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Orthogonal Layout – Definition

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.
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Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g)
sequence δ1 is reversed and inverted δ2.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ and r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α · 2/π.
For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of incident angles is 2π.
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Reminder: s-t-Flow Networks

Flow network (G = (V,E);S, T ;u) with

� directed graph G = (V,E)

� sources S ⊆ V , sinks T ⊆ V
� edge capacity u : E → R+

0

A function X : E → R+
0 is called S-T -flow, if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ (S ∪ T )

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]
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A maximum S-T -flow is an S-T -flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.
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Flow network (G = (V,E); b; `;u) with

� directed graph G = (V,E)

� node production/consumption b : V → R with
∑
i∈V b(i) = 0

� edge lower bound ` : E → R+
0

� edge capacity u : E → R+
0

A function X : E → R+
0 is called valid flow, if:

`(i, j) ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = b(i) ∀i ∈ V

� Cost function cost : E → R+
0 and cost(X) :=

∑
(i,j)∈E cost(i, j) ·X(i, j)

A minimum cost flow is a valid flow where cost(X) is minimized.
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General Flow Network – Algorithms

[Orlin 1991]
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General Flow Network – Algorithms

[Orlin 1991]

Theorem. [Orlin 1991]
The minimum cost flow problem can be solved in
O(n2 log2 n+m2 log n) time.
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General Flow Network – Algorithms

Theorem. [Cornelsen & Karrenbauer 2011]
The minimum cost flow problem for planar graphs
with bounded costs and faze sizes can be solved in
O(n3/2) time.

[Orlin 1991]

Theorem. [Orlin 1991]
The minimum cost flow problem can be solved in
O(n2 log2 n+m2 log n) time.
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Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4

planar
orthogonal

drawing

1
2

3
4

bend minimization

area mini-
mization

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —
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Bend Minimization with Given Embedding

Geometric bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal drawing with minimum number of bends that
preserves the embedding.

Find:
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Idea.
Formulate as a network flow problem:
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Flow Network for Bend Minimization
(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is rever-
sed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of in-
cident angles is 2π.
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Theorem. [Cornelsen & Karrenbauer 2011]
The minimum cost flow problem for planar graphs with bounded
costs and faze sizes can be solved in O(n3/2) time.

Theorem. [Garg & Tamassia 2001]
Bend Minimization without a given combinatorial embedding is an
NP-hard problem.

Theorem. [Garg & Tamassia 1996]
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√
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Visualization of Graphs

Part IV:
Area Minimization

Jonathan Klawitter

Lecture 5:
Orthogonal Layouts
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Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4

planar
orthogonal

drawing

1
2

3
4

bend minimization

area mini-
mization

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —
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Compaction

Special case.
All faces are rectangles.

→ Guarantees possible � minimum total edge length

� minimum area
Properties.

� bends only on the outer face

� opposite sides of a face have the same length

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

Idea.

� Formulate flow network for horizontal/vertical compaction
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Flow Network for Edge Length Assignment

Definition.
Flow Network Nver = ((Wver, Ever); b; `;u; cost)

� Wver = F \ {f0} ∪ {s, t}
� Ever = {(f, g) | f, g share a vertical segment and f lies to the

left of g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ever

� u(a) =∞ ∀a ∈ Ever

� cost(a) = 1 ∀a ∈ Ever

� b(f) = 0 ∀f ∈Wver

s t
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Compaction – Result

Theorem.
Valid min-cost-flows for Nhor and Nver exists iff
corresponding edge lenghts induce orthogonal drawing.
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� |Xhor(t, s)| and |Xver(t, s)|?
�

∑
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Xhor(e) +
∑
e∈Ever

Xver(e)

What if not all faces
rectangular?

Theorem.
Valid min-cost-flows for Nhor and Nver exists iff
corresponding edge lenghts induce orthogonal drawing.

width and height of drawing

total edge length
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Refinement of (G,H) – Outer Face
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Refinement of (G,H) – Outer Face

Area minimized? No!

But we get bound O((n+ b)2) on the area.
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Refinement of (G,H) – Outer Face

Area minimized? No!

But we get bound O((n+ b)2) on the area.

Theorem. [Patrignani 2001]
Compaction for given orthogonal
representation is in general NP-hard.
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Visualization of Graphs

Part V:
NP-hardness

Jonathan Klawitter

Lecture 5:
Orthogonal Layouts
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Boundary, belt, and “piston” gadget
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false false
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Complete reduction

9m+ 7

9n+ 2
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Complete reduction

9m+ 7

9n+ 2

Pick
K = (9n+ 2) · (9m+ 7)
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Complete reduction

9m+ 7

9n+ 2

Pick
K = (9n+ 2) · (9m+ 7)

(G,H) has an area K
drawing
⇔

Φ satisfiable

Then:

�
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Literature

� [GD Ch. 5] for detailed explanation

� [Tamassia 1987] “On embedding a graph in the grid with the minmum number of bends”
original paper on flow for bend minimisation

� [Patrignani 2001] “On the complexity of orthogonal compaction”
NP-hardness proof of compactification
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