

Visualization of Graphs

Lecture 7:

Hierarchical Layouts:
Sugiyama Framework

Part I:

The Framework
Jonathan Klawitter

Hierarchical Drawings - Motivation

Hierarchical Drawing

Problem Statement.

- Input: \quad digraph $G=(V, E)$

■ Output: drawing of G that "closely" reproduces the hierarchical properties of G

Desirable Properties.

■ vertices occur on (few) horizontal lines
■ edges directed upwards

- edge crossings minimized

■ edges as short as possible
■ vertices evenly spaced
Criteria can be contradictory!

Hierarchical Drawing - Applications

Classical Approach - Sugiyama Framework [Sugiyama, Tagawa, Toda '81]

Visualization of Graphs

Lecture 7:

Hierarchical Layouts:
Sugiyama Framework

Part II:
Cycle Breaking
Jonathan Klawitter

Step 1: Cycle breaking

Step 1: Cycle breaking

Approach.

\square Find minimum set E^{\star} of edges which are not upwards.

- Remove E^{\star} and insert reversed edges.

Problem Minimum Feedback AlC Set (F/XS).

- Input: directed graph $G=(V, E)$

■ Output: min. set $E^{\star} \subseteq E$, so that $C E^{\star}$ acyclic

$$
G-E^{\star}+E_{r}^{\star}
$$

NP-hard \because

Heuristic 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)

$E^{\prime} \leftarrow \emptyset$
foreach $v \in V$ do

$$
\begin{array}{llll}
\text { if }\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right| \text { then } & N^{\rightarrow}(v) & :=\{(v, u) \mid(v, u) \in E\} \\
\left\lfloor E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)\right. & N^{\leftarrow}(v) & :=\{(u, v) \mid(u, v) \in E\} \\
\text { else } & N(v) & :=N^{\rightarrow}(v) \cup N^{\leftarrow}(v)
\end{array}
$$

remove v and $N(v)$ from G. return (V, E^{\prime})

- $G^{\prime}=\left(V, E^{\prime}\right)$ is a DAG
- $E \backslash E^{\prime}$ is a feedback set

- Time: $\mathcal{O}(n+m)$

■ Quality guarantee: $\left|E^{\prime}\right| \geq|E| / 2$

Heuristic 2

[Eades, Lin, Smyth '93]
$E^{\prime} \leftarrow \emptyset$
while $V \neq \emptyset$ do
while in V exists a sink v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

Remove all isolated vertices from V
while in V exists a source v do
$E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
remove v and $N^{\rightarrow}(v)$
if $V \neq \emptyset$ then
let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$

- Time: $\mathcal{O}(n+m)$

■ Quality guarantee:

$$
\left|E^{\prime}\right| \geq|E| / 2+|V| / 6
$$

Visualization of Graphs

Lecture 7:

Hierarchical Layouts:
Sugiyama Framework

Part III:
Leveling
Jonathan Klawitter

Step 2: Leveling

Step 2: Leveling

Problem.

■ Input: acyclic digraph $G=(V, E)$
■ Output: Mapping $y: V \rightarrow\{1, \ldots n\}$, so that for every $u v \in E, y(u)<y(v)$.
Objective is to minimize
■ number of layers, i.e. $|y(V)|$
■ length of the longest edge, i.e. $\max _{u v \in E} y(v)-y(u)$
■ width, i.e. $\max \left\{\left|L_{i}\right| \mid 1 \leq i \leq h\right\}$
\square total edge length, i.e. number of dummy vertices

Min Number of Layers

Algorithm.

■ for each source q
set $y(q):=1$
■ for each non-source v
set $y(v):=\max \{y(u) \mid u v \in E\}+1$

Observation.

■ $y(v)$ is length of the longest path from a source to v plus 1. ... which is optimal!
■ Can be implemented in linear time with recursive algorithm.

Example

Total Edge Length - ILP

Can be formulated as an integer linear program:

$$
\begin{array}{rll}
\min & \sum_{(u, v) \in E}(y(v)-y(u)) & \\
\text { subject to } & y(v)-y(u) \geq 1 & \forall(u, v) \in E \\
& y(v) \geq 1 & \forall v \in V \\
& y(v) \in \mathbb{Z} & \forall v \in V
\end{array}
$$

One can show that:
■ Constraint-matrix is totally unimodular
\Rightarrow Solution of the relaxed linear program is integer
■ The total edge length can be minimized in polynomial time

Width

Drawings can be very wide.

Narrower Layer Assignment

Problem: Leveling With a Given Width.

■ Input: acyclic, digraph $G=(V, E)$, width $W>0$

- Output: Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

- Input: $\quad n$ jobs with unit (1) processing time, W identical machines, and a partial ordering $<$ on the jobs.
■ Output: Schedule respecting < and having minimum processing time.

■ NP-hard, $\left(2-\frac{1}{W}\right)$-Approx., no $\left(\frac{4}{3}-\varepsilon\right)$-Approx. $(W \geq 3)$.

Approximating PCMPS

- jobs stored in a list L (in any order, e.g., topologically sorted)

■ for each time $t=1,2, \ldots$ schedule $\leq W$ available jobs
■ a job in L is available when all its predecessors have been scheduled
\square as long as there are free machines and available jobs, take the first available job and assign it to a free machine

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

M_{1}	1	2	4	5	6	8	A C C	E	G	
M_{2}	-	3	-	-	7	9	B	D	F	-
t	1	2	3	4	5	6	7	8	9	10

Question: Good approximation factor?

Approximating PCMPS - Analysis for $W=2$

Precedence graph $G_{<}$
"The art of the lower bound"
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \quad:=$ Number of layers of $G_{<}$
Goal: measure the quality of our algorithm using the lower bounds

$$
\leq(2-1 / W) \cdot \mathrm{OPT} \text { in general case }
$$

Bound. ALG $\leq\left\lceil\frac{n+\ell}{2}\right\rceil \approx\lceil n / 2\rceil+\ell / 2 \leq 3 / 2 \cdot \mathrm{OPT}$
insertion of pauses $(-)$ in the schedule
(except the last) maps to layers of $G_{<}$

Visualization of Graphs

Lecture 7:

Hierarchical Layouts:
Sugiyama Framework

Step 3: Crossing Minimization

Step 3: Crossing Minimization

Problem.

- Input: Graph G, layering $y: V \rightarrow\{1, \ldots, n\}$
- Output: (Re-)ordering of vertices in each layer
so that the number of crossings in minimized.
- NP-hard, even for 2 layers
[Garey \& Johnson '83]
■ hardly any approaches optimize over multiple layers :(

Iterative Crossing Reduction - Idea

Observation.

The number of crossings only depends on permutations of adjacent layers.

■ Add dummy-vertices for edges connecting "far" layers.
■ Consider adjacent layers $\left(L_{1}, L_{2}\right),\left(L_{2}, L_{3}\right), \ldots$ bottom-to-top.
■ Minimize crossings by permuting L_{i+1} while keeping L_{i} fixed.

Iterative Crossing Reduction - Algorithm

(1) choose a random permutation of L_{1}
(2) iteratively consider adjacent layers L_{i} and L_{i+1}
(3) minimize crossings by permuting L_{i+1} and keeping L_{i} fixed
(4) repeat steps (2)-(3) in the reverse order (starting from L_{h})
(5) repeat steps (2)-(4) until no further improvement is achieved
(6) repeat steps (1)-(5) with different starting permutations

One-Sided Crossing Minimization

Problem.

■ Input:
bipartite graph $G=\left(L_{1} \cup L_{2}, E\right)$, permutation π_{1} on L_{1}
■ Output: permutation π_{2} of L_{2} minimizing the number of edge crossings.

One-sided crossing minimization is NP-hard. [Eades \& Whitesides '94]

Algorithms.

- barycenter heuristic
- median heuristic

■ Greedy-Switch

- ILP

Barycenter Heuristic

[Sugiyama et al. '81]

■ Intuition: few intersections occur when vertices are close to their neighbors

■ The barycentre of u is the mean x-coordinate of the neighbours of u in layer $L_{1} \quad\left[x_{1} \equiv \pi_{1}\right]$

Worst case?
$x_{2}(u):=\operatorname{bary}(u):=\frac{1}{\operatorname{deg}(u)} \sum_{v \in N(u)} x_{1}(v)$

- Vertices with the same barycentre are offset by a small δ.

- linear runtime
- relatively good results
$■$ optimal if no crossings are required \longleftarrow Exercise!
■ $O(\sqrt{n})$-approximation factor

Median Heuristic

[Eades \& Wormald '94]

$\square\left\{v_{1}, \ldots, v_{k}\right\}:=N(u)$ with $\pi_{1}\left(v_{1}\right)<\pi_{1}\left(v_{2}\right)<\cdots<\pi_{1}\left(v_{k}\right)$

$$
x_{2}(u):=\operatorname{med}(u):= \begin{cases}0 & \text { when } N(u)=\emptyset \\ \pi_{1}\left(v_{\lceil k / 2\rceil}\right) & \text { otherwise }\end{cases}
$$

Worst case?
■ Move vertices u und v by small δ, when $x_{2}(u)=x_{2}(v)$

- Linear runtime
- Relatively good results
- Optimal if no crossings are required
- 3-Approximation factor

Proof in [GD Ch 11]

Greedy-Switch Heuristic

■ Iteratively swap adjacent nodes as long as crossings decrease
■ Runtime $O\left(L_{2}\right)$ per iteration; at most $\left|L_{2}\right|$ iterations
■ Suitable as post-processing for other heuristics

Worst case?

$$
\approx k^{2} / 4
$$

$$
\approx 2 k
$$

Integer Linear Program

[Jünger \& Mutzel, '97]

■ Constant $c_{i j}:=\#$ crossings between edges incident to v_{i} or v_{j} when $\pi_{2}\left(v_{i}\right)<\pi_{2}\left(v_{j}\right)$

■ Variable $x_{i j}$ for each $1 \leq i<j \leq n_{2}:=\left|L_{2}\right|$

$$
x_{i j}= \begin{cases}1 & \text { when } \pi_{2}\left(v_{i}\right)<\pi_{2}\left(v_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

- The number of crossings of a permutations π_{2}

$$
\operatorname{cross}\left(\pi_{2}\right)=\sum_{i=1}^{n_{2}-1} \sum_{j=i+1}^{n_{2}}\left(c_{i j}-c_{j i}\right) x_{i j}+\underbrace{\sum_{i=1}^{n_{2}-1} \sum_{j=i+1}^{n_{2}} c_{j i}}_{\text {constant }}
$$

Integer Linear Program

- Minimize the number of crossings:

$$
\operatorname{minimize} \sum_{i=1}^{n_{2}-1} \sum_{j=i+1}^{n_{2}}\left(c_{i j}-c_{j i}\right) x_{i j}
$$

- Transitivity constraints:

$$
\begin{aligned}
& \quad 0 \leq x_{i j}+x_{j k}-x_{i k} \leq 1 \quad \text { for } 1 \leq i<j<k \leq n_{2} \\
& \text { i.e., if } x_{i j}=\underset{0}{1} \text { and } x_{j k}=1 \text {, then } x_{i k}=1 \\
& 0
\end{aligned}
$$

Properties.

■ Branch-and-cut technique for DAGs of limited size
■ Useful for graphs of small to medium size

- Finds optimal solution
- Solution in polynomial time is not guaranteed

Iterations on Example

Visualization of Graphs

Lecture 7:

Hierarchical Layouts:

 Sugiyama FrameworkPart V:

Vertex Positioning \& Drawing Edges

Jonathan Klawitter

Step 4: Vertex Positioning

Step 4: Vertex Positioning

Goal.

Paths should be close to straight, vertices evenly spaced

- Exact: Quadratic Program (QP)
- Heuristic: Iterative approach

Quadratic Program

■ Consider the path $p_{e}=\left(v_{1}, \ldots, v_{k}\right)$ of an edge $e=v_{1} v_{k}$ with dummy vertices: v_{2}, \ldots, v_{k-1}
■ x-coordinate of v_{i} according to the line $\overline{v_{1} v_{k}}$ (with equal spacing):

$$
\overline{x\left(v_{i}\right)}=x\left(v_{1}\right)+\frac{i-1}{k-1}\left(x\left(v_{k}\right)-x\left(v_{1}\right)\right)
$$

- Define the deviation from the line

$$
\operatorname{dev}\left(p_{e}\right):=\sum_{i=2}^{k-1}\left(x\left(v_{i}\right)-\overline{x\left(v_{i}\right)}\right)^{2}
$$

- Objective function: $\quad \min \sum_{e \in E} \operatorname{dev}\left(p_{e}\right)$

- QP is time-expensive
- width can be exponential
- Constraints for all vertices v, w in the same layer with w right of v : $x(w)-x(v) \geq \rho(w, v)$

Iterative Heuristic

■ Compute an initial layout
■ Apply the following steps as long as improvements can be made:

1. Vertex positioning
2. edge straightening,
3. Compactifying the layout width

Example

Step 5: Drawing Edges

Step 5: Drawing Edges

Possibility.
Substitute polylines by Bézier curves

Example

Example

Example

Classical Approach - Sugiyama Framework [Sugiyama, Tagawa, Toda '81]

- Flexible framework to draw directed graphs
- Sequential optimization of various criteria
- Modelling gives NP-hard problems, which can still can be solved quite well

Crossing minimization

Vertex positioning

Edge
drawing

Literature

Detailed explanations of steps and proofs in
■ [GD Ch. 11] and [DG Ch. 5]
based on
■ [Sugiyama, Tagawa, Toda '81] Methods for visual understanding of hierarchical system structures
and refined with results from

- [Berger, Shor '90] Approximation alogorithms for the maximum acyclic subgraph problem

■ [Eades, Lin, Smith '93] A fast and effective heuristic for the feedback arc set problem

- [Garey, Johnson '83] Crossing number is NP-complete
- [Eades, Whiteside '94] Drawing graphs in two layers

■ [Eades, Wormland '94] Edge crossings in drawings of bipartite graphs
■ [Jünger, Mutzel '97] 2-Layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms

