

Visualization of Graphs

Lecture 5: Orthogonal Layouts

Part I: Topolgy – Shape – Metric

Jonathan Klawitter

Organigram of HS Limburg

Definition.

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

vertices are drawn as points on a grid,

Definition.

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and

Definition.

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

Definition.

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

■ Edges lie on grid ⇒
bends lie on grid points

Definition.

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4

Definition.

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

Definition.

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

Definition.

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4

Definition.

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4

Planarization.

Definition.

Planarization.

Fix embedding

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒ bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise 🚽

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

Planarization.

- Fix embedding
- Crossings become vertices

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

- Fix embedding
- Crossings become vertices

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

Crossings become vertices

Planarization.

Fix embedding

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

- Fix embedding
- Crossings become vertices

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

- Fix embedding
- Crossings become vertices

- Aesthetic criteria.
- Number of bends

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

Planarization.

Fix embedding

- Number of bends
- Crossings become vertices Length of edges

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- **Edges** lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

Planarization.

- Fix embedding
- Crossings become vertices Length of edges

- Number of bends
- Width, height, area

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- **Edges** lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

Planarization.

- Fix embedding
- Crossings become vertices Length of edges

- Number of bends
- Width, height, area
- Monotonicity of edges

[Tamassia 1987]

Topology – Shape – Metrics

Topology – Shape – Metrics

Three-step approach:

[Tamassia 1987]

 $V = \{v_1, v_2, v_3, v_4\}$ $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$

TOPOLOGY – Shape – Metrics

Topology – Shape – Metrics

[Tamassia 1987]

HAPE

METRICS

Topology – Shape – Metrics

[Tamassia 1987]

HAPE

METRICS

Topology – Shape – Metrics

[Tamassia 1987]

Topology – Shape – Metrics

[Tamassia 1987]

4 - 6

Topology – Shape – Metrics

Topology – Shape – Metrics

Topology – Shape – Metrics

Visualization of Graphs

Lecture 5: Orthogonal Layouts

Part II: Orthogonal Representation

Jonathan Klawitter

Orthogonal Representation

Idea.

Describe orthogonal drawing combinatorically.
Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Let e be an edge

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

• Let e be an edge with the face f to the right.

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Let *e* be an edge with the face *f* to the right. An edge description of *e* wrt *f* is a triple (e, δ, α) where

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Let *e* be an edge with the face *f* to the right. An edge description of *e* wrt *f* is a triple (*e*, δ, α) where
δ is a sequence of {0,1}* (0 = right bend, 1 = left bend)
α is angle ∈ {π/2, π, 3π/2, 2π} between *e* and next edge *e'*

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Let *e* be an edge with the face *f* to the right. An edge description of *e* wrt *f* is a triple (*e*, δ, α) where
δ is a sequence of {0,1}* (0 = right bend, 1 = left bend)
α is angle ∈ {π/2, π, 3π/2, 2π} between *e* and next edge *e'*

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Let *e* be an edge with the face *f* to the right. An edge description of *e* wrt *f* is a triple (*e*, δ, α) where
δ is a sequence of {0,1}* (0 = right bend, 1 = left bend)
α is angle ∈ {π/2, π, 3π/2, 2π} between *e* and next edge *e'*

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Let *e* be an edge with the face *f* to the right. An edge description of *e* wrt *f* is a triple (*e*, δ, α) where
δ is a sequence of {0,1}* (0 = right bend, 1 = left bend)
α is angle ∈ {π/2, π, 3π/2, 2π} between *e* and next edge *e'*A face representation *H*(*f*) of *f* is a clockwise ordered sequence of edge descriptions (*e*, δ, α).

7 - 14

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

- Let *e* be an edge with the face *f* to the right. An edge description of *e* wrt *f* is a triple (*e*, δ, α) where
 δ is a sequence of {0,1}* (0 = right bend, 1 = left bend)
 α is angle ∈ {π/2, π, 3π/2, 2π} between *e* and next edge *e'*A face representation *H*(*f*) of *f* is a clockwise ordered sequence
- of edge descriptions (e, δ, α) . An orthogonal representation H(G) of G is defined as
 - $H(G) = \{H(f) \mid f \in F\}.$

 $H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$ $H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$ $H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$

Combinatorial "drawing" of H(G)?

 $H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$ $H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$ $H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$

Concrete coordinates are not fixed yet!

(H1) H(G) corresponds to F, f_0 .

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r = (e, \delta, \alpha)$.

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha \cdot 2/\pi$.

9 - 6

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

Donrocontation

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha \cdot 2/\pi$. For each **face** f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

9 - 11

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha \cdot 2/\pi$. For each **face** f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$ e_{5} $C(e_3) = 0 - 0 + 2 - \pi \cdot \frac{2}{\pi} = 0$ $C(e_4) = 0 - 0 + 2 - \frac{\pi}{2} \cdot \frac{2}{\pi} =$ $C(e_5) = - + 2 - =$ $C(e_6) = - + 2 - =$

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha \cdot 2/\pi$. For each **face** f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

.fo e_{5} $C(e_3) = 0 - 0 + 2 - \pi \cdot \frac{2}{\pi} = 0$ $C(e_4) = 0 - 0 + 2 - \frac{\pi}{2} \cdot \frac{2}{\pi} = 1$ $C(e_5) = 3 - 0 + 2 - =$ $C(e_{6}) = - + 2 -$

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha \cdot 2/\pi$. For each **face** f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

fo $1 \frac{\frac{\pi}{2}}{0} \frac{\pi}{2} \frac{3\pi}{2} \frac{e_2}{\pi} \frac{e_3}{2} \frac{\pi}{2} \frac{e_4}{\pi} \frac{3\pi}{2}$ e_{5} $C(e_3) = 0 - 0 + 2 - \pi \cdot \frac{2}{\pi} = 0$ $C(e_4) = 0 - 0 + 2 - \frac{\pi}{2} \cdot \frac{2}{\pi} = 1$ $C(e_5) = 3 - 0 + 2 - \frac{\pi}{2} \cdot \frac{2}{\pi} = 4$ $C(e_6) = 0 - 2 + 2 - \frac{\pi}{2} \cdot \frac{2}{\pi} =$

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha \cdot 2/\pi$. For each **face** f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

fo $1 \frac{\frac{\pi}{2}}{0} \frac{\pi}{2} \frac{3\pi}{2} \frac{e_2}{\pi} \frac{e_3}{2} \frac{\pi}{2} \frac{e_4}{\pi} \frac{3\pi}{2}$ e_{5} $C(e_3) = 0 - 0 + 2 - \pi \cdot \frac{2}{\pi} = 0$ $C(e_4) = 0 - 0 + 2 - \frac{\pi}{2} \cdot \frac{2}{\pi} = 1$ $C(e_5) = 3 - 0 + 2 - \frac{\pi}{2} \cdot \frac{2}{\pi} = 4$ $C(e_6) = 0 - 2 + 2 - \frac{\pi}{2} \cdot \frac{2}{\pi} = -1$

9 - 19

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha \cdot 2/\pi$. For each **face** f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

(H4) For each vertex v the sum of incident angles is 2π .

fo $1 \qquad \frac{\pi}{2} \qquad \pi \qquad \frac{\pi}{2} \qquad \frac{\pi}{2} \qquad \frac{e_2}{2} \qquad \frac{e_3}{2} \qquad \frac{e_4}{2} \qquad \frac{3\pi}{2} \qquad \frac{3\pi}{2} \qquad \frac{\pi}{2} \qquad \frac{\pi}{2}$ e_{5} $C(e_3) = 0 - 0 + 2 - \pi \cdot \frac{2}{\pi} = 0$ $C(e_4) = 0 - 0 + 2 - \frac{\pi}{2} \cdot \frac{2}{\pi} = 1$ $C(e_5) = 3 - 0 + 2 - \frac{\pi}{2} \cdot \frac{2}{\pi} = 4$ $C(e_6) = 0 - 2 + 2 - \frac{\pi}{2} \cdot \frac{2}{\pi} = -1$

Visualization of Graphs

Lecture 5: Orthogonal Layouts

Part III: Bend Minimization

Jonathan Klawitter

Flow network (G = (V, E); S, T; u) with

- directed graph G = (V, E)
- sources $S \subseteq V$, sinks $T \subseteq V$
- edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *S*-*T*-flow, if:

 $egin{aligned} & 0 \leq X(i,j) \leq u(i,j) & orall (i,j) \in E \ & \sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = 0 & orall i \in V \setminus (S \cup T) \end{aligned}$

A maximum S-T-flow is an S-T-flow where $\sum_{(i,j)\in E, i\in S} X(i,j)$ is maximized.

Flow network (G = (V, E); s, t; u) with

- directed graph G = (V, E)
- source $s \in V$, sink $t \in V$
- edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *S*-*T*-flow, if:

 $0 \leq X(i,j) \leq u(i,j)$ $orall (i,j) \in E$ $\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = 0$ $orall i \in V \setminus (S \cup T)$

A maximum S-T-flow is an S-T-flow where $\sum_{(i,j)\in E, i\in S} X(i,j)$ is maximized.

Flow network (G = (V, E); s, t; u) with

- directed graph G = (V, E)
- source $s \in V$, sink $t \in V$
- edge capacity $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *s*-*t*-flow, if:

 $0 \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E$ $\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = 0 \qquad \forall i \in V \setminus \{s,t\}$

A maximum S-T-flow is an S-T-flow where $\sum_{(i,j)\in E, i\in S} X(i,j)$ is maximized.

Flow network (G = (V, E); s, t; u) with

- directed graph G = (V, E)
- source $s \in V$, sink $t \in V$
- edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *s*-*t*-**flow**, if:

 $egin{aligned} \mathsf{0} &\leq X(i,j) \leq u(i,j) & orall (i,j) \in E \ & \sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = \mathbf{0} & orall i \in V \setminus \{s,t\} \end{aligned}$

A maximum *s*-*t*-flow is an *s*-*t*-flow where $\sum_{(s,j)\in E} X(s,j)$ is maximized.

Flow network (G = (V, E); s, t; u) with

- directed graph G = (V, E)
- source $s \in V$, sink $t \in V$
- edge capacity $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *s*-*t*-**flow**, if:

 $0 \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E$ $\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = 0 \qquad \forall i \in V \setminus \{s,t\}$

A maximum *s*-*t*-flow is an *s*-*t*-flow where $\sum_{(s,j)\in E} X(s,j)$ is maximized.

Flow network (G = (V, E); s, t; u) with

- directed graph G = (V, E)
- source $s \in V$, sink $t \in V$
- edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *s*-*t*-flow, if:

A maximum *s*-*t*-flow is an *s*-*t*-flow where $\sum_{(s,j)\in E} X(s,j)$ is maximized.

Reminder: *s*-*t*-Flow Networks

Flow network (G = (V, E); s, t; u) with

- \blacksquare directed graph G = (V, E)
- source $s \in V$, sink $t \in V$

 $(i,j) \in E$

• edge capacity $u: E \to \mathbb{R}^+_0$

A function $X: E \to \mathbb{R}_0^+$ is called *s*-*t*-flow, if:

 $(j,i) \in E$

A maximum s-t-flow is an s-t-flow where $\sum X(s,j)$ is maximized. $(s,j) \in E$

Reminder: *s*-*t*-Flow Networks

Flow network (G = (V, E); s, t; u) with

- directed graph G = (V, E)
- source $s \in V$, sink $t \in V$
- edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *s*-*t*-**flow**, if:

A maximum *s*-*t*-flow is an *s*-*t*-flow where $\sum_{(s,j)\in E} X(s,j)$ is maximized.

Reminder: *s*-*t*-Flow Networks

Flow network (G = (V, E); s, t; u) with

- directed graph G = (V, E)
- source $s \in V$, sink $t \in V$
- edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *s*-*t*-**flow**, if:

Flow network (G = (V, E); S, T; u) with

- directed graph G = (V, E)
- sources $S \subseteq V$, sinks $T \subseteq V$
- edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *S*-*T*-flow, if:

 $egin{aligned} \mathsf{0} &\leq X(i,j) \leq u(i,j) & orall (i,j) \in E \ & \sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = \mathsf{0} & orall i \in V \setminus (S \cup T) \end{aligned}$

Flow network $(G = (V, E); S, T; \ell; u)$ with

- directed graph G = (V, E)
- sources $S \subseteq V$, sinks $T \subseteq V$
- edge capacity $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *S*-*T*-flow, if:

 $egin{aligned} & \mathsf{0} \leq X(i,j) \leq u(i,j) & \forall (i,j) \in E \ & \sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = \mathbf{0} & \forall i \in V \setminus (S \cup T) \end{aligned}$

Flow network $(G = (V, E); S, T; \ell; u)$ with

- directed graph G = (V, E)
- sources $S \subseteq V$, sinks $T \subseteq V$
- edge *lower bound* $\ell : E \to \mathbb{R}_0^+$
- edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *S*-*T*-flow, if:

 $egin{aligned} & \mathsf{0} \leq X(i,j) \leq u(i,j) & \forall (i,j) \in E \ & \sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = \mathbf{0} & \forall i \in V \setminus (S \cup T) \end{aligned}$

Flow network $(G = (V, E); S, T; \ell; u)$ with

- directed graph G = (V, E)
- sources $S \subseteq V$, sinks $T \subseteq V$
- edge *lower bound* $\ell : E \to \mathbb{R}_0^+$
- edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *S*-*T*-flow, if:

 $egin{aligned} & \mathsf{0} \leq X(i,j) \leq u(i,j) & \forall (i,j) \in E \ & \sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = \mathbf{0} & \forall i \in V \setminus (S \cup T) \end{aligned}$

A maximum S-T-flow is an S-T-flow where $\sum_{(i,j)\in E, i\in S} X(i,j)$ is maximized.

12 - 4

Flow network $(G = (V, E); S, T; \ell; u)$ with

- directed graph G = (V, E)
- sources $S \subseteq V$, sinks $T \subseteq V$
- edge *lower bound* $\ell : E \to \mathbb{R}_0^+$
- edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *S*-*T*-flow, if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E$ $\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = 0 \qquad \forall i \in V \setminus (S \cup T)$

Flow network $(G = (V, E); b; \ell; u)$ with

- directed graph G = (V, E)
- node production/consumption $b: V \to \mathbb{R}$ with $\sum_{i \in V} b(i)^{1/2}$
- edge *lower bound* $\ell : E \to \mathbb{R}_0^+$
- edge capacity $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *S*-*T*-flow, if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E$ $\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = 0 \qquad \forall i \in V \setminus (S \cup T)$

Flow network $(G = (V, E); b; \ell; u)$ with

- directed graph G = (V, E)
- node production/consumption $b: V \to \mathbb{R}$ with $\sum_{i \in V} b(i)^{1/2}$
- edge *lower bound* $\ell : E \to \mathbb{R}_0^+$
- edge capacity $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called **valid flow**, if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E$ $\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = b(i) \qquad \forall i \in V$

Flow network $(G = (V, E); b; \ell; u)$ with

- directed graph G = (V, E)
- node production/consumption $b: V \to \mathbb{R}$ with $\sum_{i \in V} b(i)^{7/2}$
- edge *lower bound* $\ell : E \to \mathbb{R}_0^+$
- edge capacity $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called **valid flow**, if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E$ $\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = b(i) \qquad \forall i \in V$

• Cost function cost: $E \to \mathbb{R}_0^+$

A maximum S-T-flow is an S-T-flow where $\sum_{(i,j)\in E, i\in S} X(i,j)$ is maximized.

12 - 8

Flow network $(G = (V, E); b; \ell; u)$ with

- directed graph G = (V, E)
- node production/consumption $b: V \to \mathbb{R}$ with $\sum_{i \in V} b(i)^{7/2}$
- edge *lower bound* $\ell : E \to \mathbb{R}_0^+$
- edge capacity $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called **valid flow**, if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E$ $\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = b(i) \qquad \forall i \in V$

• Cost function cost: $E \to \mathbb{R}_0^+$ and $\operatorname{cost}(X) := \sum_{(i,j) \in E} \operatorname{cost}(i,j) \cdot X(i,j)$ A maximum *S*-*T*-flow is an *S*-*T*-flow where $\sum_{(i,j) \in E, i \in S} X(i,j)$ is maximized.

Flow network $(G = (V, E); b; \ell; u)$ with

- directed graph G = (V, E)
- node production/consumption $b: V \to \mathbb{R}$ with $\sum_{i \in V} b(i)^{7/2}$
- edge *lower bound* $\ell : E \to \mathbb{R}_0^+$
- edge capacity $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called **valid flow**, if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E$ $\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = b(i) \qquad \forall i \in V$

• Cost function cost: $E \to \mathbb{R}_0^+$ and $\operatorname{cost}(X) := \sum_{(i,j) \in E} \operatorname{cost}(i,j) \cdot X(i,j)$ A minimum cost flow is a valid flow where $\operatorname{cost}(X)$ is minimized.

General Flow Network – Algorithms

Polynomial Algorithms

#	Due to	Year	Running Time
1	Edmonds and Karp	1972	$O((n + m') \log U S(n, m, nC))$
2	Rock	1980	O((n + m') log U S(n, m, nC))
3	Rock	1980	O(n log C M(n, m, U))
4	Bland and Jensen	1985	O(m log C M(n, m, U))
5	Goldberg and Tarjan	1987	$O(nm \log (n^2/m) \log (nC))$
6	Goldberg and Tarjan	1988	O(nm log n log (nC))
7	Ahuja, Goldberg, Orlin and Tarjan	1988	O(nm log log U log (nC))

Strongly Polynomial Algorithms

#	Due to	Year	Running Time
1	Tardos	1985	O(m ⁴)
2	Orlin	1984	$O((n + m')^2 \log n S(n, m))$
3	Fujishige	1986	$O((n + m')^2 \log n S(n, m))$
4	Galil and Tardos	1986	O(n ² log n S(n, m))
5	Goldberg and Tarjan	1987	O(nm ² log n log(n ² /m))
6	Goldberg and Tarjan	1988	O(nm ² log ² n)
7	Orlin (this paper)	1988	$O((n + m') \log n S(n, m))$

S(n, m)	-	O(m + n log n)	Fredman and Tarjan [1984]
S(n, m, C)		O(Min (m + $n\sqrt{\log C}$),	Ahuja, Mehlhorn, Orlin and Tarjan [1990]
,		(m log log C))	Van Emde Boas, Kaas and Zijlstra[1977]
M(n, m)	=	O(min (nm + n ^{2+ϵ} , nm log n) where ϵ is any fixed constant.	King, Rao, and Tarjan [1991]
M(n, m, U)	-	$O(nm \log (\frac{n}{m}\sqrt{\log U} + 2))$	Ahuja, Orlin and Tarjan [1989]

[Orlin 1991]

General Flow Network – Algorithms

Polynomial Algorithms

#	Due to	Year	Running Time
1	Edmonds and Karp	1972	O((n + m') log U S(n, m, nC)
2	Rock	1980	O((n + m') log U S(n, m, nC)
3	Rock	1980	O(n log C M(n, m, U))
4	Bland and Jensen	1985	O(m log C M(n, m, U))
5	Goldberg and Tarjan	1987	O(nm log (n ² /m) log (nC))
6	Goldberg and Tarjan	1988	O(nm log n log (nC))
7	Ahuja, Goldberg, Orlin and Tarjan	1988	O(nm log log U log (nC))

Strongly Polynomial Algorithms

[Orlin 1991]

	Due to	Year	Running Time
	Tardos	1985	O(m ⁴)
	Orlin	1984	$O((n + m')^2 \log n S(n, m))$
	Fujishige	1986	$O((n + m')^2 \log n S(n, m))$
	Galil and Tardos	1986	O(n ² log n S(n, m))
	Goldberg and Tarjan	1987	$O(nm^2 \log n \log(n^2/m))$
	Goldberg and Tarjan	1988	O(nm ² log ² n)
,	Orlin (this paper)	1988	$O((n + m') \log n S(n, m))$

S(n, m)	-	O(m + n log n)	Fredman and Tarjan [1984]
S(n, m, C)		O(Min (m + $n\sqrt{\log C}$),	Ahuja, Mehlhorn, Orlin and Tarjan [1990]
		(m log log C))	Van Emde Boas, Kaas and Zijlstra[1977]
M(n, m)	=	O(min (nm + n ^{2+ϵ} , nm log n) where ϵ is any fixed constant.	King, Rao, and Tarjan [1991]
M(n, m, U)		$O(nm \log (\frac{n}{m}\sqrt{\log U} + 2))$	Ahuja, Orlin and Tarjan [1989]

Theorem.

The minimum cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

[Orlin 1991]

General Flow Network – Algorithms

Polynomial Algorithms

45

#	Due to	Year	Running Time
1	Edmonds and Karp	1972	O((n + m') log U S(n, m, nC))
2	Rock	1980	O((n + m') log U S(n, m, nC))
3	Rock	1980	O(n log C M(n, m, U))
4	Bland and Jensen	1985	O(m log C M(n, m, U))
5	Goldberg and Tarjan	1987	O(nm log (n ² /m) log (nC))
6	Goldberg and Tarjan	1988	O(nm log n log (nC))
7	Ahuja, Goldberg, Orlin and Tarjan	1988	O(nm log log U log (nC))

Strongly Polynomial Algorithms

#	Due to	Year	ł
1	Tardos	1985	C
2	Orlin	1984	0
3	Fujishige	1986	(
4	Galil and Tardos	1986	(
5	Goldberg and Tarjan	1987	0
6	Goldberg and Tarjan	1988	(
7	Orlin (this paper)	1988	(

Year	Running Time
1985	O(m ⁴)
1984	$O((n + m')^2 \log n S(n, m))$
1986	$O((n + m')^2 \log n S(n, m))$
1986	O(n ² log n S(n, m))
1987	$O(nm^2 \log n \log(n^2/m))$
1988	O(nm ² log ² n)
1988	$O((n + m') \log n S(n, m))$

S(n, m)	æ	O(m + n log n)	Fredman and Tarjan [1984]
S(n, m, C)	22	O(Min (m + $n\sqrt{\log C}$), (m log log C))	Ahuja, Mehlhorn, Orlin and Tarjan [1990] Van Emde Boas, Kaas and Zijlstra[1977]
M(n, m)	=	O(min (nm + n ^{2+ϵ} , nm log n) where ϵ is any fixed constant.	King, Rao, and Tarjan [1991]
M(n, m, U)	=	$O(nm \log (\frac{n}{m}\sqrt{\log U} + 2))$	Ahuja, Orlin and Tarjan [1989]

Theorem.

[Orlin 1991] The minimum cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

[Cornelsen & Karrenbauer 2011] Theorem. The minimum cost flow problem for planar graphs with bounded costs and faze sizes can be solved in $O(n^{3/2})$ time.

[Orlin 1991]

Topology – Shape – Metrics

Geometric bend minimization.
Given:
Find:

Geometric bend minimization.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Geometric bend minimization.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variation.

Combinatorial bend minimization.	
Given:	
Find:	

Geometric bend minimization.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variation.

Geometric bend minimization.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variation.

Combinatorial bend minimization. Given: ■ Plane graph G = (V, E) with maximum degree 4 ■ Combinatorial embedding F and outer face f₀ Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding.

Combinatorial bend minimization.Given: \blacksquare Plane graph G = (V, E) with maximum degree 4 \blacksquare Combinatorial embedding F and outer face f_0 Find:Orthogonal representation H(G) with minimum number of bends that preserves the embedding

Combinatorial bend minimization.

Given: I Plane graph G = (V, E) with maximum degree 4

Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

Combinatorial bend minimization.

Given: I Plane graph G = (V, E) with maximum degree 4

Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

• a unit of flow
$$= \measuredangle \frac{\pi}{2}$$

Combinatorial bend minimization.

Given: I Plane graph G = (V, E) with maximum degree 4

Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

Combinatorial bend minimization.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

• a unit of flow
$$= \measuredangle \frac{\pi}{2}$$

• vertices $\stackrel{\measuredangle}{\longrightarrow}$ faces (# $\measuredangle \frac{\pi}{2}$ per face)

• faces $\stackrel{\measuredangle}{\longrightarrow}$ neighbouring faces (# bends toward the neighbour)

(H1) H(G) corresponds to F, f_0 .

- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$ (H4) For each vertex v the sum of in-

cident angles is 2π .

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v the sum of incident angles is 2π .

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

 $\blacksquare E = \{ (v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f \}$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

 $\blacksquare E = \{ (v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f \}$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

 $\blacksquare E = \{ (v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f \}$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:
 - $\sum_{r \in H(f)} C(r) = egin{cases} -4 & ext{if } f = f_0 \ +4 & ext{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

$$E = \{ (v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f \} \cup \{ (f, g)_e \in F \times F \mid f, g \text{ have common edge } e \}$$

$$\bullet b(v) = 4 \quad \forall v \in V$$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

 $\sum_{r \in H(f)} C(r) = egin{cases} -4 & ext{if } f = f_0 \ +4 & ext{otherwise}. \end{cases}$

(H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

$$E = \{ (v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f \} \cup \{ (f, g)_e \in F \times F \mid f, g \text{ have common edge } e \}$$

$$\bullet b(v) = 4 \quad \forall v \in V$$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

$$E = \{ (v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f \} \cup \{ (f, g)_e \in F \times F \mid f, g \text{ have common edge } e \}$$

$$\bullet b(v) = 4 \quad \forall v \in V$$

 \bullet b(f) =

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:
 - $\sum_{r \in H(f)} C(r) = egin{cases} -4 & ext{if } f = f_0 \ +4 & ext{otherwise}. \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

$$E = \{ (v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f \} \cup \{ (f, g)_e \in F \times F \mid f, g \text{ have common edge } e \}$$

$$\bullet b(v) = 4 \quad \forall v \in V$$

 \bullet b(f) =

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:
 - $\sum_{r \in H(f)} C(r) = egin{cases} -4 & ext{if } f = f_0 \ +4 & ext{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

$$E = \{ (v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f \} \cup \{ (f, g)_e \in F \times F \mid f, g \text{ have common edge } e \}$$

$$\bullet b(v) = 4 \quad \forall v \in V$$

 \bullet b(f) =

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

■ $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

$$E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) \stackrel{?}{=} 0$$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

$$E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) = 0$$
(Euler)

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

• $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) = 0$$
(Euler)

 $\forall (v, f) \in E, v \in V, f \in F$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

• $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) = 0$$
(Euler)

 $\forall (v, f) \in E, v \in V, f \in F$ $\ell(v, f) := \leq X(v, f) \leq =: u(v, f)$ $\cos(v, f) =$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

• $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) = 0$$
(Euler)

 $orall (v,f) \in E, v \in V, f \in F$ $\ell(v,f) := 1 \le X(v,f) \le 4 =: u(v,f)$ $\cos(v,f) =$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

• $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) = 0$$
(Euler)

 $orall (v,f) \in E, v \in V, f \in F$ $\ell(v,f) := 1 \le X(v,f) \le 4 =: u(v,f)$ $\cos(v,f) = 0$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

• $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) = 0 \text{ (Euler)}$$

 $\begin{array}{ll} \forall (v,f) \in E, v \in V, f \in F & \ell(v,f) \coloneqq 1 \leq X(v,f) \leq 4 \eqqcolon u(v,f) \\ & \operatorname{cost}(v,f) = 0 \\ \forall (f,g) \in E, f, g \in F & \ell(f,g) \coloneqq \leq X(f,g) \leq \quad = \colon u(f,g) \\ & \operatorname{cost}(f,g) = \end{array}$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

• $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) = 0 \text{ (Euler)}$$

 $egin{aligned} &orall (v,f)\in E, v\in V, f\in F & \ell(v,f):=1\leq X(v,f)\leq 4=:u(v,f) \ & ext{cost}(v,f)=0 \ &orall (f,g)\in E, f,g\in F & \ell(f,g):=0\leq X(f,g)\leq\infty=:u(f,g) \ & ext{cost}(f,g)=1 \end{aligned}$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

■ $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) = 0$$
(Euler)

 $\begin{aligned} \forall (v,f) \in E, v \in V, f \in F \\ \forall (v,f) \in E, v \in V, f \in F \\ \forall (f,g) \in E, f, g \in F \end{aligned} \begin{array}{c} \ell(v,f) \coloneqq 1 \leq X(v,f) \\ \cos(v,f) = 0 \\ \ell(f,g) \coloneqq 0 \leq X(f,g) \leq \infty \equiv u(f,g) \\ \cos(f,g) = 1 \\ \int \\ \operatorname{We \ model \ only \ the} \\ number \ of \ bends. \\ Why \ is \ it \ enough? \end{aligned}$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

• $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) = 0$$
(Euler)

 f_0

Legend

V O

F **O**

Legend V O F O $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{4}$

Legend V O F O $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{1}$

Legend $V \circ$ $F \circ$ $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{1}$

Legend V O F O $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{4}$

Legend $V \quad O$ $F \quad O$ $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{5}$ $F \times F \supseteq \frac{0/\infty/1}{5}$

Legend $V \quad \bigcirc$ $F \quad \bigcirc$ $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{2}$ $F \times F \supseteq \frac{0/\infty/1}{2}$

Legend V O F O $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{5}$ $F \times F \supseteq \frac{0/\infty/1}{5}$

Legend $V \quad O$ $F \quad O$ $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{5}$ $F \times F \supseteq \frac{0/\infty/1}{5}$

Legend $V \quad O$ $F \quad \bullet$ $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{\bullet}$ $F \times F \supseteq \frac{0/\infty/1}{\bullet}$

Legend V O F O $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{5}$ $F \times F \supseteq \frac{0/\infty/1}{5}$

Legend $V \quad O$ $F \quad \bullet$ $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{\bullet}$ $F \times F \supseteq \frac{0/\infty/1}{\bullet}$

Legend $V \circ$ $F \circ$ $\ell/u/cost$ $V \times F \supseteq \frac{1/4/0}{4}$ $F \times F \supseteq \frac{0/\infty/1}{4}$ 4 = b-value

Legend 0 VF0 $\ell/u/{\rm cost}$ 1/4/0 $V\times F\supseteq$ $F \times F \supseteq \overset{\mathbf{0}/\infty/\mathbf{1}}{\checkmark}$ 4 = b-value 3 flow

Legend 0 VF0 $\ell/u/{\rm cost}$ $V \times F \supseteq \xrightarrow{1/4/0}$ $F \times F \supseteq \overset{\mathbf{0}/\infty/\mathbf{1}}{\checkmark}$ 4 = b-value 3 flow

Legend 0 VF0 $\ell/u/{\rm cost}$ $V \times F \supseteq \xrightarrow{1/4/0}$ $F \times F \supseteq \overset{\mathbf{0}/\infty/\mathbf{1}}{\checkmark}$ 4 = b-value 3 flow

Legend 0 VF0 $\ell/u/{\rm cost}$ $V \times F \supseteq \overset{1/4/0}{\longrightarrow}$ $F \times F \supseteq \overset{0/\infty/1}{\checkmark}$ 4 = b-value 3 flow

Legend 0 VF0 $\ell/u/{\rm cost}$ 1/4/0 $V\times F\supseteq$ $\sqrt{0/\infty/1}$ $F \times F \supseteq$ 4 = b-value 3 flow

Legend 0 VF0 $\ell/u/{\rm cost}$ 1/4/0 $V\times F\supseteq$ $0/\infty/1$ $F\times F\supseteq$ 4 = b-value 3 flow

Legend 0 VF0 $\ell/u/{\rm cost}$ 1/4/0 $V\times F\supseteq$ $0/\infty/1$ $F \times F \supseteq$ 4 = b-value 3 flow

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

 \leftarrow Given valid flow X in N(G) with cost k.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

 $\leftarrow Given valid flow X in N(G) with cost k. \\ Construct orthogonal representation H(G) with k bends.$

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \Leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).

(H1)

(H2)

(H3)

(H4)

(H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 . (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

(H1) H(G) corresponds to F, f_0 .

(H4) For each vertex v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
- (H1) H(G) matches F, f_0
- (H2)
- (H3)
- (H4)

(H1) H(G) corresponds to F, f_0 .

- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
- (H1) H(G) matches F, f_0
- (H2)
- (H3)
- (H4) Total angle at each vertex $= 2\pi$

(H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 . (H3) For each **face** f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$ (H4) For each vertex v the sum of incident angles is 2π .

(H1) H(G) corresponds to F, f_0 .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \Leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
- (H1) H(G) matches F, f_0
- (H2) Bend order inverted and reversed on opposite sides(H3)

(H4) Total angle at each vertex = 2π

(H1) H(G) corresponds to F, f_0 .

- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \Leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
- (H1) H(G) matches F, f_0
- (H2) Bend order inverted and reversed on opposite sides
- (H3) Angle sum of $f = \pm 4$
- (H4) Total angle at each vertex $= 2\pi$

(H1) H(G) corresponds to F, f_0 .

- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

 \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X : E \to \mathbb{R}_0^+$.
- Show that X is a valid flow and has cost k.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

$b(v) = 4 \quad \forall v \in V$ $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$ $\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$ $\cos(v, f) = 0$ $\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$ $\cos(f, g) = 1$

Proof.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
 - Define flow $X : E \to \mathbb{R}_0^+$.
 - Show that X is a valid flow and has cost k.

Theorem.

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

[Tamassia '87]

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X : E \to \mathbb{R}_0^+$.

Show that X is a valid flow and has cost k.

(N1) X(vf) = 1/2/3/4

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$$

$$\cot(v, f) = 0$$

$$\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$$

$$\cot(f, g) = 1$$

Theorem.

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

[Tamassia '87]

Proof.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X : E \to \mathbb{R}_0^+$.

Show that X is a valid flow and has cost k.

(N1) X(vf) = 1/2/3/4

(N2) $X(fg) = |\delta_{fg}|_0$, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from f

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f) \\ \cot(v, f) = 0 \\ \ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g) \\ \cot(f, g) = 1 \end{cases}$$

Theorem.

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

[Tamassia '87]

Proof.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X: E \to \mathbb{R}_0^+$.
- Show that X is a valid flow and has cost k.

(N1) X(vf) = 1/2/3/4

(N2)
$$X(fg) = |\delta_{fg}|_0$$
, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from f

(N3) capacities, deficit/demand coverage

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$$

$$\cos(v, f) = 0$$

$$\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$$

$$\cos(f, g) = 1$$

Theorem.

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

[Tamassia '87]

Proof.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X : E \to \mathbb{R}_0^+$.

Show that X is a valid flow and has cost k.

(N1) X(vf) = 1/2/3/4

(N2)
$$X(fg) = |\delta_{fg}|_0$$
, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from f

(N3) capacities, deficit/demand coverage

(N4) $\cot k$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\ell(v, f) := 1 \le X(v, f) \le 4 =: u(v, f) \\ \cot(v, f) = 0 \\ \ell(f, g) := 0 \le X(f, g) \le \infty =: u(f, g) \\ \cot(f, g) = 1 \end{cases}$$

From Theorem follows that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for the Min-Cost-Flow problem.

From Theorem follows that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for the Min-Cost-Flow problem.

Theorem. [Garg & Tamassia 1996] The minimum cost flow problem can be solved in $O(|X^*|^{3/4}m\sqrt{\log n})$ time.

From Theorem follows that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for the Min-Cost-Flow problem.

Theorem. [Garg & Tamassia 1996] The minimum cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

From Theorem follows that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for the Min-Cost-Flow problem.

Theorem. [Garg & Tamassia 1996] The minimum cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem.[Cornelsen & Karrenbauer 2011]The minimum cost flow problem for planar graphs with boundedcosts and faze sizes can be solved in $O(n^{3/2})$ time.

From Theorem follows that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for the Min-Cost-Flow problem.

Theorem. [Garg & Tamassia 1996] The minimum cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem.[Cornelsen & Karrenbauer 2011]The minimum cost flow problem for planar graphs with boundedcosts and faze sizes can be solved in $O(n^{3/2})$ time.

Theorem. [Garg & Tamassia 2001] Bend Minimization without a given combinatorial embedding is an NP-hard problem.

Visualization of Graphs

Lecture 5: Orthogonal Layouts

Part IV: Area Minimization

Jonathan Klawitter

Compaction problem.		
Given:		
Find:		

```
Compaction problem.
Given: Plane graph G = (V, E) with maximum degree 4
Find:
```

```
Compaction problem.
Given: Plane graph G = (V, E) with maximum degree 4
Orthogonal representation H(G)
Find:
```

Compaction problem.

Given:	Plane graph C	G = (V, E)) with maximum	degree 4
--------	---------------	------------	----------------	----------

- Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Compaction problem.

Given:	Plane graph	G = (V, E)	with maximum	degree 4
--------	-------------	------------	--------------	----------

- Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

Compaction problem.

Given:	Plane graph	G = (V, E)	with maximum	degree 4
--------	-------------	------------	--------------	----------

```
• Orthogonal representation H(G)
```

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

 \rightarrow Guarantees possible

Compaction problem.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

 \rightarrow Guarantees possible $\hfill\blacksquare$ minimum total edge length
Compaction problem.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

- ightarrow Guarantees possible
- minimum total edge length

minimum area

Compaction problem.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

- \rightarrow Guarantees possible \blacksquare minim
- minimum total edge length

minimum area

Properties.

Compaction problem.

- Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

- \rightarrow Guarantees possible $\hfill\blacksquare$ minimum total edge length
 - minimum area

Properties.

bends only on the outer face

Compaction problem.

• Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

 \rightarrow Guarantees possible $\hfill\blacksquare$ minimum total edge length

minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Compaction problem.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

- \rightarrow Guarantees possible $\hfill\blacksquare$ minimum total edge length
 - minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Idea.

Formulate flow network for horizontal/vertical compaction

Definition.

Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

 $\bullet W_{hor} = F \setminus \{f_0\} \quad \Box$

Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

 $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s, t\} \quad \Box$

Definition.

- $\ \ \, \blacksquare \ \, W_{\rm hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \ \ \, \blacksquare$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\}$

Definition.

- $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\}$

Definition.

- $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\}$

Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

 $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$

• $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\}$

Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

 $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$

• $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\}$

Definition.

- $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\}$

Definition.

- $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$
- Ehor = {(f,g) | f,g share a horizontal segment and f lies below g}

Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

 $\blacksquare W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\} \quad \blacksquare$

• $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$

Definition.

- $\blacksquare W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\} \quad \Box$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$
- $\bullet \ \ell(a) = 1 \quad \forall a \in E_{hor}$

Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

- $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s, t\} \quad \Box$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$

$$\blacksquare \ \ell(a) = 1 \quad \forall a \in E_{hor}$$

$$\blacksquare \ u(a) = \infty \quad \forall a \in E_{hor}$$

- -

Definition.

- $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s, t\} \quad \Box$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$
- $\bullet \ \ell(a) = 1 \quad \forall a \in E_{hor}$
- $u(a) = \infty \quad \forall a \in E_{hor}$ $\operatorname{cost}(a) = 1 \quad \forall a \in E_{hor}$

Definition.

- $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s, t\} \qquad \square$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$
- $\bullet \ \ell(a) = 1 \quad \forall a \in E_{hor}$
- $\square u(a) = \infty \quad \forall a \in E_{hor}$
- cost(a) = 1 $\forall a \in E_{hor}$
- $\bullet \ b(f) = 0 \quad \forall f \in W_{hor}$

Definition.

Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, E_{\text{ver}}); b; \ell; u; \text{cost})$

 $\ \ \, \blacksquare \ \, W_{\rm ver}=F\setminus\{f_0\}\cup\{s,t\} \qquad \ \, \blacksquare$

• $E_{ver} = \{(f,g) \mid f,g \text{ share a } vertical \text{ segment and } f \text{ lies to the } left \text{ of } g\} \cup \{(t,s)\}$

- $\blacksquare \ \ell(a) = 1 \quad \forall a \in E_{\mathsf{ver}}$
- $\bullet \ u(a) = \infty \quad \forall a \in E_{\text{ver}}$
- $\operatorname{cost}(a) = 1$ $\forall a \in E_{\operatorname{ver}}$
- $\bullet \ b(f) = \mathbf{0} \quad \forall f \in W_{\mathrm{ver}}$

Theorem.

Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lenghts induce orthogonal drawing.

Theorem.

Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?

Theorem.

Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?

$$|X_{hor}(t,s)| \text{ and } |X_{ver}(t,s)|?$$

Theorem.

Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?

 $|X_{hor}(t,s)| \text{ and } |X_{ver}(t,s)|?$

width and height of drawing

Theorem.

Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?

 $|X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$? width and height of drawing

 $\sum_{e \in E_{hor}} X_{hor}(e) + \sum_{e \in E_{ver}} X_{ver}(e)$

Theorem.

Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?

- $|X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$? width and height of drawing
- $\sum_{e \in E_{hor}} X_{hor}(e) + \sum_{e \in E_{ver}} X_{ver}(e)$ total edge length

What if not all faces rectangular?

Theorem.

Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?

 $|X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$? width and height of drawing

 $\sum_{e \in E_{hor}} X_{hor}(e) + \sum_{e \in E_{ver}} X_{ver}(e)$ total edge length

Theorem.[Patrignani 2001]Compaction for given orthogonalrepresentation is in general NP-hard.

Visualization of Graphs

Lecture 5: Orthogonal Layouts

> Part V: NP-hardness

Jonathan Klawitter

Boundary, **belt**, and "piston" gadget

Example: $C_{1} = x_{2} \lor \overline{x_{4}}$ $C_{2} = x_{1} \lor x_{2} \lor \overline{x_{3}}$ $C_{3} = x_{5}$ $C_{4} = x_{4} \lor \overline{x_{5}}$

Example: $C_1 = x_2 \lor \overline{x_4}$ $C_2 = x_1 \lor x_2 \lor \overline{x_3}$ $C_3 = x_5$ $C_4 = x_4 \lor \overline{x_5}$

Example: $C_1 = x_2 \lor \overline{x_4}$ $C_2 = x_1 \lor x_2 \lor \overline{x_3}$ $C_3 = x_5$ $C_4 = x_4 \lor \overline{x_5}$

insert (2n-1)-chain through each clause

Example: $C_1 = x_2 \lor \overline{x_4}$ $C_2 = x_1 \lor x_2 \lor \overline{x_3}$ $C_3 = x_5$ $C_4 = x_4 \lor \overline{x_5}$

insert (2n-1)-chain through each clause

Example: $C_1 = x_2 \lor \overline{x_4}$ $C_2 = x_1 \lor x_2 \lor \overline{x_3}$ $C_3 = x_5$ $C_4 = x_4 \lor \overline{x_5}$

insert (2n - 1)-hain through each clause

Complete reduction

Complete reduction

Complete reduction

Literature

- [GD Ch. 5] for detailed explanation
- Tamassia 1987] "On embedding a graph in the grid with the minmum number of bends" original paper on flow for bend minimisation
- [Patrignani 2001] "On the complexity of orthogonal compaction" NP-hardness proof of compactification