

Visualization of Graphs

Lecture 8:

Conact Representations of Planar Graphs: Triangle Contacts and Rectangular Duals

Part I: Geometric Representations

Jonathan Klawitter

In an intersection representation of a graph each vertex is represented as a set

In an intersection representation of a graph each vertex is represented as a set

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

For a collection S of sets S_1, \ldots, S_n , the **intersection graph** G(S) of S has vertex set S and edge set $\{S_iS_j: i, j \in \{1, \ldots, n\}, i \neq j, \text{ and } S_i \cap S_j \neq \emptyset\}.$

Let G be a graph.

Let ${\cal G}$ be a graph.

Represent each vertex v by a geometric object S(v)

Let G be a graph.

Represent each vertex v by a geometric object S(v)

Let G be a graph.

Let S be a set of geometric objects

Represent each vertex v by a geometric object S(v)

Let G be a graph.

Let $\mathcal S$ be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

Let G be a graph.

Let $\mathcal S$ be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

Let G be a graph.

Let S be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

Let ${\cal G}$ be a graph.

Let S be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

Let G be a graph.

Let S be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

rectangular cuboids

polygons

Let G be a graph.

Let S be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

rectangular cuboids

G is planar

disks

polygons

Let G be a graph.

Let S be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

rectangular cuboids

polygons

Let G be a graph.

Let S be a set of geometric objects

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

rectangular cuboids

In an S contact representation of G, S(u) and S(v) touch iff $uv \in E$

polygons

A contact representation is an intersection representation with interior-disjoint sets.

Let G be a graph.

Let S be a set of geometric objects

Represent each vertex v by a geometric object S(v)

rectangular cuboids

Is the intersection graph of a contact representation always planar?

Is the intersection graph of a contact representation always planar?

Is the intersection graph of a contact representation always planar?

Is the intersection graph of a contact representation always planar?

Is the intersection graph of a contact representation always planar?

■ No, not even for connected object types.

Some object types are used to represent special classes of planar graphs:

Is the intersection graph of a contact representation always planar?

■ No, not even for connected object types.

Some object types are used to represent special classes of planar graphs:

bipartite graphs

Is the intersection graph of a contact representation always planar?

max. triangle-free graphs

Is the intersection graph of a contact representation always planar?

■ No, not even for connected object types.

Some object types are used to represent special classes of planar graphs:

max. triangle-free graphs

General Approach

How to compute a contact representation of a given graph G?

How to compute a contact representation of a given graph G?

 Consider only inner triangulations (or maximally bipartite graphs, etc)

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

How to compute a contact representation of a given graph G?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

Describe contact representation combinatorically.

How to compute a contact representation of a given graph G?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

Describe contact representation combinatorically.

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges
- Describe contact representation combinatorically.

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

- Describe contact representation combinatorically.
 - Which objects contact each other in which way?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

- Describe contact representation combinatorically.
 - Which objects contact each other in which way?
- Compute combinatorical description.

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

- Which objects contact each other in which way?
- Compute combinatorical description.
- Show that combinatorical description can be used to construct drawing.

Representations with right-triangles and corner contact

Representations with right-triangles and corner contact

Use Schnyder realizer to describe contacts between triangles

Representations with right-triangles and corner contact

- Use Schnyder realizer to describe contacts between triangles
- Use canonical order to calculate drawing

Representations with right-triangles and corner contact

- Use Schnyder realizer to describe contacts between triangles
- Use canonical order to calculate drawing

Representation with dissection of a rectangle, called rectangular dual

Representations with right-triangles and corner contact

- Use Schnyder realizer to describe contacts between triangles
- Use canonical order to calculate drawing

Representation with dissection of a rectangle, called rectangular dual

■ Find similar description like Schnyder realizer for rectangles

Representations with right-triangles and corner contact

- Use Schnyder realizer to describe contacts between triangles
- Use canonical order to calculate drawing

Representation with dissection of a rectangle, called rectangular dual

- Find similar description like Schnyder realizer for rectangles
- Construct drawing via st-digraphs, duals, and topological sorting

Visualization of Graphs

Lecture 8:

Conact Representations of Planar Graphs:

Triangle Contacts and Rectangular Duals

Part II:

Triangle Contact Representations

Jonathan Klawitter

Idea.

Idea.

Idea.

Idea.

Idea.

Use canonical order and Schnyder realizer to find coordinates for triangles.

Observation.

■ Can set base of triangle at height equal to position in canonical order.

Idea.

- Can set base of triangle at height equal to position in canonical order.
- Triangle tip is precisely at base of triangle corresponding to cover neighbor.

Idea.

Use canonical order and Schnyder realizer to find coordinates for triangles.

Observation.

- Can set base of triangle at height equal to position in canonical order.
- Triangle tip is precisely at base of triangle corresponding to cover neighbor.
- Outgoing edges in Schnyder forest indicate corner contacts.

Visualization of Graphs

Lecture 8:

Conact Representations of Planar Graphs: Triangle Contacts and Rectangular Duals

Part III: Rectangular Duals

Jonathan Klawitter

COVID19 reported deaths (January 1, 2021)

© worldmapper.org

© worldmapper.org

© worldmapper.org

© New York Times

© worldmapper.org

© New York Times

© worldmapper.org

© New York Times

© worldmapper.org

© New York Times

© worldmapper.org

© New York Times

© Bettina Speckmann

© worldmapper.org

© New York Times

© Bettina Speckmann

© worldmapper.org

© New York Times

© Bettina Speckmann

© New York Times

© worldmapper.org

© New York Times

© Bettina Speckmann

© New York Times

© worldmapper.org

© New York Times

© Bettina Speckmann

© New York Times

Needs 64 206 Romney ELECTORAL VOTI

Cartograms

© worldmapper.org

© New York Times

© Bettina Speckmann

© New York Times

Obama 243 Needs 27 to win

Needs 64 206 Romney ELECTORAL VOTI

Cartograms

© worldmapper.org

© New York Times

© Bettina Speckmann

© New York Times

Obama 243 Needs 27 to win

A **rectangular dual** of a graph G is a contact representation with axis aligned rectangles s.t.

Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

no four rectangles share a point,

Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

 \square Rectangular Dual $\mathcal R$

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

RD

[Koźmiński, Kinnen '85]

A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Properly Triangulated Planar Graph ${\cal G}$

Rectangular Dual ${\mathcal R}$

A **rectangular dual** of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

[Koźmiński, Kinnen '85]

A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Properly Triangulated Planar Graph G

Rectangular Dual ${\mathcal R}$

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

[Koźmiński, Kinnen '85]

A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

A **rectangular dual** of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

[Koźmiński, Kinnen '85]

A **rectangular dual** of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face

no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face

no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face

no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face

no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face

no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

[Koźmiński, Kinnen '85]

Exactly 4 vertices on outer face

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.

[Koźmiński, Kinnen '85]

Properly Triangulated Planar Graph ${\cal G}$

Properly Triangulated ${\sf Planar} \,\, {\sf Graph} \,\, G$

Regular Edge Labeling

RD

Properly Triangulated ${\sf Planar} \,\, {\sf Graph} \,\, G$

Regular Edge Labeling

RD

Properly Triangulated ${\sf Planar} \,\, {\sf Graph} \,\, G$

Regular Edge Labeling

Properly Triangulated ${\sf Planar} \,\, {\sf Graph} \,\, G$

Regular Edge Labeling

Properly Triangulated ${\sf Planar} \,\, {\sf Graph} \,\, G$

Regular Edge Labeling

RD

Properly Triangulated Planar Graph ${\cal G}$

Regular Edge Labeling

RD

outer vertices

Properly Triangulated Planar Graph ${\cal G}$

Regular Edge Labeling

Rectangular Dual ${\mathcal R}$

 v_W v_E

for every

inner vertex

[Kant, He '94]: In linear time

for four outer vertices

Properly Triangulated Planar Graph ${\cal G}$

Regular Edge Labeling

Rectangular Dual ${\mathcal R}$

[Kant, He '94]: In linear time

Properly Triangulated Planar Graph G

Regular Edge Labeling

Rectangular Dual ${\mathcal R}$

[Kant, He '94]: In linear time

Visualization of Graphs

Lecture 8:

Conact Representations of Planar Graphs: Triangle Contacts and Rectangular Duals

Part IV: Computing a REL

Jonathan Klawitter

Theorem.

Let G be a PTP graph.

Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G s

Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

■ The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected

Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

■ The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected

Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .

Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .

Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- lacksquare v_k is in exterior face of G_{k-1}

Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- lacksquare v_k is in exterior face of G_{k-1}

Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in exterior face of G_{k-1} , and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.

Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in exterior face of G_{k-1} , and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in exterior face of G_{k-1} , and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.
- If $k \le k-2$, then v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in exterior face of G_{k-1} , and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.
- If $k \le k-2$, then v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling $v_1=v_S, v_2=v_W, v_3, \ldots, v_n=v_N$ of the vertices of G such that for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in exterior face of G_{k-1} , and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.
- If $k \le k-2$, then v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:

Refined Canonical Order \rightarrow REL

We construct a REL as follows:

For i < j, orient (v_i, v_j) from v_i to v_j ;

We construct a REL as follows:

For i < j, orient (v_i, v_j) from v_i to v_j ;

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- $lackbox{$ v_k$ has incoming edges from v_{t_1},\ldots,v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.$

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- $lackbox{$ v_k$ has incoming edges from v_{t_1},\ldots,v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.$

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- $lackbox{$ v_k$ has incoming edges from v_{t_1},\ldots,v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.$

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- $lackbox{v}_k$ has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.

We construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.

v_{k_1} v_{k_2} v_{k_3} v_{k_4} v_{k_5}

Lemma 1.

A left edge or right edge cannot be a base edge.

We construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- $lackbox{v}_k$ has incoming edges from v_{t_1}, \dots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.

v_{k_1} v_k v_{t_1} v_{t_2} v_{t_3} v_{t_4}

Lemma 1.

A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (v_k, v_{k_1}) is base edge of v_{k_1} .

We construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.

v_{k_1} v_k v_{t_1} v_{t_a} v_{t_l}

Lemma 1.

A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (v_k, v_{k_1}) is base edge of v_{k_1} . Since G triangulated, $(v_{t_1}, v_{k_1}) \in E(G)$.

We construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_o} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_o}) right edge.

Lemma 1.

A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (v_k, v_{k_1}) is base edge of v_{k_1} . Since G triangulated, $(v_{t_1}, v_{k_1}) \in E(G)$. Contradiction since $v_k > v_{t_1}$.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

Exclusive "or" follows from Lemma 1.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- lacksquare v_{t_a} is right point of $v_{t_{a-1}}$

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- lacksquare v_{t_a} is right point of $v_{t_{a-1}}$

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - lacksquare v_{t_i} has at least two higher-numbered neighbors.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbrack v_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - lacksquare v_{t_i} has at least two higher-numbered neighbors.
 - lacksquare One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbrack v_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - $lacktriangleq v_{t_i}$ has at least two higher-numbered neighbors.
 - lacksquare One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
 - For $1 \leq i < a-1$, it is $v_{t_{i-1}}$.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - lacksquare v_{t_i} has at least two higher-numbered neighbors.
 - lacksquare One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
 - For $1 \leq i < a-1$, it is $v_{t_{i-1}}$.
- lacksquare Analogously, $v_{t_{i\geq a}}$ is left point of $v_{t_{i+1}}$

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - lacksquare v_{t_i} has at least two higher-numbered neighbors.
 - One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
 - For $1 \leq i < a-1$, it is $v_{t_{i-1}}$.
- lacksquare Analogously, $v_{t_{i\geq a}}$ is left point of $v_{t_{i+1}}$
- Edges (v_{t_i}, v_k) , $1 \le i < a 1$, are right edges.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; $v_{t_{i< a}}$ is right point of $v_{t_{i-1}}$:
 - lacksquare v_{t_i} has at least two higher-numbered neighbors.
 - lacksquare One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
 - For $1 \leq i < a-1$, it is $v_{t_{i-1}}$.
- lacksquare Analogously, $v_{t_{i\geq a}}$ is left point of $v_{t_{i+1}}$
- Edges (v_{t_i}, v_k) , $1 \le i < a 1$, are right edges.
- Similarly, (v_{t_i}, v_k) , for $a + 1 \le i \le l$, are left edges.

Coloring.

Color right (left) edges in red (blue).

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

Proof. $k_d = \max\{v_{k_1}\dots v_{k_o}\}$ base edges of $v_{k_1}\dots v_{k_{o-1}}$ left edge of v_k of v_k of v_k

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$

$$k_d = \max\{v_{k_1}\dots v_{k_o}\}$$
 $k_1 < k_2 < \dots < k_d \text{ and}$ base edges of $k_d > k_{d+1} > \dots > k_o$

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$

- $k_1 < k_2 < \ldots < k_d \text{ and } k_d > k_{d+1} > \ldots > k_o$
- (v_k, v_{k_i}) , $2 \le i \le d-1$ are blue

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$

- $k_1 < k_2 < \ldots < k_d \text{ and } k_d > k_{d+1} > \ldots > k_o$
- (v_k, v_{k_i}) , $2 \le i \le d-1$ are blue
- $(v_k, v_{k_i}), d+1 \le i \le o-1 \text{ are red}$

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_o \geq 2$$

- $k_1 < k_2 < \ldots < k_d$ and $k_d > k_{d+1} > \ldots > k_o$
- (v_k, v_{k_i}) , $2 \le i \le d-1$ are blue
- $(v_k, v_{k_i}), d+1 \le i \le o-1 \text{ are red}$
- (v_k, v_{k_d}) is either red or blue

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

Proof.

$$k_o \geq 2$$

- $k_1 < k_2 < \ldots < k_d \text{ and } k_d > k_{d+1} > \ldots > k_o$
- (v_k, v_{k_i}) , $2 \le i \le d-1$ are blue
- $(v_k, v_{k_i}), d+1 \le i \le o-1 \text{ are red}$
- (v_k, v_{k_d}) is either red or blue

 \Rightarrow circular order of outgoing edges at v_k correct

Visualization of Graphs

Lecture 8:

Conact Representations of Planar Graphs: Triangle Contacts and Rectangular Duals

Part V: Computing the Coordinates

Jonathan Klawitter

For a PTP graph G = (V, E):

```
For a PTP graph G = (V, E):
```

■ Find a REL $\{T_r, T_b\}$ of G;

```
For a PTP graph G = (V, E):
```

- Find a REL $\{T_r, T_b\}$ of G;
- Construct a SN network G_{ver} of G (consists of T_b plus outer edges)

```
For a PTP graph G = (V, E):
```

- Find a REL $\{T_r, T_b\}$ of G;
- lacktriangle Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}

```
For a PTP graph G = (V, E):
```

- Find a REL $\{T_r, T_b\}$ of G;
- Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v.

```
For a PTP graph G = (V, E):
```

- Find a REL $\{T_r, T_b\}$ of G;
- Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.

For a PTP graph G = (V, E):

- Find a REL $\{T_r, T_b\}$ of G;
- \blacksquare Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.
- Define $x_1(v_N)=1, x_1(v_S)=2$ and $x_2(v_N)=\max f_{\mathsf{ver}}-1, x_2(v_S)=\max f_{\mathsf{ver}}$

Rectangular Dual Algorithm

For a PTP graph G = (V, E):

- Find a REL $\{T_r, T_b\}$ of G;
- \blacksquare Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.
- Define $x_1(v_N)=1, x_1(v_S)=2$ and $x_2(v_N)=\max f_{\mathsf{ver}}-1, x_2(v_S)=\max f_{\mathsf{ver}}$
- Analogously compute y_1 and y_2 with G_{hor} .

Rectangular Dual Algorithm

For a PTP graph G = (V, E):

- Find a REL $\{T_r, T_b\}$ of G;
- \blacksquare Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.
- Define $x_1(v_N)=1, x_1(v_S)=2$ and $x_2(v_N)=\max f_{\mathsf{ver}}-1, x_2(v_S)=\max f_{\mathsf{ver}}$
- Analogously compute y_1 and y_2 with G_{hor} .
- For each $v \in V$, assign a rectangle R(v) bounded by x-coordinates $x_1(v), x_2(v)$ and y-coordinates $y_1(v), y_2(v)$.

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

```
10
5
```

```
x_1(v_N) = 1, \ x_2(v_N) = 15

x_1(v_S) = 2, \ x_2(v_S) = 16

x_1(v_W) = 0, x_2(v_W) = 1

x_1(v_E) = 15, \ x_2(v_E) = 16

x_1(a) = 1, \ x_2(a) = 3

x_1(b) = 3, \ x_2(b) = 5

x_1(c) = 5, \ x_2(c) = 14

x_1(d) = 14, \ x_2(d) = 15

x_1(e) = 13, \ x_2(e) = 15
```

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

. .

```
10
5
```

```
x_1(v_N) = 1, \ x_2(v_N) = 15

x_1(v_S) = 2, \ x_2(v_S) = 16

x_1(v_W) = 0, x_2(v_W) = 1

x_1(v_E) = 15, \ x_2(v_E) = 16

x_1(a) = 1, \ x_2(a) = 3

x_1(b) = 3, \ x_2(b) = 5

x_1(c) = 5, \ x_2(c) = 14

x_1(d) = 14, \ x_2(d) = 15

x_1(e) = 13, \ x_2(e) = 15
```

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

. .

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

. .

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$
 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 2, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

If edge (u, v) exists, then $x_2(u) = x_1(v)$

If edge (u, v) exists, then $x_2(u) = x_1(v)$

If edge (u, v) exists, then $x_2(u) = x_1(v)$

■ If edge (u, v) exists, then $x_2(u) = x_1(v)$

$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

If edge (u, v) exists, then $x_2(u) = x_1(v)$

and the vertical segments of their rectangles overlap

If edge (u, v) exists, then $x_2(u) = x_1(v)$

and the vertical segments of their rectangles overlap

If edge (u, v) exists, then $x_2(u) = x_1(v)$

If edge (u, v) exists, then $x_2(u) = x_1(v)$

$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

$$y_1(v) = f_{\text{hor}}(a) \le y_1(u) = f_{\text{hor}}(b)$$

If edge (u, v) exists, then $x_2(u) = x_1(v)$

$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

$$y_1(v) = f_{hor}(a) \le y_1(u) = f_{hor}(b)$$

< $y_2(v) = f_{hor}(c)$

If edge (u, v) exists, then $x_2(u) = x_1(v)$

■ If edge (u, v) exists, then $x_2(u) = x_1(v)$

and the vertical segments of their rectangles overlap

■ If path from u to v in red at least two edges long, then $x_2(u) < x_1(v)$.

If edge (u, v) exists, then $x_2(u) = x_1(v)$

- If path from u to v in red at least two edges long, then $x_2(u) < x_1(v)$.
- No two boxes overlap.

If edge (u, v) exists, then $x_2(u) = x_1(v)$

- If path from u to v in red at least two edges long, then $x_2(u) < x_1(v)$.
- No two boxes overlap.
- for details see He's paper [He '93]

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

Proof.

 \blacksquare Compute a planar embedding of G.

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- \blacksquare Compute a refined canonical ordering of G.

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- lacksquare Compute a refined canonical ordering of G.
- Traverse the graph and color the edges.

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- lacksquare Compute a refined canonical ordering of G.
- Traverse the graph and color the edges.
- \blacksquare Construct G_{ver} and G_{hor} .

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- lacksquare Compute a refined canonical ordering of G.
- Traverse the graph and color the edges.
- \blacksquare Construct G_{ver} and G_{hor} .
- \blacksquare Construct their duals G_{ver}^{\star} and G_{hor}^{\star} .

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- \blacksquare Compute a refined canonical ordering of G.
- Traverse the graph and color the edges.
- \blacksquare Construct G_{ver} and G_{hor} .
- \blacksquare Construct their duals G_{ver}^{\star} and G_{hor}^{\star} .
- lacktriangle Compute a topological ordering for vertices of $G_{
 m ver}^{\star}$ and $G_{
 m hor}^{\star}$.

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- \blacksquare Compute a refined canonical ordering of G.
- Traverse the graph and color the edges.
- \blacksquare Construct G_{ver} and G_{hor} .
- \blacksquare Construct their duals G_{ver}^{\star} and G_{hor}^{\star} .
- lacktriangle Compute a topological ordering for vertices of G_{ver}^{\star} and G_{hor}^{\star} .
- Assing coordinates to the rectangles representing vertices.

■ A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

- Area-universal rectlinear representation: possible for all planar graphs
- [Alam et al. 2013]: 8 sides (matches the lower bound)

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

- Area-universal rectlinear representation: possible for all planar graphs
- [Alam et al. 2013]: 8 sides (matches the lower bound)

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

- Area-universal rectlinear representation: possible for all planar graphs
- [Alam et al. 2013]: 8 sides (matches the lower bound)

Literature

Construction of triangle contact representations based on

■ [de Fraysseix, de Mendez, Rosenstiehl '94] On Triangle Contact Graphs

Construction of rectangular dual based on

- [He '93] On Finding the Rectangular Duals of Planar Triangulated Graphs
- [Kant, He '94] Two algorithms for finding rectangular duals of planar graphs and originally from
- [Koźmiński, Kinnen '85] Rectangular Duals of Planar Graphs