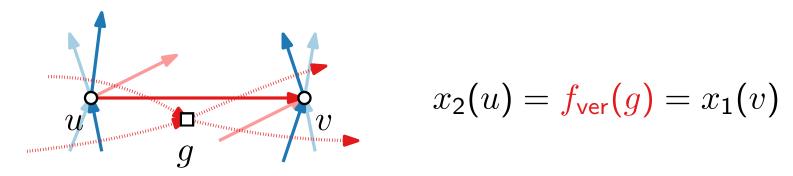
If edge (u, v) exists, then $x_2(u) = x_1(v)$



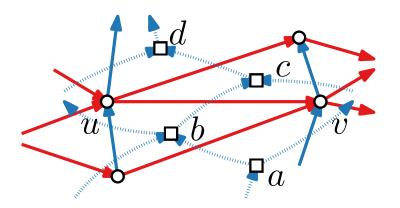
and the vertical segments of their rectangles overlap



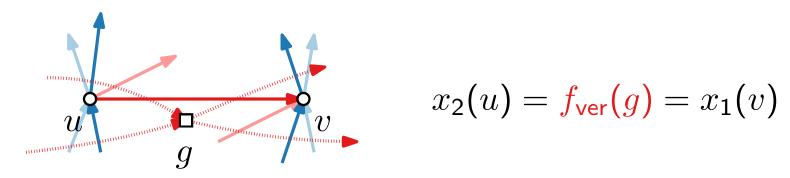
If edge (u, v) exists, then $x_2(u) = x_1(v)$

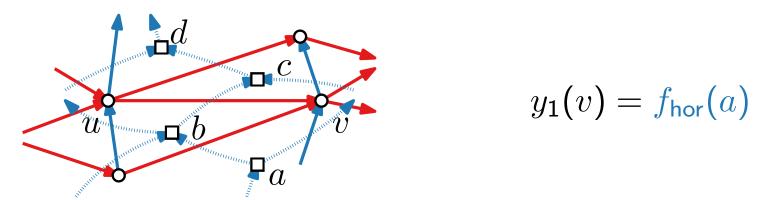


and the vertical segments of their rectangles overlap

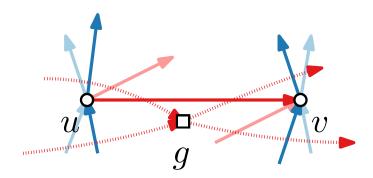


If edge (u, v) exists, then $x_2(u) = x_1(v)$

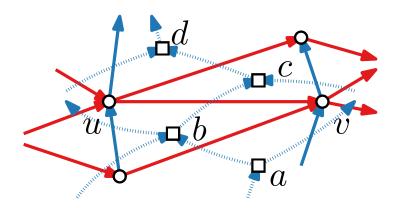




If edge (u, v) exists, then $x_2(u) = x_1(v)$

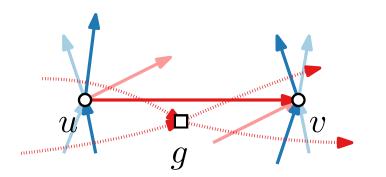


$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

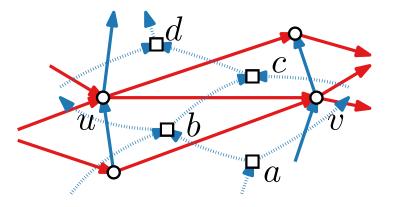


$$y_1(v) = f_{\text{hor}}(a) \le y_1(u) = f_{\text{hor}}(b)$$

If edge (u, v) exists, then $x_2(u) = x_1(v)$



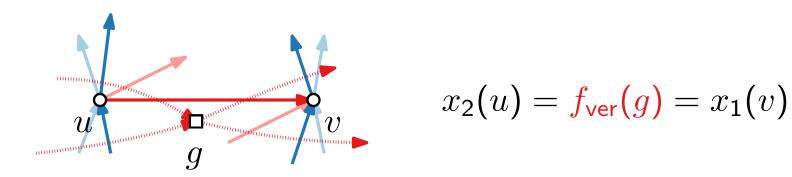
$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

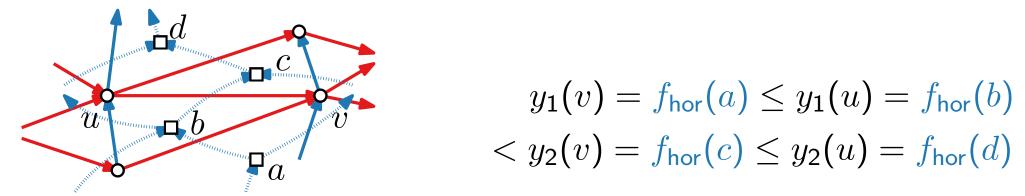


$$y_1(v) = f_{hor}(a) \le y_1(u) = f_{hor}(b)$$

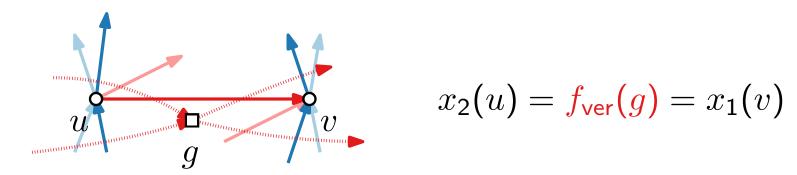
< $y_2(v) = f_{hor}(c)$

If edge (u, v) exists, then $x_2(u) = x_1(v)$





■ If edge (u, v) exists, then $x_2(u) = x_1(v)$

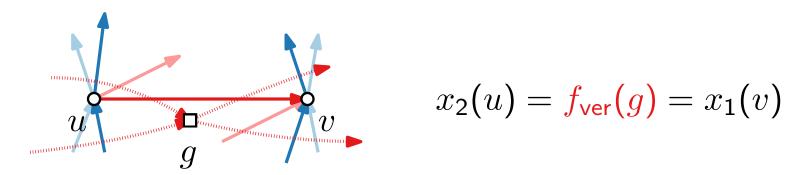


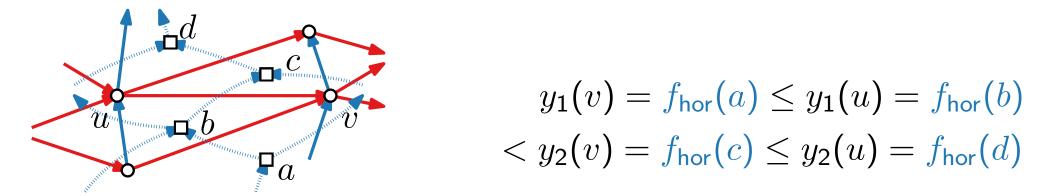
and the vertical segments of their rectangles overlap



■ If path from u to v in red at least two edges long, then $x_2(u) < x_1(v)$.

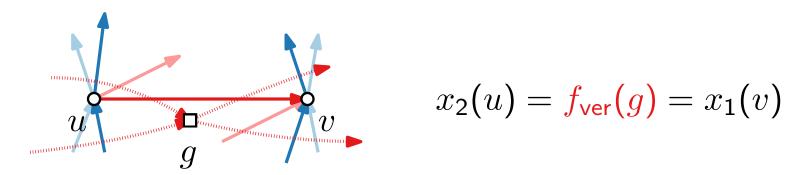
If edge (u, v) exists, then $x_2(u) = x_1(v)$

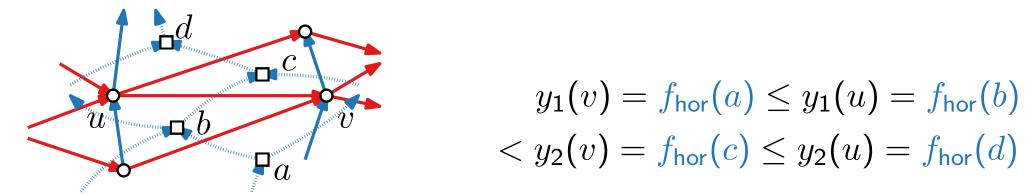




- If path from u to v in red at least two edges long, then $x_2(u) < x_1(v)$.
- No two boxes overlap.

If edge (u, v) exists, then $x_2(u) = x_1(v)$





- If path from u to v in red at least two edges long, then $x_2(u) < x_1(v)$.
- No two boxes overlap.
- for details see He's paper [He '93]

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

Proof.

 \blacksquare Compute a planar embedding of G.

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- \blacksquare Compute a refined canonical ordering of G.

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- lacksquare Compute a refined canonical ordering of G.
- Traverse the graph and color the edges.

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- lacksquare Compute a refined canonical ordering of G.
- Traverse the graph and color the edges.
- \blacksquare Construct G_{ver} and G_{hor} .

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- lacksquare Compute a refined canonical ordering of G.
- Traverse the graph and color the edges.
- \blacksquare Construct G_{ver} and G_{hor} .
- \blacksquare Construct their duals G_{ver}^{\star} and G_{hor}^{\star} .

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- \blacksquare Compute a refined canonical ordering of G.
- Traverse the graph and color the edges.
- \blacksquare Construct G_{ver} and G_{hor} .
- \blacksquare Construct their duals G_{ver}^{\star} and G_{hor}^{\star} .
- lacktriangle Compute a topological ordering for vertices of $G_{
 m ver}^{\star}$ and $G_{
 m hor}^{\star}$.

Theorem.

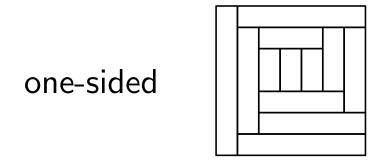
Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- \blacksquare Compute a refined canonical ordering of G.
- Traverse the graph and color the edges.
- \blacksquare Construct G_{ver} and G_{hor} .
- \blacksquare Construct their duals G_{ver}^{\star} and G_{hor}^{\star} .
- lacktriangle Compute a topological ordering for vertices of G_{ver}^{\star} and G_{hor}^{\star} .
- Assing coordinates to the rectangles representing vertices.

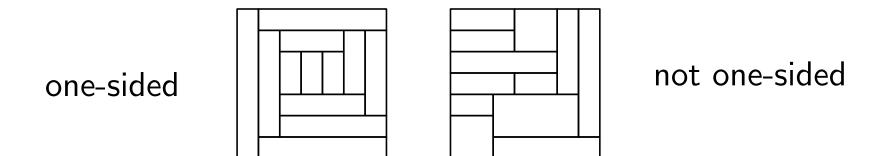
■ A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

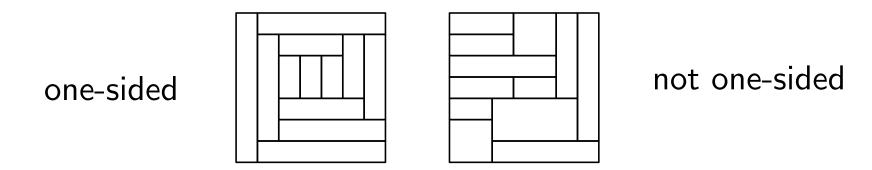
- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]



- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

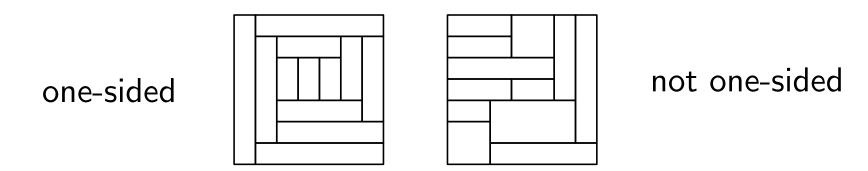


- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]



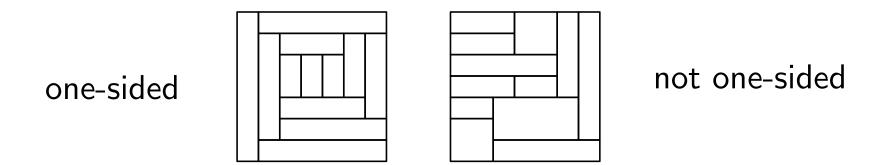
- Area-universal rectlinear representation: possible for all planar graphs
- [Alam et al. 2013]: 8 sides (matches the lower bound)

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

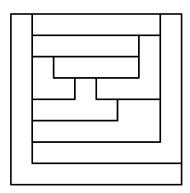


- Area-universal rectlinear representation: possible for all planar graphs
- [Alam et al. 2013]: 8 sides (matches the lower bound)

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]



- Area-universal rectlinear representation: possible for all planar graphs
- [Alam et al. 2013]: 8 sides (matches the lower bound)



Literature

Construction of triangle contact representations based on

■ [de Fraysseix, de Mendez, Rosenstiehl '94] On Triangle Contact Graphs

Construction of rectangular dual based on

- [He '93] On Finding the Rectangular Duals of Planar Triangulated Graphs
- [Kant, He '94] Two algorithms for finding rectangular duals of planar graphs and originally from
- [Koźmiński, Kinnen '85] Rectangular Duals of Planar Graphs