Visualization of Graphs

Lecture 8:
Conact Representations of Planar Graphs:
Triangle Contacts and Rectangular Duals

Part I:
Geometric Representations
Jonathan Klawitter

Intersection Representation

In an intersection representation of a graph each vertex is represented as a set

Intersection Representation

In an intersection representation of a graph each vertex is represented as a set

Intersection Representation

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

Intersection Representation

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

Intersection Representation

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

Intersection Representation

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

Intersection Representation

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

For a collection \mathcal{S} of sets S_{1}, \ldots, S_{n}, the intersection graph $G(\mathcal{S})$ of \mathcal{S} has vertex set \mathcal{S} and edge set

$$
\left\{S_{i} S_{j}: i, j \in\{1, \ldots, n\}, i \neq j, \text { and } S_{i} \cap S_{j} \neq \emptyset\right\}
$$

Contact Representation of Graphs

Let G be a graph.

Contact Representation of Graphs

Let G be a graph.

Represent each vertex v by a geometric object $S(v)$

Contact Representation of Graphs

Let G be a graph.

Represent each vertex v by a geometric object $S(v)$

Contact Representation of Graphs

Let G be a graph.

Represent each vertex v by a geometric object $S(v)$

Contact Representation of Graphs

Let G be a graph.

Represent each vertex v by a geometric object $S(v)$

Contact Representation of Graphs

Let G be a graph.

Represent each vertex v by a geometric object $S(v)$

0

Contact Representation of Graphs

Let G be a graph.

Represent each vertex v by a geometric object $S(v)$

Contact Representation of Graphs

Let G be a graph.

Represent each vertex v by a geometric object $S(v)$

In a contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

Contact Representation of Graphs

Let G be a graph.

Represent each vertex v by a geometric object $S(v)$

In a contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

Contact Representation of Graphs

Let G be a graph.

Let \mathcal{S} be a set of geometric objects
Represent each vertex v by a geometric object $S(v)$

In a contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

Contact Representation of Graphs

Let G be a graph.

Let \mathcal{S} be a set of geometric objects
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

In a contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

Contact Representation of Graphs

Let G be a graph.

Let \mathcal{S} be a set of geometric objects
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

In an \mathcal{S} contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

Contact Representation of Graphs

Let G be a graph.

Let \mathcal{S} be a set of geometric objects
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

In an \mathcal{S} contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

disks

Contact Representation of Graphs

Let G be a graph.

Let \mathcal{S} be a set of geometric objects
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

In an \mathcal{S} contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

disks

polygons

Contact Representation of Graphs

Let G be a graph.

Let \mathcal{S} be a set of geometric objects
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

In an \mathcal{S} contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

disks

rectangular cuboids

Contact Representation of Graphs

Let G be a graph.

Let \mathcal{S} be a set of geometric objects
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

In an \mathcal{S} contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

G is planar

disks

polygons
rectangular cuboids

Contact Representation of Graphs

Let G be a graph.

Let \mathcal{S} be a set of geometric objects
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

In an \mathcal{S} contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

G is planar $\xrightarrow{[\text { Koebe 1936] }}$ disks

polygons
rectangular cuboids

Contact Representation of Graphs

Let G be a graph.

Let \mathcal{S} be a set of geometric objects
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

In an \mathcal{S} contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

rectangular cuboids

G is planar $\xrightarrow{[\text { Koebe 1936] }}$ disks
\rightarrow polygons

Contact Representation of Graphs

A contact representation is an intersection representation with interior-disjoint sets.
Let G be a graph.

Let \mathcal{S} be a set of geometric objects
Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

rectangular cuboids

In an \mathcal{S} contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

\rightarrow polygons

G is planar $\xrightarrow[{[\text { Koebe 1936] }}]{ }$ disks

Contact Representation of Planar Graphs

Is the intersection graph of a contact representation always planar?

Contact Representation of Planar Graphs

Is the intersection graph of a contact representation always planar?
■ No, not even for connected object types.

Contact Representation of Planar Graphs

Is the intersection graph of a contact representation always planar?

- No, not even for connected object types.

Contact Representation of Planar Graphs

Is the intersection graph of a contact representation always planar?
■ No, not even for connected object types.

Contact Representation of Planar Graphs

Is the intersection graph of a contact representation always planar?
■ No, not even for connected object types.
Some object types are used to represent special classes
 of planar graphs:

Contact Representation of Planar Graphs

Is the intersection graph of a contact representation always planar?
■ No, not even for connected object types.
Some object types are used to represent special classes
 of planar graphs:

bipartite graphs

Contact Representation of Planar Graphs

Is the intersection graph of a contact representation always planar?
■ No, not even for connected object types.
Some object types are used to represent special classes
 of planar graphs:

bipartite graphs

max. triangle-free graphs

Contact Representation of Planar Graphs

Is the intersection graph of a contact representation always planar?
■ No, not even for connected object types.
Some object types are used to represent special classes of planar graphs:

bipartite graphs

max. triangle-free graphs

planar triangulations

General Approach

How to compute a contact representation of a given graph G ?

General Approach

How to compute a contact representation of a given graph G ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)

General Approach

How to compute a contact representation of a given graph G ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges

General Approach

How to compute a contact representation of a given graph G ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges

General Approach

How to compute a contact representation of a given graph G ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges

General Approach

How to compute a contact representation of a given graph G ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges

■ Describe contact representation combinatorically.

General Approach

How to compute a contact representation of a given graph G ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges

■ Describe contact representation combinatorically.

General Approach

How to compute a contact representation of a given graph G ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges

■ Describe contact representation combinatorically.

General Approach

How to compute a contact representation of a given graph G ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges

■ Describe contact representation combinatorically.
■ Which objects contact each other in which way?

General Approach

How to compute a contact representation of a given graph G ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges

■ Describe contact representation combinatorically.
■ Which objects contact each other in which way?
■ Compute combinatorical description.

General Approach

How to compute a contact representation of a given graph G ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges

■ Describe contact representation combinatorically.
■ Which objects contact each other in which way?

- Compute combinatorical description.
- Show that combinatorical description can be used to construct drawing.

In This Lecture

Representations with right-triangles and corner contact

In This Lecture

Representations with right-triangles and corner contact

- Use Schnyder realizer to describe contacts between triangles

In This Lecture

Representations with right-triangles and corner contact
■ Use Schnyder realizer to describe contacts between triangles
■ Use canonical order to calculate drawing

In This Lecture

Representations with right-triangles and corner contact
■ Use Schnyder realizer to describe contacts between triangles
■ Use canonical order to calculate drawing

Representation with dissection of a rectangle, called rectangular dual

In This Lecture

Representations with right-triangles and corner contact
■ Use Schnyder realizer to describe contacts between triangles
■ Use canonical order to calculate drawing

Representation with dissection of a rectangle, called rectangular dual
■ Find similar description like Schnyder realizer for rectangles

In This Lecture

Representations with right-triangles and corner contact
■ Use Schnyder realizer to describe contacts between triangles
■ Use canonical order to calculate drawing

Representation with dissection of a rectangle, called rectangular dual
■ Find similar description like Schnyder realizer for rectangles
■ Construct drawing via st-digraphs, duals, and topological sorting

Visualization of Graphs

Lecture 8:
Conact Representations of Planar Graphs:
Triangle Contacts and Rectangular Duals

Part II:
Triangle Contact Representations

Triangle Corner Contact Representation

Idea.

Use canonical order and Schnyder realizer to find coordinates for triangles.

Triangle Corner Contact Representation

Idea.

Use canonical order and Schnyder realizer to find coordinates for triangles.

Triangle Corner Contact Representation

Idea.

Use canonical order and Schnyder realizer to find coordinates for triangles.

Triangle Corner Contact Representation

Idea.

Use canonical order and Schnyder realizer to find coordinates for triangles.

Triangle Corner Contact Representation

Idea.

Use canonical order and Schnyder realizer to find coordinates for triangles.

Observation.

■ Can set base of triangle at height equal to position in canonical order.

Triangle Corner Contact Representation

Idea.

Use canonical order and Schnyder realizer to find coordinates for triangles.

Observation.

■ Can set base of triangle at height equal to position in canonical order.

- Triangle tip is precisely at base of triangle corresponding to cover neighbor.

Triangle Corner Contact Representation

Idea.

Use canonical order and Schnyder realizer to find coordinates for triangles.

Observation.

■ Can set base of triangle at height equal to position in canonical order.

- Triangle tip is precisely at base of triangle corresponding to cover neighbor.
■ Outgoing edges in Schnyder forest indicate corner contacts.

Triangle Contact Representation Example

Triangle Contact Representation Example

T-shape Contact Representation

T-shape Contact Representation

T-shape Contact Representation

T-shape Contact Representation

Visualization of Graphs

Lecture 8:
Conact Representations of Planar Graphs:
Triangle Contacts and Rectangular Duals

Part III:
Rectangular Duals
Jonathan Klawitter

Cartograms

Cartograms

COVID19 reported deaths (January 1, 2021)

Cartograms

(c) worldmapper.org

Cartograms

(c) worldmapper.org

Cartograms

Cartograms

(c) worldmapper.org

© New York Times

Cartograms

Cartograms

© worldmapper.org

(c) New York Times

Cartograms

(c) worldmapper.org

(c) New York Times

(c) Bettina Speckmann

Cartograms

Cartograms

© worldmapper.org

© New York Times

(c) Bettina Speckmann

© New York Times

Cartograms

Cartograms

Cartograms

Cartograms

Rectangular Dual

Rectangular Dual

Rectangular Dual

\square Rectangular Dual \mathcal{R}

Rectangular Dual

H
Rectangular Dual \mathcal{R}

Rectangular Dual

\#
Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

Rectangular Dual

\#
Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point,

Rectangular Dual

\#
Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Rectangular Dual

Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.
[Koźmiński, Kinnen '85]
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Rectangular Dual

Properly Triangulated Planar Graph G

Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.
■ no four rectangles share a point, and

- the union of all rectangles is a rectangle

A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Rectangular Dual

Properly Triangulated Planar Graph G

Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Rectangular Dual

Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Rectangular Dual

Properly Triangulated Planar Graph G

H
Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and

■ the union of all rectangles is a rectangle

Theorem.
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Rectangular Dual

Exactly 4 vertices on outer face

Properly Triangulated Planar Graph G

H
Rectangular Dual \mathcal{R}

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and

■ the union of all rectangles is a rectangle

Theorem.
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Rectangular Dual

Rectangular Dual \mathcal{R}

no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Rectangular Dual

Properly Triangulated Planar Graph G

Rectangular Dual \mathcal{R}

no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Rectangular Dual

Properly Triangulated Planar Graph G

Rectangular Dual \mathcal{R}

no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Rectangular Dual

Properly Triangulated Planar Graph G

Rectangular Dual \mathcal{R}

no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Rectangular Dual

Properly Triangulated Planar Graph G

RD

no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Rectangular Dual

Properly Triangulated Planar Graph G

RD

no separating triangle

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

Theorem.
A graph G has a rectangular dual \mathcal{R} if and only if G is a PTP graph.

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling

Properly Triangulated Planar Graph G

H
Rectangular Dual \mathcal{R}

Regular Edge Labeling

Properly Triangulated Planar Graph G PTP
\square Rectangular Dual \mathcal{R}

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling

Properly Triangulated
Planar Graph G

Regular Edge Labeling REL

Rectangular Dual \mathcal{R}

Regular Edge Labeling

Properly Triangulated
Planar Graph G

Regular Edge Labeling REL

Rectangular Dual \mathcal{R}

Regular Edge Labeling

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling REL

Rectangular Dual \mathcal{R}

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling REL

Rectangular Dual \mathcal{R}

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling REL

Rectangular Dual \mathcal{R}

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling REL

Rectangular Dual \mathcal{R} RD
[Kant, He '94]: In linear time

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling REL

Rectangular Dual \mathcal{R}

[Kant, He '94]: In linear time

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling REL
 RD

inner vertex

UNIVERSITÄT WÜRZBURG
[Kant, He '94]: $\underbrace{\rightarrow}_{\text {PTP }} \xrightarrow[\text { RD }]{O(n)}$

Visualization of Graphs

Lecture 8:
Conact Representations of Planar Graphs:
Triangle Contacts and Rectangular Duals

Part IV:
Computing a REL
Jonathan Klawitter

Refined Canonical Order

Theorem.

Let G be a PTP graph.

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling $v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of $G:$

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling
$v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling
$v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:
The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling
$v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:
The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling
$v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge $\left(v_{S}, v_{W}\right)$.

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling
$v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_{S}, v_{W}).

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling
$v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_{S}, v_{W}).
- v_{k} is in exterior face of G_{k-1}

Refined Canonical Order

Theorem.

```
Let \(G\) be a PTP graph. There exists a labeling
\(v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}\) of the vertices of \(G\) such that
\[
\text { for every } 4 \leq k \leq n \text { : }
\] for every \(4 \leq k \leq n\) :
- The subgraph \(G_{k-1}\) induced by \(v_{1}, \ldots, v_{k-1}\) is biconnected and boundary \(C_{k-1}\) of \(G_{k-1}\) contains the edge \(\left(v_{S}, v_{W}\right)\).
- \(v_{k}\) is in exterior face of \(G_{k-1}\)
yor
```


Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling
$v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge $\left(v_{S}, v_{W}\right)$.
$\square v_{k}$ is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \backslash\left(v_{S}, v_{W}\right)$.

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling $v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge $\left(v_{S}, v_{W}\right)$.
$\square v_{k}$ is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \backslash\left(v_{S}, v_{W}\right)$.

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling $v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge $\left(v_{S}, v_{W}\right)$.
$\square v_{k}$ is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \backslash\left(v_{S}, v_{W}\right)$.
- If $k \leq k-2$, then v_{k} has at least 2 neighbors in $G \backslash G_{k-1}$.

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling $v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge $\left(v_{S}, v_{W}\right)$.
$\square v_{k}$ is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \backslash\left(v_{S}, v_{W}\right)$.
\square If $k \leq k-2$, then v_{k} has at least 2 neighbors in $G \backslash G_{k-1}$.

Refined Canonical Order

Theorem.

Let G be a PTP graph. There exists a labeling $v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_{S}, v_{W}).
$\square v_{k}$ is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form a (at least 2-element) subinterval of the path $C_{k-1} \backslash\left(v_{S}, v_{W}\right)$.
- If $k \leq k-2$, then v_{k} has at least 2 neighbors in $G \backslash G_{k-1}$.

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order \rightarrow REL

We construct a REL as follows:

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};
■ v_{k} has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};

- v_{k} has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};

- v_{k} has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};
■ v_{k} has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.
■ Base edge of v_{k} is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};
■ v_{k} has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.
■ Base edge of v_{k} is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};
$\square v_{k}$ has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.
■ Base edge of v_{k} is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.
■ If $v_{k_{1}}, \ldots, v_{k_{o}}$ are higher numbered neighbors of v_{k}, we call $\left(v_{k}, v_{k_{1}}\right)$ left edge and $\left(v_{k}, v_{k_{o}}\right)$ right edge.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};
$\square v_{k}$ has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.
■ Base edge of v_{k} is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.
■ If $v_{k_{1}}, \ldots, v_{k_{o}}$ are higher numbered neighbors of v_{k}, we call $\left(v_{k}, v_{k_{1}}\right)$ left edge and $\left(v_{k}, v_{k_{o}}\right)$ right edge.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};
$\square v_{k}$ has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.
■ Base edge of v_{k} is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.
■ If $v_{k_{1}}, \ldots, v_{k_{o}}$ are higher numbered neighbors of v_{k}, we call $\left(v_{k}, v_{k_{1}}\right)$ left edge and $\left(v_{k}, v_{k_{o}}\right)$ right edge.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
\square For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};
$\square v_{k}$ has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.
■ Base edge of v_{k} is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.
■ If $v_{k_{1}}, \ldots, v_{k_{o}}$ are higher numbered neighbors of v_{k}, we call $\left(v_{k}, v_{k_{1}}\right)$ left edge and $\left(v_{k}, v_{k_{o}}\right)$ right edge.

Lemma 1.

A left edge or right edge cannot be a base edge.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
\square For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};
$\square v_{k}$ has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.
■ Base edge of v_{k} is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.
■ If $v_{k_{1}}, \ldots, v_{k_{o}}$ are higher numbered neighbors of v_{k}, we call $\left(v_{k}, v_{k_{1}}\right)$ left edge and $\left(v_{k}, v_{k_{o}}\right)$ right edge.

Lemma 1.
 A left edge or right edge cannot be a base edge.

Proof. Suppose left edge $\left(v_{k}, v_{k_{1}}\right)$ is base edge of $v_{k_{1}}$.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};
$\square v_{k}$ has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.
■ Base edge of v_{k} is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.
■ If $v_{k_{1}}, \ldots, v_{k_{o}}$ are higher numbered neighbors of v_{k}, we call $\left(v_{k}, v_{k_{1}}\right)$ left edge and $\left(v_{k}, v_{k_{o}}\right)$ right edge.

Lemma 1.

A left edge or right edge cannot be a base edge.
Proof. Suppose left edge $\left(v_{k}, v_{k_{1}}\right)$ is base edge of $v_{k_{1}}$. Since G triangulated, $\left(v_{t_{1}}, v_{k_{1}}\right) \in E(G)$.

Refined Canonical Order \rightarrow REL

We construct a REL as follows:
■ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};
$\square v_{k}$ has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of v_{k} and $v_{t_{l}}$ is right point of v_{k}.
■ Base edge of v_{k} is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.
■ If $v_{k_{1}}, \ldots, v_{k_{o}}$ are higher numbered neighbors of v_{k}, we call $\left(v_{k}, v_{k_{1}}\right)$ left edge and $\left(v_{k}, v_{k_{o}}\right)$ right edge.

Lemma 1.

A left edge or right edge cannot be a base edge.
Proof. Suppose left edge $\left(v_{k}, v_{k_{1}}\right)$ is base edge of $v_{k_{1}}$.
Since G triangulated, $\left(v_{t_{1}}, v_{k_{1}}\right) \in E(G)$.
Contradiction since $v_{k}>v_{t_{1}}$.

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.
■ Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of v_{k}.

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.
■ Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of v_{k}.

- $v_{t_{a}}$ is right point of $v_{t_{a-1}}$

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.
■ Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of v_{k}.

- $v_{t_{a}}$ is right point of $v_{t_{a-1}}$

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.
■ Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of v_{k}.

- $v_{t_{a}}$ is right point of $v_{t_{a-1}} ; v_{t_{i<a}}$ is right point of $v_{t_{i-1}}$:

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.
■ Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of v_{k}.

- $v_{t_{a}}$ is right point of $v_{t_{a-1}} ; v_{t_{i<a}}$ is right point of $v_{t_{i-1}}$:

■ $v_{t_{i}}$ has at least two higher-numbered neighbors.

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.
■ Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of v_{k}.

- $v_{t_{a}}$ is right point of $v_{t_{a-1}} ; v_{t_{i<a}}$ is right point of $v_{t_{i-1}}$:

■ $v_{t_{i}}$ has at least two higher-numbered neighbors.

\square One of them is v_{k}; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.
\square Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of v_{k}.

- $v_{t_{a}}$ is right point of $v_{t_{a-1}} ; v_{t_{i<a}}$ is right point of $v_{t_{i-1}}$:

■ $v_{t_{i}}$ has at least two higher-numbered neighbors.

\square One of them is v_{k}; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
\square For $1 \leq i<a-1$, it is $v_{t_{i-1}}$.

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.
\square Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of v_{k}.

- $v_{t_{a}}$ is right point of $v_{t_{a-1}} ; v_{t_{i<a}}$ is right point of $v_{t_{i-1}}$:

■ $v_{t_{i}}$ has at least two higher-numbered neighbors.

\square One of them is v_{k}; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.

- For $1 \leq i<a-1$, it is $v_{t_{i-1}}$.
- Analogously, $v_{t_{i} \geq a}$ is left point of $v_{t_{i+1}}$

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.
■ Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of v_{k}.

- $v_{t_{a}}$ is right point of $v_{t_{a-1}} ; v_{t_{i<a}}$ is right point of $v_{t_{i-1}}$:

■ $v_{t_{i}}$ has at least two higher-numbered neighbors.

\square One of them is v_{k}; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.

- For $1 \leq i<a-1$, it is $v_{t_{i-1}}$.

■ Analogously, $v_{t_{i \geq a}}$ is left point of $v_{t_{i+1}}$
■ Edges $\left(v_{t_{i}}, v_{k}\right), 1 \leq i<a-1$, are right edges.

Refined Canonical Order \rightarrow REL

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.
■ Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of v_{k}.

- $v_{t_{a}}$ is right point of $v_{t_{a-1}} ; v_{t_{i<a}}$ is right point of $v_{t_{i-1}}$:

■ $v_{t_{i}}$ has at least two higher-numbered neighbors.

\square One of them is v_{k}; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.

- For $1 \leq i<a-1$, it is $v_{t_{i-1}}$.
- Analogously, $v_{t_{i \geq a}}$ is left point of $v_{t_{i+1}}$

■ Edges $\left(v_{t_{i}}, v_{k}\right), 1 \leq i<a-1$, are right edges.

- Similarly, $\left(v_{t_{i}}, v_{k}\right)$, for $a+1 \leq i \leq l$, are left edges.

Refined Canonical Order \rightarrow REL

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and
 blue if $i=l$ and otherwise arbitrarily.

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.

edge

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily. Let T_{r} be the red edges and T_{b} the blue edges.

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily. Let T_{r} be the red edges and T_{b} the blue edges.

Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.
Let T_{r} be the red edges and T_{b} the blue edges.

Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.

Proof.

$$
k_{o} \geq 2
$$

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.
Let T_{r} be the red edges and T_{b} the blue edges.

Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.

Proof.

$$
k_{o} \geq 2
$$

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.
Let T_{r} be the red edges and T_{b} the blue edges.

Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.
Proof.

$$
k_{o} \geq 2
$$

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.
Let T_{r} be the red edges and T_{b} the blue edges.

Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.

Refined Canonical Order \rightarrow REL

Coloring.
 right

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.
Let T_{r} be the red edges and T_{b} the blue edges.

Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.

 edge
 right
eft edge

- $k_{1}<k_{2}<\ldots<k_{d}$ and $k_{d}>k_{d+1}>\ldots>k_{o}$

Refined Canonical Order \rightarrow REL

Coloring.
 right edges

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.
Let T_{r} be the red edges and T_{b} the blue edges.

Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.

edge

■ $k_{1}<k_{2}<\ldots<k_{d}$ and $k_{d}>k_{d+1}>\ldots>k_{o}$

■ $\left(v_{k}, v_{k_{i}}\right), 2 \leq i \leq d-1$ are blue

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.
Let T_{r} be the red edges and T_{b} the blue edges.

Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.

■ $k_{1}<k_{2}<\ldots<k_{d}$ and $k_{d}>k_{d+1}>\ldots>k_{o}$
$\square\left(v_{k}, v_{k_{i}}\right), 2 \leq i \leq d-1$ are blue
$\square\left(v_{k}, v_{k_{i}}\right), d+1 \leq i \leq o-1$ are red

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.
Let T_{r} be the red edges and T_{b} the blue edges.

Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.
Proof.
$k_{o} \geq 2$

■ $k_{1}<k_{2}<\ldots<k_{d}$ and $k_{d}>k_{d+1}>\ldots>k_{o}$
$\square\left(v_{k}, v_{k_{i}}\right), 2 \leq i \leq d-1$ are blue
■ $\left(v_{k}, v_{k_{i}}\right), d+1 \leq i \leq o-1$ are red
■ $\left(v_{k}, v_{k_{d}}\right)$ is either red or blue

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).

■ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.
Let T_{r} be the red edges and T_{b} the blue edges.

Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.

■ $k_{1}<k_{2}<\ldots<k_{d}$ and $k_{d}>k_{d+1}>\ldots>k_{o}$
$\square\left(v_{k}, v_{k_{i}}\right), 2 \leq i \leq d-1$ are blue
■ $\left(v_{k}, v_{k_{i}}\right), d+1 \leq i \leq o-1$ are red

- $\left(v_{k}, v_{k_{d}}\right)$ is either red or blue

Visualization of Graphs

Lecture 8:
Conact Representations of Planar Graphs:
Triangle Contacts and Rectangular Duals

Part V:
 Computing the Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates
v_{0}
WE network $G_{\text {hor }}$

$\stackrel{O}{U S}$

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

From REL to st-digraphs to Coordinates

Rectangular Dual Algorithm

For a PTP graph $G=(V, E)$:

Rectangular Dual Algorithm

For a PTP graph $G=(V, E)$:
\square Find a REL $\left\{T_{r}, T_{b}\right\}$ of G;

Rectangular Dual Algorithm

For a PTP graph $G=(V, E)$:
\square Find a REL $\left\{T_{r}, T_{b}\right\}$ of G;

- Construct a SN network G_{ver} of G (consists of T_{b} plus outer edges)

Rectangular Dual Algorithm

For a PTP graph $G=(V, E)$:
\square Find a REL $\left\{T_{r}, T_{b}\right\}$ of G;

- Construct a SN network $G_{\text {ver }}$ of G (consists of T_{b} plus outer edges)
- Construct the dual $G_{\text {ver }}^{\star}$ of $G_{\text {ver }}$ and compute a topological ordering $f_{\text {ver }}$ of $G_{\text {ver }}^{\star}$

Rectangular Dual Algorithm

For a PTP graph $G=(V, E)$:

- Find a REL $\left\{T_{r}, T_{b}\right\}$ of G;
- Construct a SN network $G_{\text {ver }}$ of G (consists of T_{b} plus outer edges)
- Construct the dual $G_{\text {ver }}^{\star}$ of $G_{\text {ver }}$ and compute a topological ordering $f_{\text {ver }}$ of $G_{\text {ver }}^{\star}$
\square For each vertex $v \in V$, let g and h be the face on the left and face on the right of v.

Rectangular Dual Algorithm

For a PTP graph $G=(V, E)$:

- Find a REL $\left\{T_{r}, T_{b}\right\}$ of G;
- Construct a SN network $G_{\text {ver }}$ of G (consists of T_{b} plus outer edges)
- Construct the dual $G_{\text {ver }}^{\star}$ of $G_{\text {ver }}$ and compute a topological ordering $f_{\text {ver }}$ of $G_{\text {ver }}^{\star}$
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_{1}(v)=f_{\mathrm{ver}}(g)$ and $x_{2}(v)=f_{\mathrm{ver}}(h)$.

Rectangular Dual Algorithm

For a PTP graph $G=(V, E)$:

- Find a REL $\left\{T_{r}, T_{b}\right\}$ of G;
- Construct a SN network $G_{\text {ver }}$ of G (consists of T_{b} plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering $f_{\text {ver }}$ of $G_{\text {ver }}^{\star}$
\square For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_{1}(v)=f_{\mathrm{ver}}(g)$ and $x_{2}(v)=f_{\mathrm{ver}}(h)$.
\square Define $x_{1}\left(v_{N}\right)=1, x_{1}\left(v_{S}\right)=2$ and $x_{2}\left(v_{N}\right)=\max f_{\text {ver }}-1, x_{2}\left(v_{S}\right)=\max f_{\text {ver }}$

Rectangular Dual Algorithm

For a PTP graph $G=(V, E)$:

- Find a REL $\left\{T_{r}, T_{b}\right\}$ of G;
- Construct a SN network $G_{\text {ver }}$ of G (consists of T_{b} plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering $f_{\text {ver }}$ of $G_{\text {ver }}^{\star}$
\square For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_{1}(v)=f_{\mathrm{ver}}(g)$ and $x_{2}(v)=f_{\mathrm{ver}}(h)$.
\square Define $x_{1}\left(v_{N}\right)=1, x_{1}\left(v_{S}\right)=2$ and $x_{2}\left(v_{N}\right)=\max f_{\mathrm{ver}}-1, x_{2}\left(v_{S}\right)=\max f_{\mathrm{ver}}$
- Analogously compute y_{1} and y_{2} with $G_{\text {hor }}$.

Rectangular Dual Algorithm

For a PTP graph $G=(V, E)$:

- Find a REL $\left\{T_{r}, T_{b}\right\}$ of G;
- Construct a SN network $G_{\text {ver }}$ of G (consists of T_{b} plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering $f_{\text {ver }}$ of $G_{\text {ver }}^{\star}$
\square For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_{1}(v)=f_{\mathrm{ver}}(g)$ and $x_{2}(v)=f_{\mathrm{ver}}(h)$.
\square Define $x_{1}\left(v_{N}\right)=1, x_{1}\left(v_{S}\right)=2$ and $x_{2}\left(v_{N}\right)=\max f_{\mathrm{ver}}-1, x_{2}\left(v_{S}\right)=\max f_{\mathrm{ver}}$
- Analogously compute y_{1} and y_{2} with $G_{\text {hor }}$.
- For each $v \in V$, assign a rectangle $R(v)$ bounded by x-coordinates $x_{1}(v), x_{2}(v)$ and y-coordinates $y_{1}(v), y_{2}(v)$.

Reading off Coordinates to get Rectangular Dual

Reading off Coordinates to get Rectangular Dual

$$
x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

```
.10
```

$x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15$
$x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16$
$x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1$
$x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16$
$x_{1}(a)=1, x_{2}(a)=3$
$x_{1}(b)=3, x_{2}(b)=5$
$x_{1}(c)=5, x_{2}(c)=14$
$x_{1}(d)=14, x_{2}(d)=15$
$x_{1}(e)=13, x_{2}(e)=15$

$$
\begin{aligned}
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& \text {. } 5 \\
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=2, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Correctness of Algorithm (Sketch)

■ If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

Correctness of Algorithm (Sketch)
■ If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

Correctness of Algorithm (Sketch)

- If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

Correctness of Algorithm (Sketch)

- If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

Correctness of Algorithm (Sketch)

- If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

\square and the vertical segments of their rectangles overlap

Correctness of Algorithm (Sketch)

- If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

\square and the vertical segments of their rectangles overlap

Correctness of Algorithm (Sketch)

- If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

\square and the vertical segments of their rectangles overlap

$$
y_{1}(v)=f_{\text {hor }}(a)
$$

Correctness of Algorithm (Sketch)

■ If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

\square and the vertical segments of their rectangles overlap

$$
y_{1}(v)=f_{\mathrm{hor}}(a) \leq y_{1}(u)=f_{\mathrm{hor}}(b)
$$

Correctness of Algorithm (Sketch)

- If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

\square and the vertical segments of their rectangles overlap

$$
\begin{aligned}
y_{1}(v) & =f_{\text {hor }}(a) \leq y_{1}(u)=f_{\text {hor }}(b) \\
<y_{2}(v) & =f_{\text {hor }}(c)
\end{aligned}
$$

Correctness of Algorithm (Sketch)

- If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

\square and the vertical segments of their rectangles overlap

$$
\begin{aligned}
y_{1}(v) & =f_{\mathrm{hor}}(a) \leq y_{1}(u)=f_{\mathrm{hor}}(b) \\
<y_{2}(v) & =f_{\mathrm{hor}}(c) \leq y_{2}(u)=f_{\mathrm{hor}}(d)
\end{aligned}
$$

Correctness of Algorithm (Sketch)

■ If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

\square and the vertical segments of their rectangles overlap

$$
\begin{aligned}
y_{1}(v) & =f_{\text {hor }}(a) \leq y_{1}(u)=f_{\text {hor }}(b) \\
<y_{2}(v) & =f_{\text {hor }}(c) \leq y_{2}(u)=f_{\text {hor }}(d)
\end{aligned}
$$

■ If path from u to v in red at least two edges long, then $x_{2}(u)<x_{1}(v)$.

Correctness of Algorithm (Sketch)

- If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

\square and the vertical segments of their rectangles overlap

$$
\begin{aligned}
y_{1}(v) & =f_{\text {hor }}(a) \leq y_{1}(u)=f_{\text {hor }}(b) \\
<y_{2}(v) & =f_{\text {hor }}(c) \leq y_{2}(u)=f_{\text {hor }}(d)
\end{aligned}
$$

■ If path from u to v in red at least two edges long, then $x_{2}(u)<x_{1}(v)$.

- No two boxes overlap.

Correctness of Algorithm (Sketch)

■ If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

- and the vertical segments of their rectangles overlap

$$
\begin{aligned}
y_{1}(v) & =f_{\text {hor }}(a) \leq y_{1}(u)=f_{\text {hor }}(b) \\
<y_{2}(v) & =f_{\text {hor }}(c) \leq y_{2}(u)=f_{\text {hor }}(d)
\end{aligned}
$$

■ If path from u to v in red at least two edges long, then $x_{2}(u)<x_{1}(v)$.

- No two boxes overlap.

■ for details see He's paper [He '93]

Rectangular Dual Result

```
Theorem.
Every PTP graph G has a rectangular dual, which can
be computed in linear time.
```


Rectangular Dual Result

```
Theorem.
Every PTP graph \(G\) has a rectangular dual, which can
be computed in linear time.
Proof.
■ Compute a planar embedding of \(G\).
```


Rectangular Dual Result

```
Theorem.
Every PTP graph \(G\) has a rectangular dual, which can
be computed in linear time.
Proof.
■ Compute a planar embedding of \(G\).
■ Compute a refined canonical ordering of \(G\).
```


Rectangular Dual Result

```
Theorem.
Every PTP graph \(G\) has a rectangular dual, which can
be computed in linear time.
```


Proof.

- Compute a planar embedding of G.

■ Compute a refined canonical ordering of G.

- Traverse the graph and color the edges.

Rectangular Dual Result

Theorem.
 Every PTP graph G has a rectangular dual, which can be computed in linear time.

Proof.

- Compute a planar embedding of G.

■ Compute a refined canonical ordering of G.

- Traverse the graph and color the edges.
- Construct $G_{\text {ver }}$ and $G_{\text {hor }}$.

Rectangular Dual Result

Theorem.
 Every PTP graph G has a rectangular dual, which can be computed in linear time.

Proof.

- Compute a planar embedding of G.

■ Compute a refined canonical ordering of G.

- Traverse the graph and color the edges.
- Construct $G_{\text {ver }}$ and $G_{\text {hor }}$.

■ Construct their duals $G_{\text {ver }}^{\star}$ and $G_{\text {hor }}^{\star}$.

Rectangular Dual Result

Theorem.
 Every PTP graph G has a rectangular dual, which can be computed in linear time.

Proof.

■ Compute a planar embedding of G.
■ Compute a refined canonical ordering of G.

- Traverse the graph and color the edges.
- Construct $G_{\text {ver }}$ and $G_{\text {hor }}$.
- Construct their duals G_{ver}^{\star} and $G_{\text {hor }}^{\star}$.

■ Compute a topological ordering for vertices of G_{ver}^{\star} and G_{hor}^{\star}.

Rectangular Dual Result

Theorem.
 Every PTP graph G has a rectangular dual, which can be computed in linear time.

Proof.

■ Compute a planar embedding of G.
■ Compute a refined canonical ordering of G.

- Traverse the graph and color the edges.
- Construct $G_{\text {ver }}$ and $G_{\text {hor }}$.
- Construct their duals $G_{\text {ver }}^{\star}$ and $G_{\text {hor }}^{\star}$.

■ Compute a topological ordering for vertices of G_{ver}^{\star} and G_{hor}^{\star}.

- Assing coordinates to the rectangles representing vertices.

Discussion

■ A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

Discussion

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
■ A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

Discussion

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
■ A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

Discussion

■ A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
■ A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

Discussion

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
■ A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

■ Area-universal rectlinear representation: possible for all planar graphs

- [Alam et al. 2013]: 8 sides (matches the lower bound)

Discussion

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
■ A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

■ Area-universal rectlinear representation: possible for all planar graphs

- [Alam et al. 2013]: 8 sides (matches the lower bound)

Discussion

■ A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
\square A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

■ Area-universal rectlinear representation: possible for all planar graphs

- [Alam et al. 2013]: 8 sides (matches the lower bound)

Literature

Construction of triangle contact representations based on
■ [de Fraysseix, de Mendez, Rosenstiehl '94] On Triangle Contact Graphs
Construction of rectangular dual based on
■ [He '93] On Finding the Rectangular Duals of Planar Triangulated Graphs
■ [Kant, He '94] Two algorithms for finding rectangular duals of planar graphs and originally from
■ [Koźmiński, Kinnen '85] Rectangular Duals of Planar Graphs

