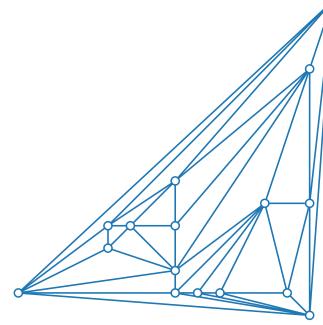
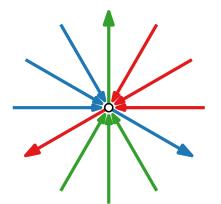


Visualization of Graphs Lecture 4: Straight-Line Drawings of Planar Graphs II: Schnyder Woods

Part I: Barycentric Representation

Jonathan Klawitter





Theorem.[De Fraysseix, Pach, Pollack '90]Every n-vertex planar graph has a planar straight-linedrawing of size $(2n - 4) \times (n - 2)$.

Theorem. [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n - 2) \times (n - 2)$.

Theorem.[De Fraysseix, Pach, Pollack '90]Every n-vertex planar graph has a planar straight-linedrawing of size $(2n - 4) \times (n - 2)$.

Theorem.[Schnyder '90]Every n-vertex planar graph has a planar straight-line
drawing of size $(n-2) \times (n-2)$.

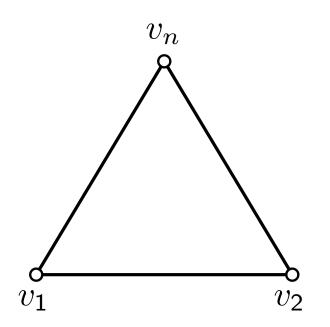
[De Fraysseix, Pach, Pollack '90] Theorem. Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

Theorem.

[Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Idea.

Fix outer triangle.

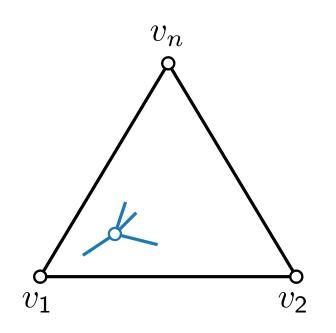


[De Fraysseix, Pach, Pollack '90] Theorem. Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

Theorem.

[Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and



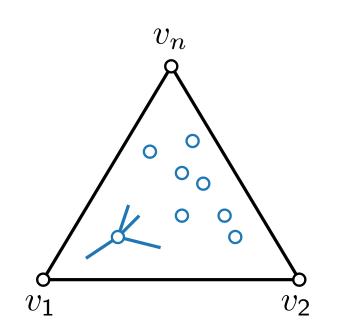
Theorem.[De Fraysseix, Pach, Pollack '90]Every n-vertex planar graph has a planar straight-linedrawing of size $(2n - 4) \times (n - 2)$.

Theorem.

[Schnyder '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices

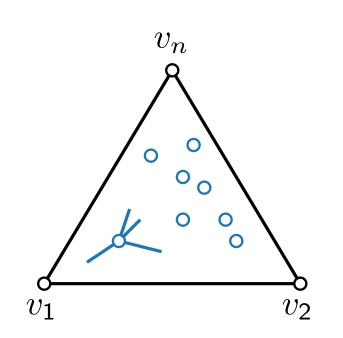


[De Fraysseix, Pach, Pollack '90] Theorem. Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$.

Theorem.

[Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices
 - using weighted barycentric coordinates.



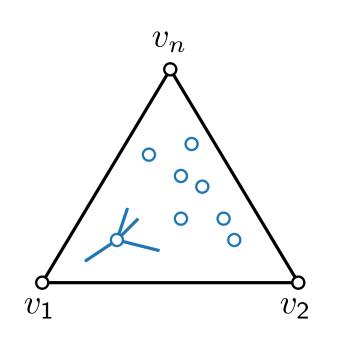
Theorem.[De Fraysseix, Pach, Pollack '90]Every n-vertex planar graph has a planar straight-linedrawing of size $(2n - 4) \times (n - 2)$.

Theorem.

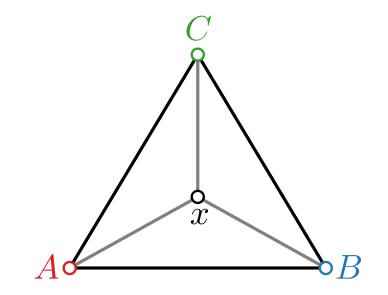
Every *n*-vertex planar graph has a planar straight-line drawing of size $(n - 2) \times (n - 2) (2n - 5) \times (2n - 5)$.

[Schnyder '90]

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices
 - using weighted barycentric coordinates.

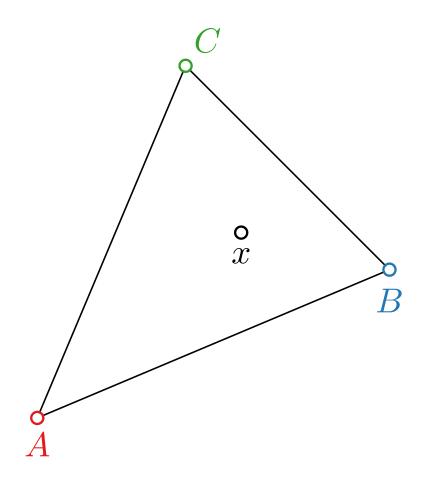


Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$



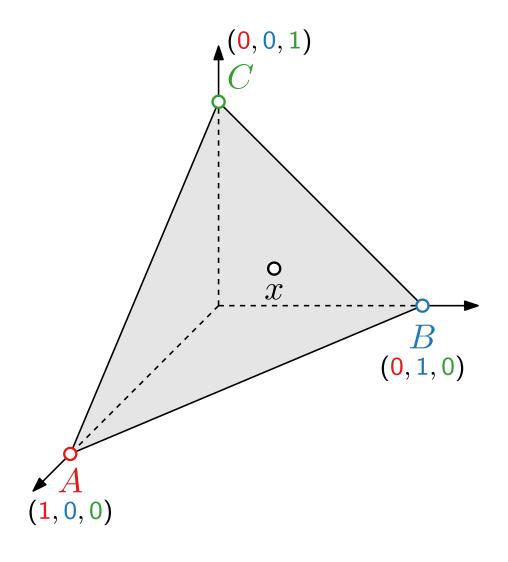
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

Let A, B, C form a triangle, let x lie inside $\triangle ABC$.

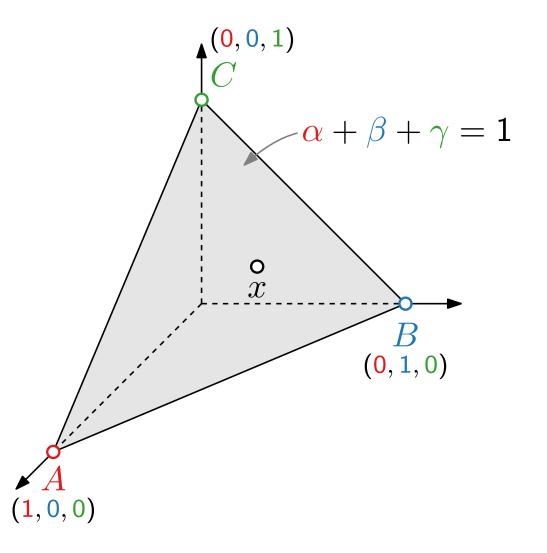


Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

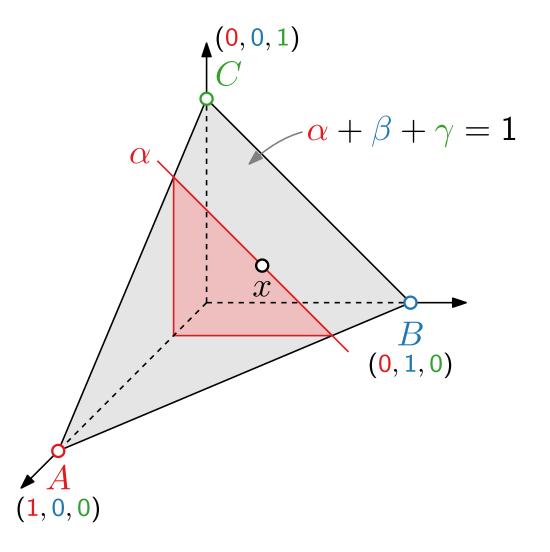
Let A, B, C form a triangle, let x lie inside $\triangle ABC$.



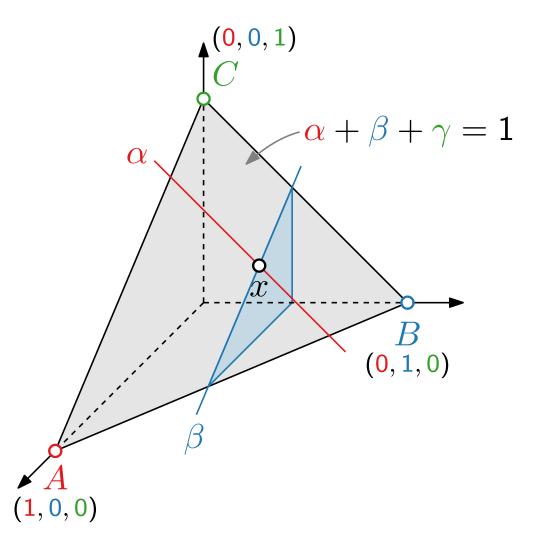
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$



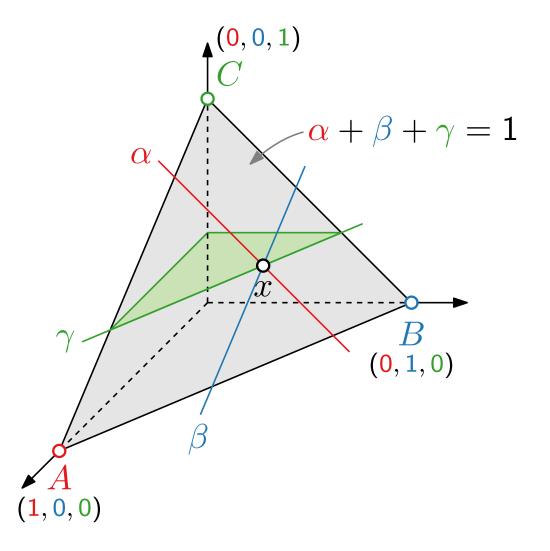
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$



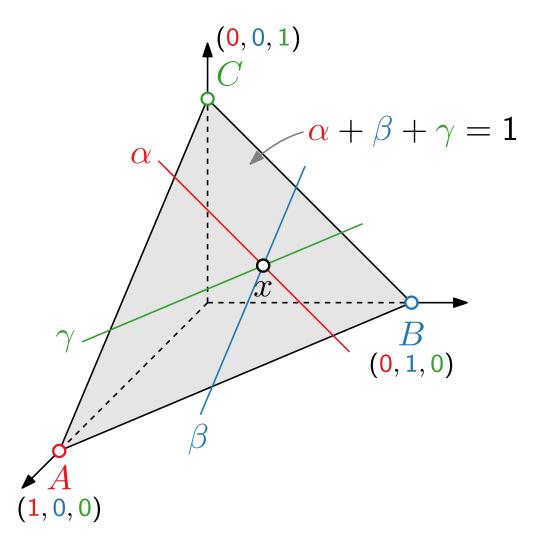
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$



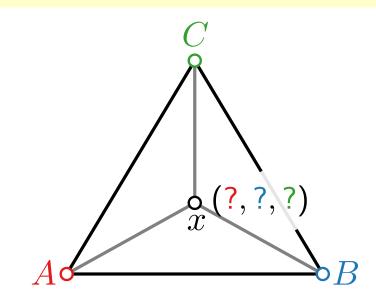
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

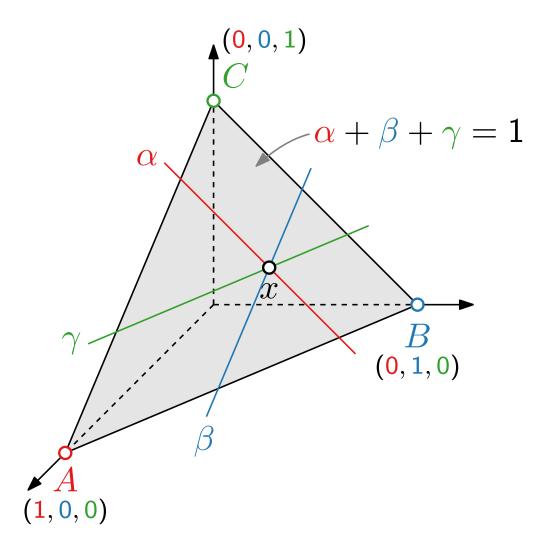


Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

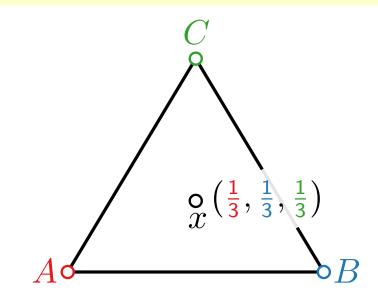


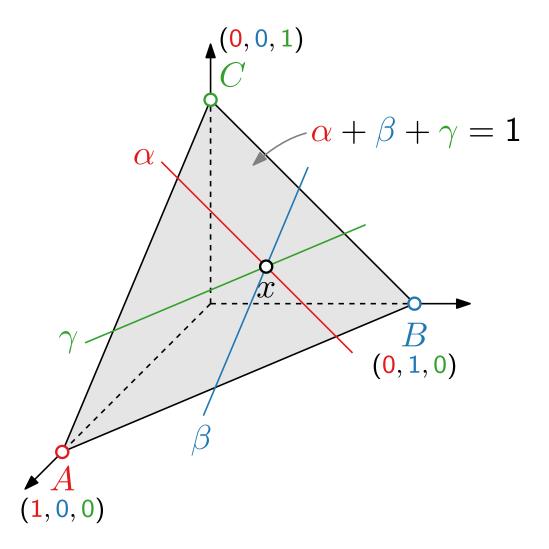
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$



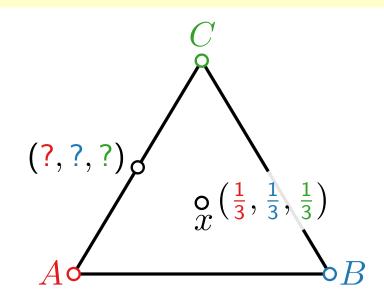


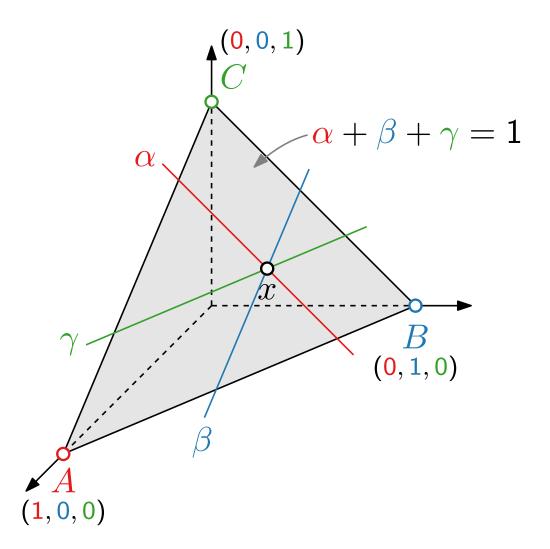
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$



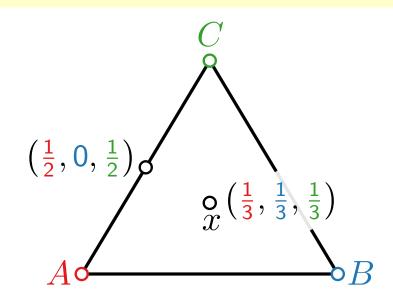


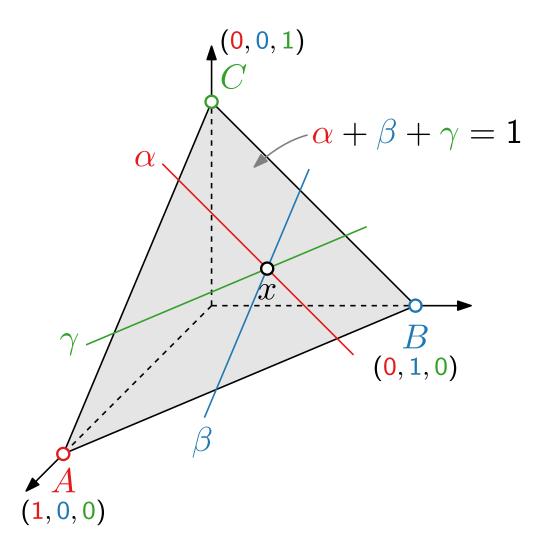
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$





Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$





A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto (v_1,v_2,v_3)$$

with the following properties:

A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f: V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties: (B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,

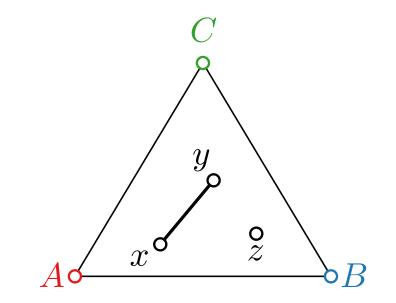
A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto(v_1,v_2,v_3)$$

with the following properties:

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,

(B2) for each $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$

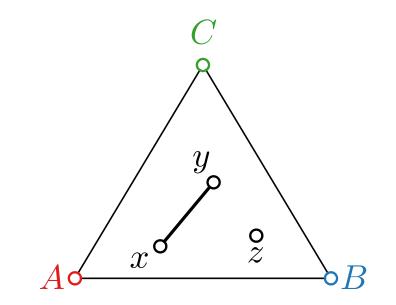


A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto(v_1,v_2,v_3)$$

with the following properties:

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,

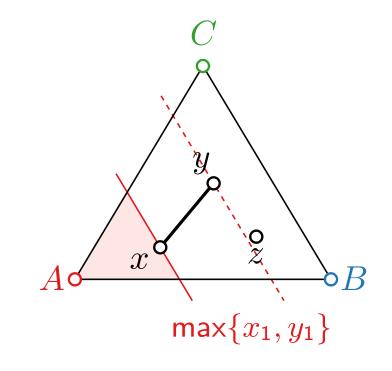


A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto(v_1,v_2,v_3)$$

with the following properties:

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,

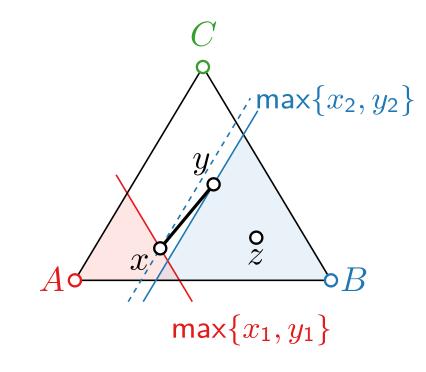


A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto(v_1,v_2,v_3)$$

with the following properties:

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,

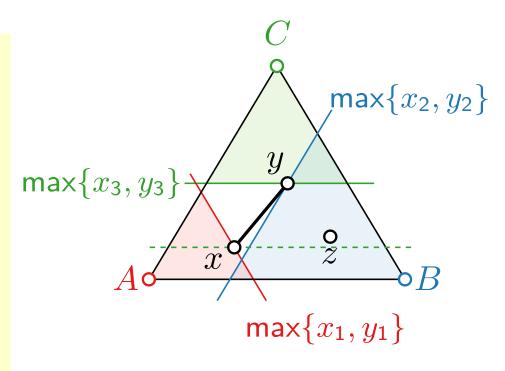


A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto(v_1,v_2,v_3)$$

with the following properties:

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,

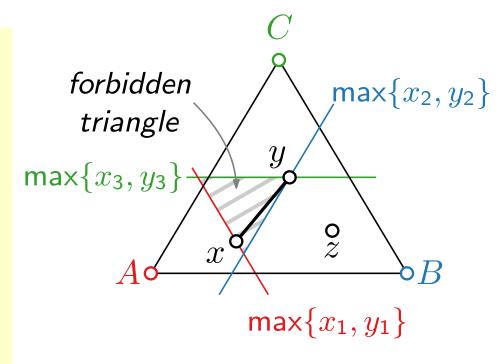


A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto(v_1,v_2,v_3)$$

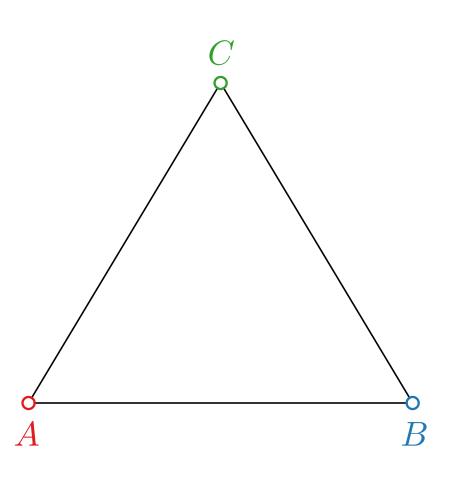
with the following properties:

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,



Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position.

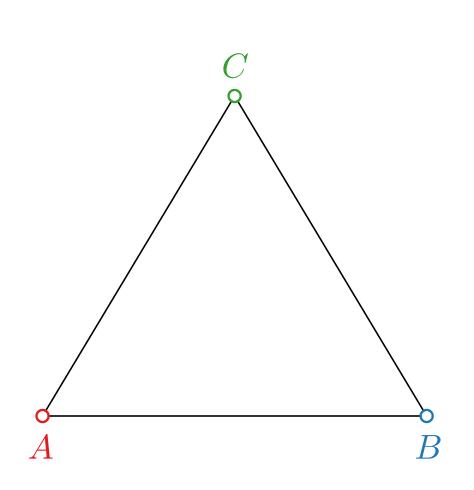


Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a planar drawing of G inside $\triangle ABC$.



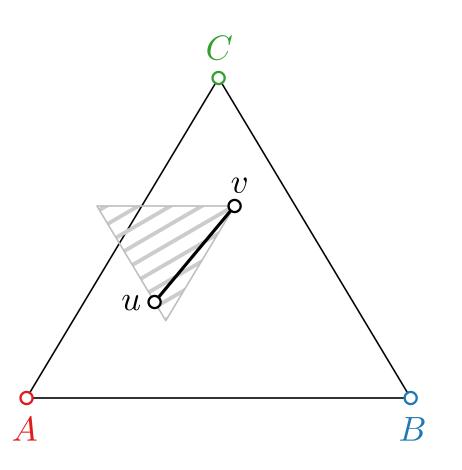
Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a planar drawing of G inside $\triangle ABC$.

No vertex x can lie on an edge $\{u, v\}$.



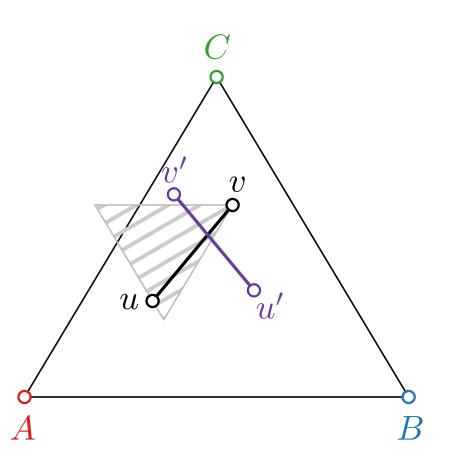
Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a planar drawing of G inside $\triangle ABC$.

No vertex x can lie on an edge $\{u, v\}$.



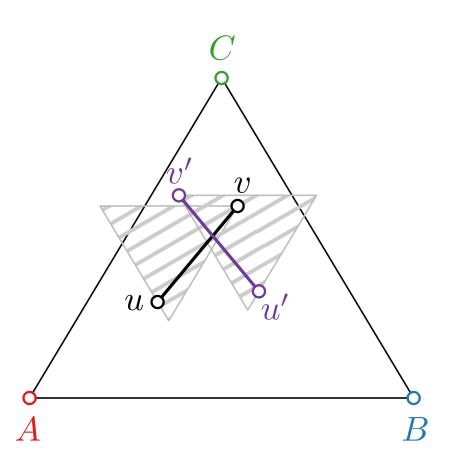
Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

 $\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$

gives a planar drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:



Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

 $\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$

gives a planar drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

 $u'_i > u_i, v_i \quad v'_j > u_j, v_j \quad u_k > u'_k, v'_k \quad v_l > u'_l, v'_l$

vA В

Lemma.

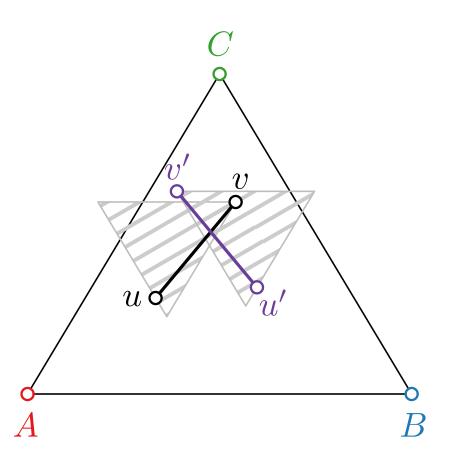
Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

 $\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$

gives a planar drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u'_i > u_i, v_i \quad v'_j > u_j, v_j \quad u_k > u'_k, v'_k \quad v_l > u'_l, v'_l$$
$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$



Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

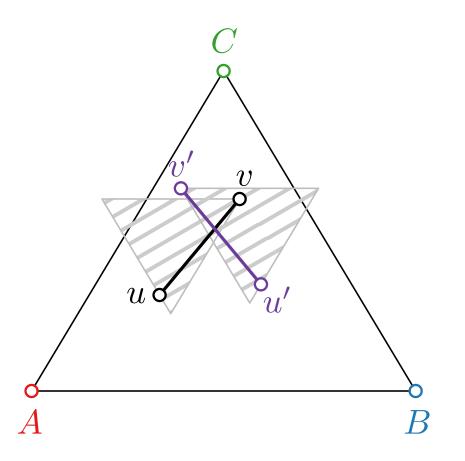
 $\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$

gives a planar drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u'_{i} > u_{i}, v_{i} \quad v'_{j} > u_{j}, v_{j} \quad u_{k} > u'_{k}, v'_{k} \quad v_{l} > u'_{l}, v'_{l}$$
$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

wlog $i = j = 2 \Rightarrow u'_2, v'_2 > u_2, v_2$



Barycentric Representations of Planar Graphs

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

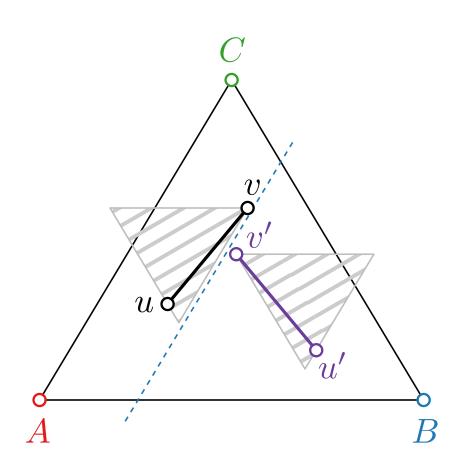
 $\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$

gives a planar drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u'_i > u_i, v_i \quad v'_j > u_j, v_j \quad u_k > u'_k, v'_k \quad v_l > u'_l, v'_l$$
$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

wlog $i = j = 2 \Rightarrow u'_2, v'_2 > u_2, v_2 \implies$ separated by straight line



Barycentric Representations of Planar Graphs

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

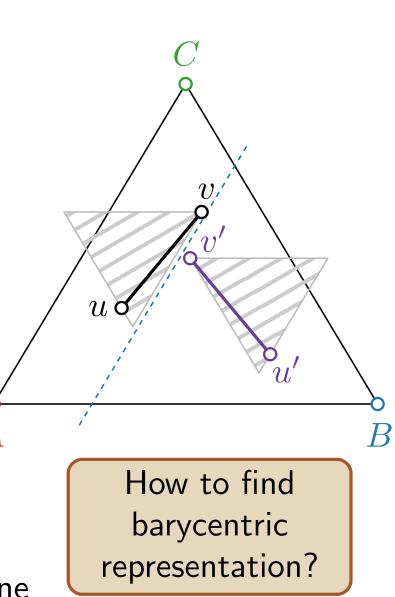
 $\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$

gives a planar drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$\begin{aligned} u'_i > u_i, v_i \quad v'_j > u_j, v_j \quad u_k > u'_k, v'_k \quad v_l > u'_l, v'_l \\ \Rightarrow \{i, j\} \cap \{k, l\} = \emptyset \end{aligned}$$

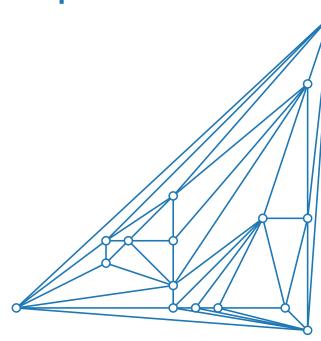
wlog $i = j = 2 \Rightarrow u'_2, v'_2 > u_2, v_2 \Rightarrow$ separated by straight line

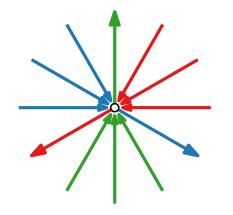


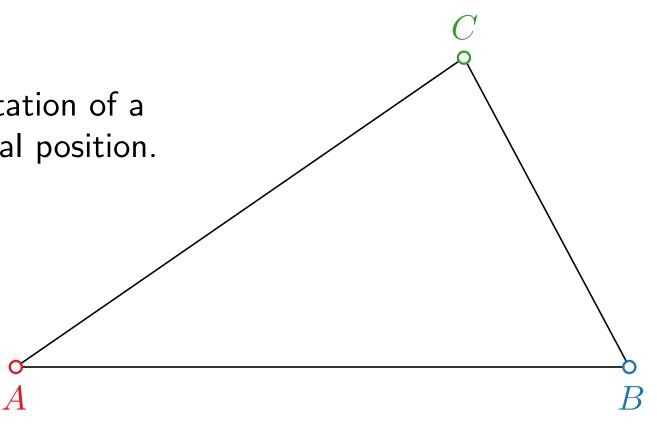
Visualization of Graphs Lecture 4: Straight-Line Drawings of Planar Graphs II: Schnyder Woods

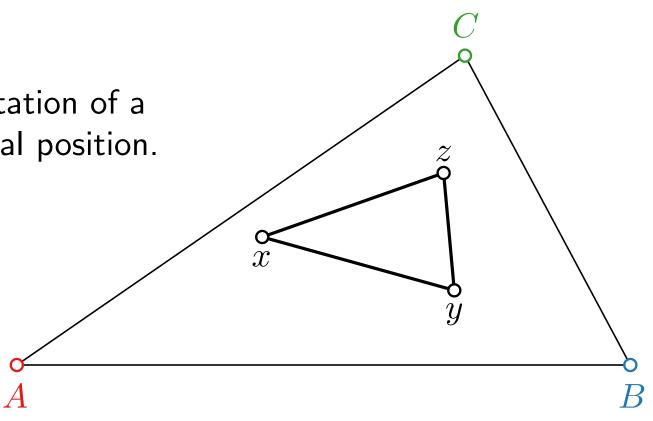
Part II: Schnyder Woods

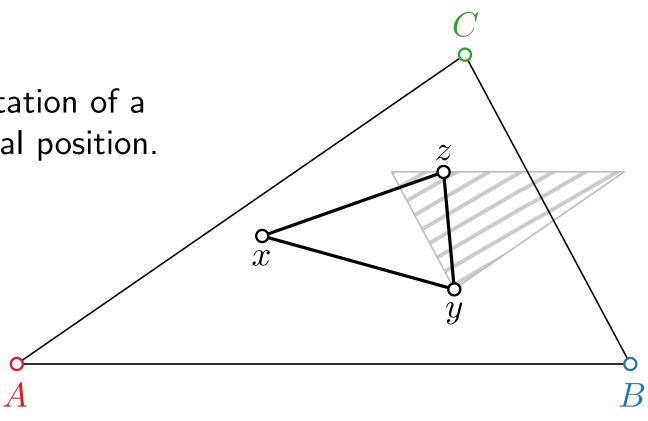
Jonathan Klawitter

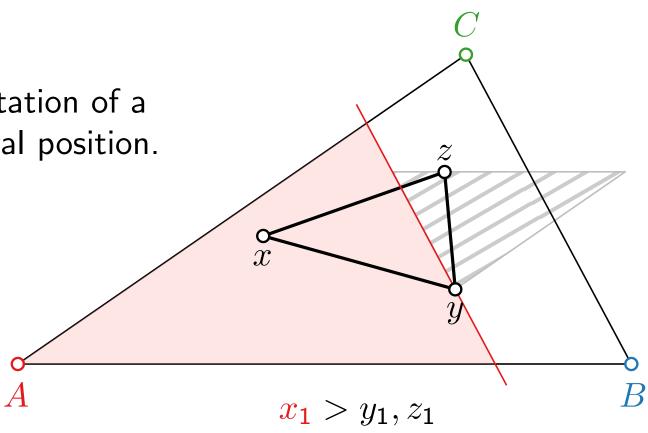


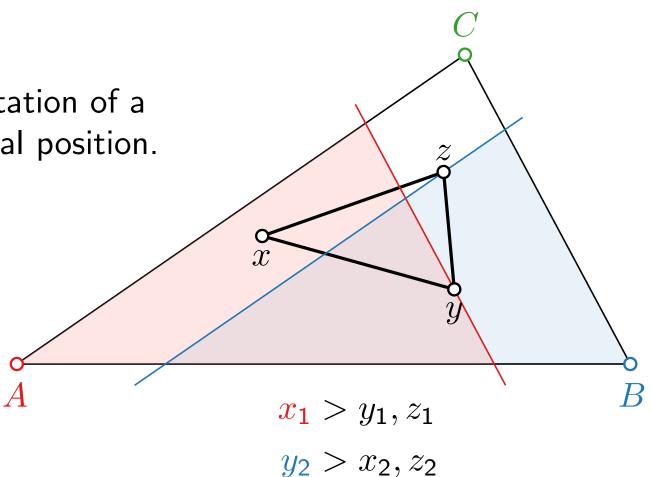


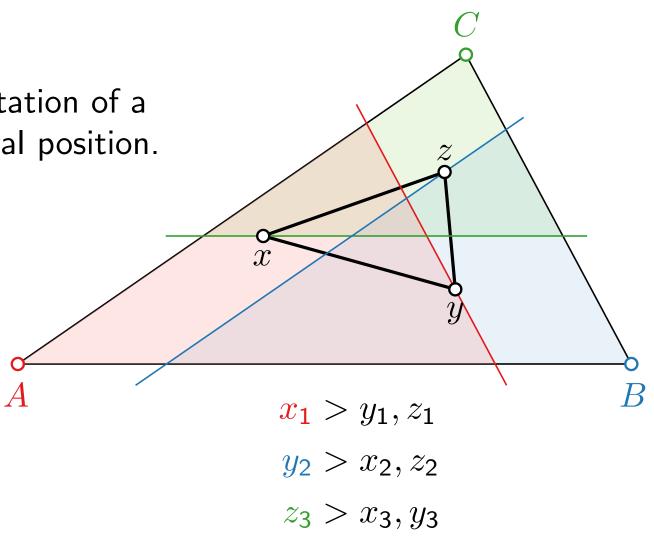










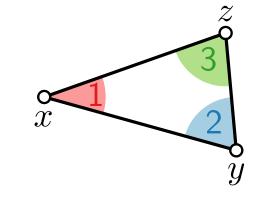


Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. \mathcal{Z} We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$. \mathcal{X} \mathcal{Y} B A $x_1 > y_1, z_1$ $y_2 > x_2, z_2$ $z_3 > x_3, y_3$

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

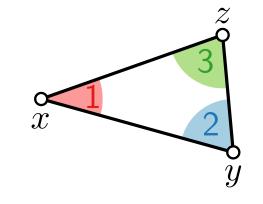
A **Schnyder Labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2 and 3 such that:



Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. We can label each angle in $\triangle xyz$ **uniquely** with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2 and 3 such that:

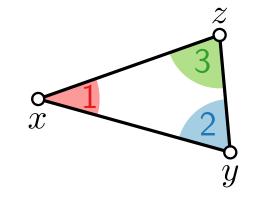
Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.

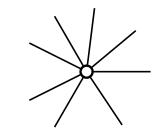


Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. We can label each angle in $\triangle xyz$ **uniquely** with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.

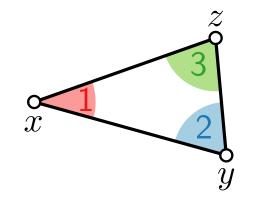


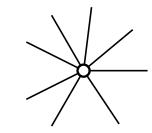


Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. We can label each angle in $\triangle xyz$ **uniquely** with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2 and 3 such that:

- **Faces:** The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.
- **Vertices:** The ccw order of labels around each vertex consists of

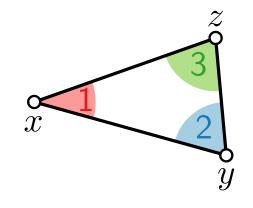


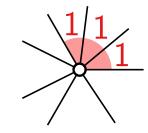


Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2 and 3 such that:

- **Faces:** The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.
- **Vertices:** The ccw order of labels around each vertex consists of
 - a nonempty interval of 1's



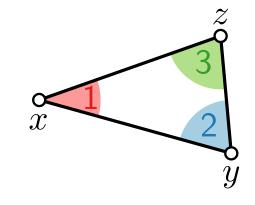


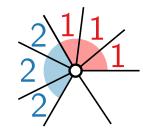
Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2 and 3 such that:

- **Faces:** The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.
- **Vertices:** The ccw order of labels around each vertex consists of
 - a nonempty interval of 1's

followed by a nonempty interval of 2's

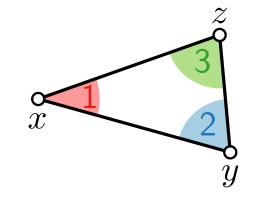


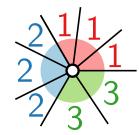


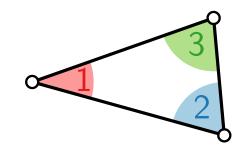
Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

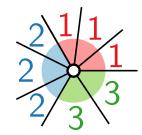
A Schnyder Labeling of a plane triangulation G is a labeling of all internal angles with labels 1, 2 and 3 such that:

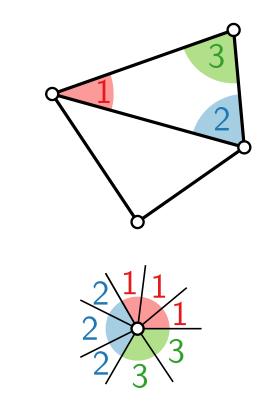
- **Faces:** The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.
- **Vertices:** The ccw order of labels around each vertex consists of
 - a nonempty interval of 1's
 - followed by a nonempty interval of 2's
 - followed by a nonempty interval of 3's.



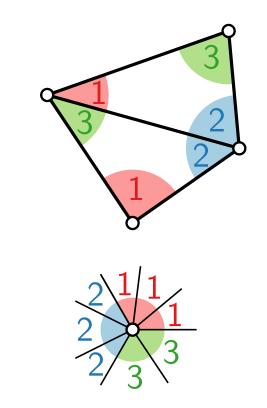


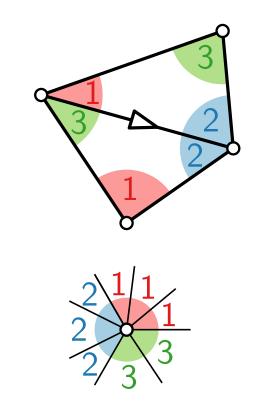


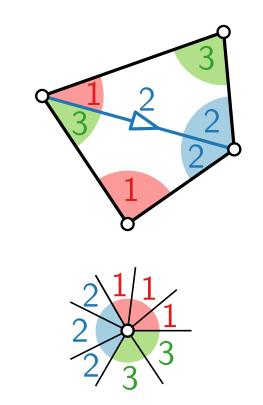






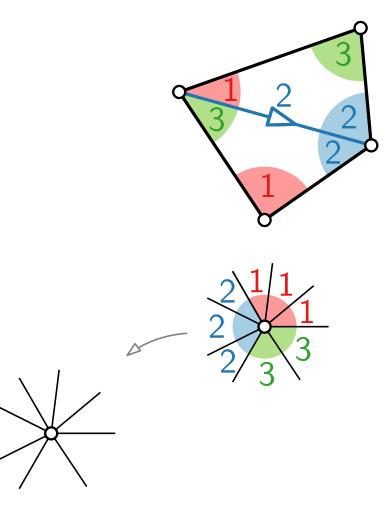






A Schnyder labeling induces an edge labeling.

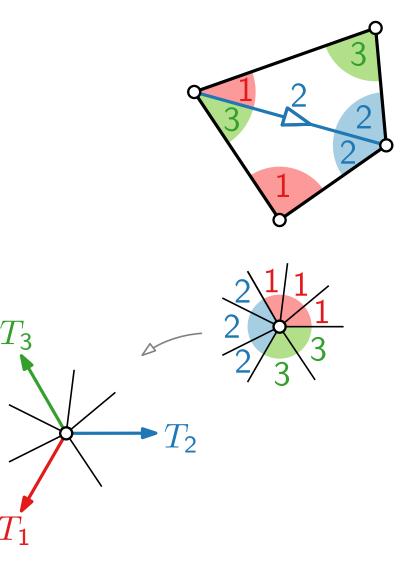
A Schnyder Wood (or Realizer) of a plane triangulation G = (V, E) is a partition of the inner edges of E into three sets of oriented edges T_1 , T_2 , T_3 such that for each inner vertex $v \in V$ holds:



A Schnyder labeling induces an edge labeling.

A Schnyder Wood (or Realizer) of a plane triangulation G = (V, E) is a partition of the inner edges of E into three sets of oriented edges T_1 , T_2 , T_3 such that for each inner vertex $v \in V$ holds:

• v has one outgoing edge in each of T_1 , T_2 , and T_3 .

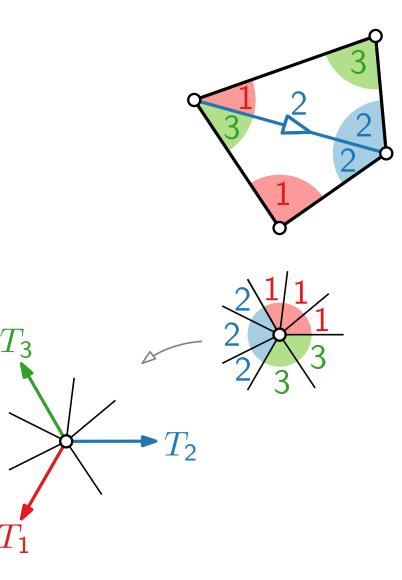


A Schnyder labeling induces an edge labeling.

A Schnyder Wood (or Realizer) of a plane triangulation G = (V, E) is a partition of the inner edges of E into three sets of oriented edges T_1 , T_2 , T_3 such that for each inner vertex $v \in V$ holds:

• v has one outgoing edge in each of T_1 , T_2 , and T_3 .

The ccw order of edges around v is:

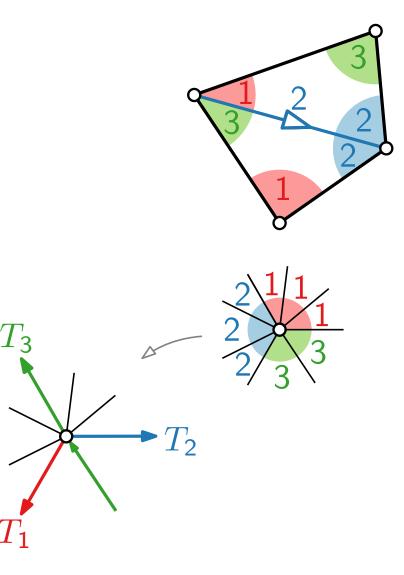


A Schnyder labeling induces an edge labeling.

A Schnyder Wood (or Realizer) of a plane triangulation G = (V, E) is a partition of the inner edges of E into three sets of oriented edges T_1 , T_2 , T_3 such that for each inner vertex $v \in V$ holds:

• v has one outgoing edge in each of T_1 , T_2 , and T_3 .

The ccw order of edges around v is: leaving in T₁, entering in T₃,

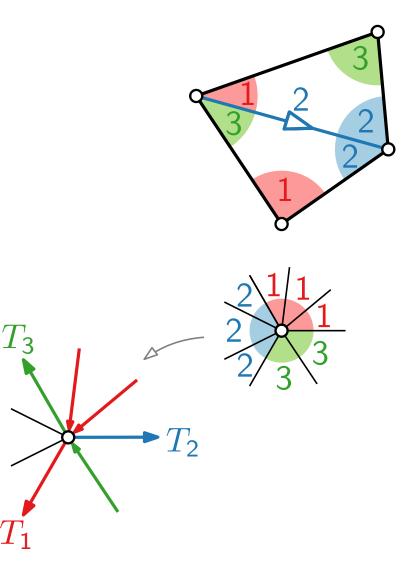


A Schnyder labeling induces an edge labeling.

A Schnyder Wood (or Realizer) of a plane triangulation G = (V, E) is a partition of the inner edges of E into three sets of oriented edges T_1 , T_2 , T_3 such that for each inner vertex $v \in V$ holds:

• v has one outgoing edge in each of T_1 , T_2 , and T_3 .

The ccw order of edges around v is: leaving in T₁, entering in T₃, leaving in T₂, entering in T₁,

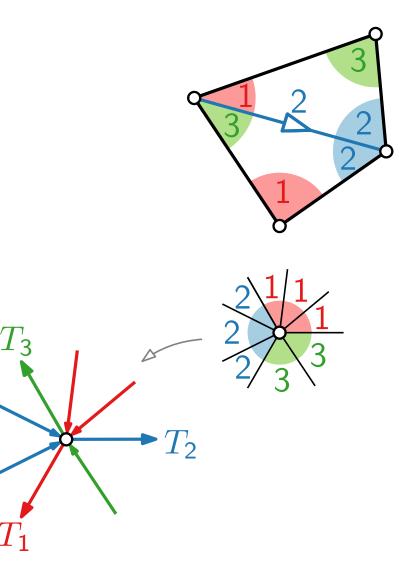


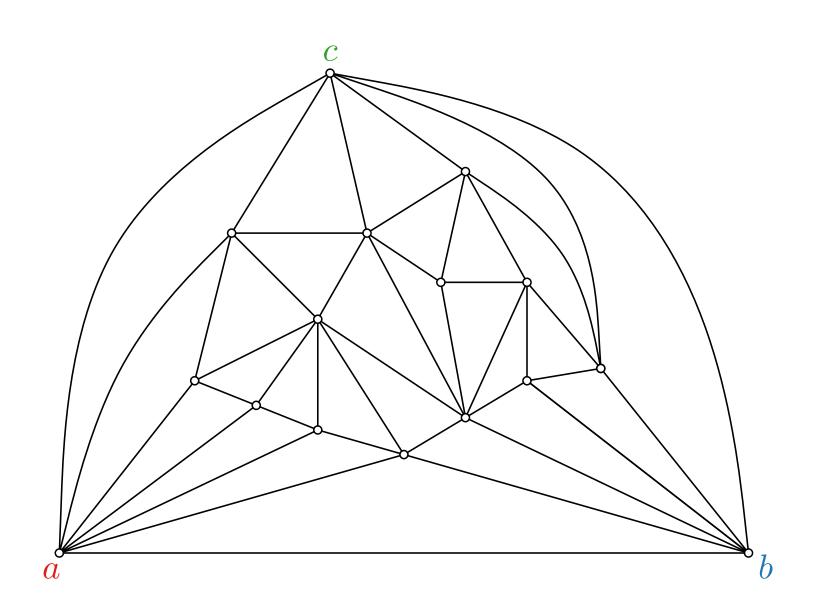
A Schnyder labeling induces an edge labeling.

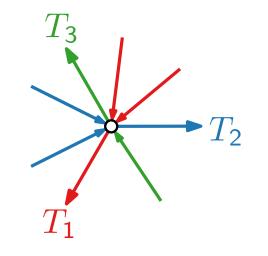
A Schnyder Wood (or Realizer) of a plane triangulation G = (V, E) is a partition of the inner edges of E into three sets of oriented edges T_1 , T_2 , T_3 such that for each inner vertex $v \in V$ holds:

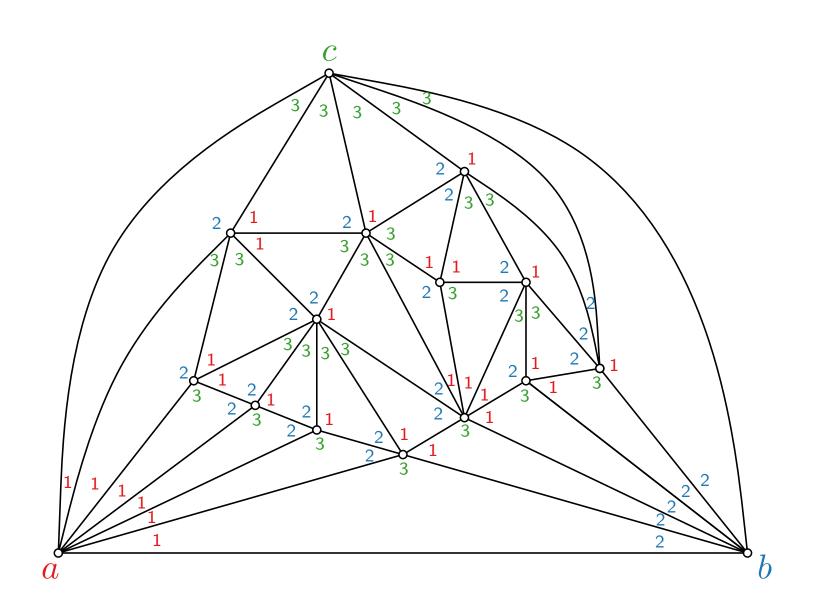
• v has one outgoing edge in each of T_1 , T_2 , and T_3 .

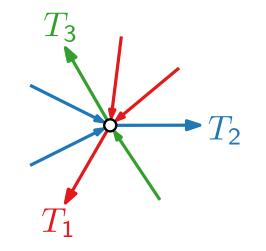
The ccw order of edges around v is: leaving in T₁, entering in T₃, leaving in T₂, entering in T₁, leaving in T₃, entering in T₂.

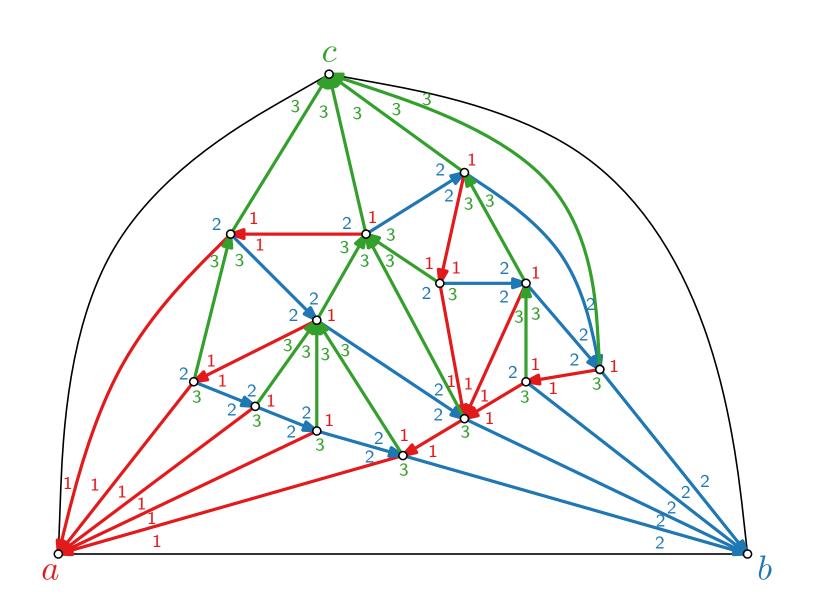


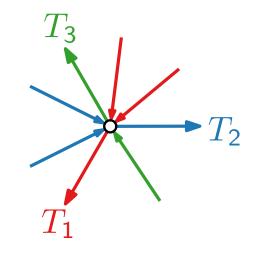


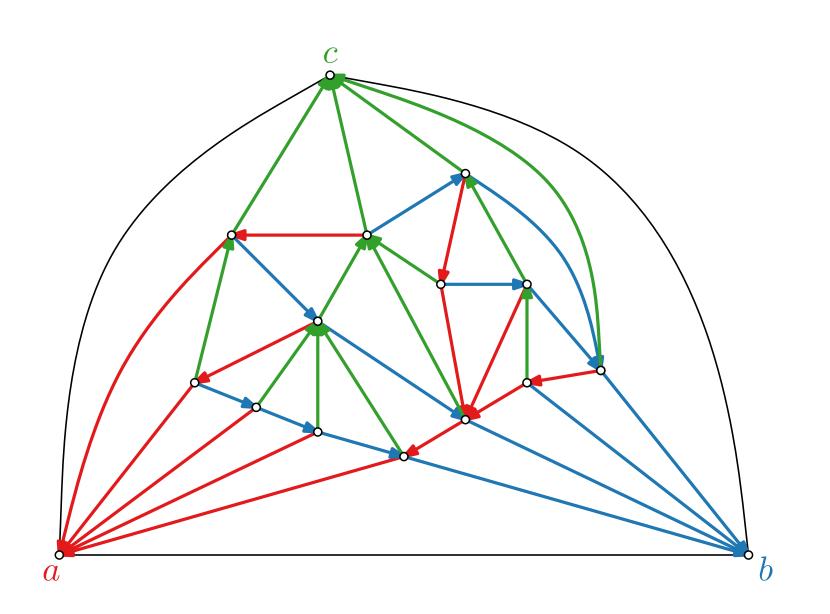


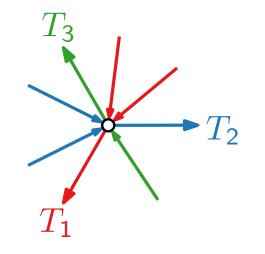


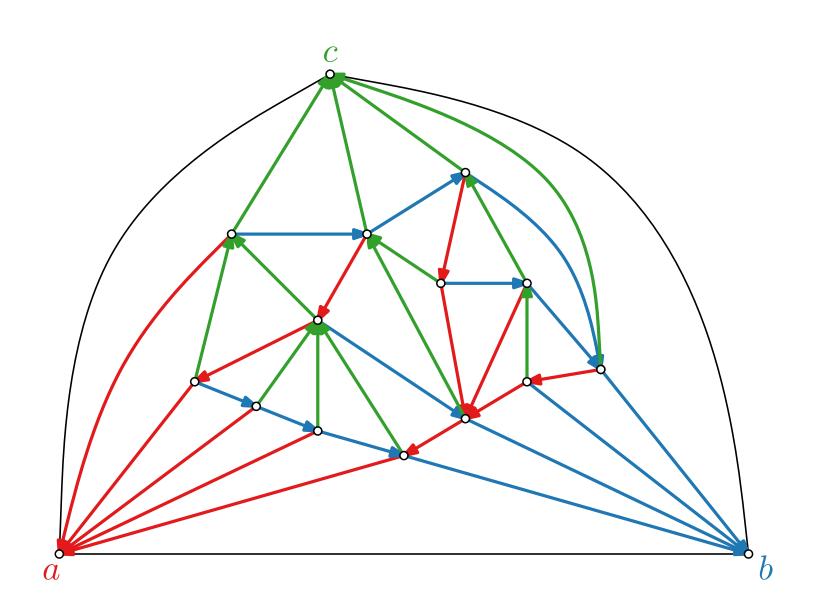


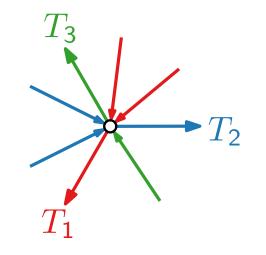


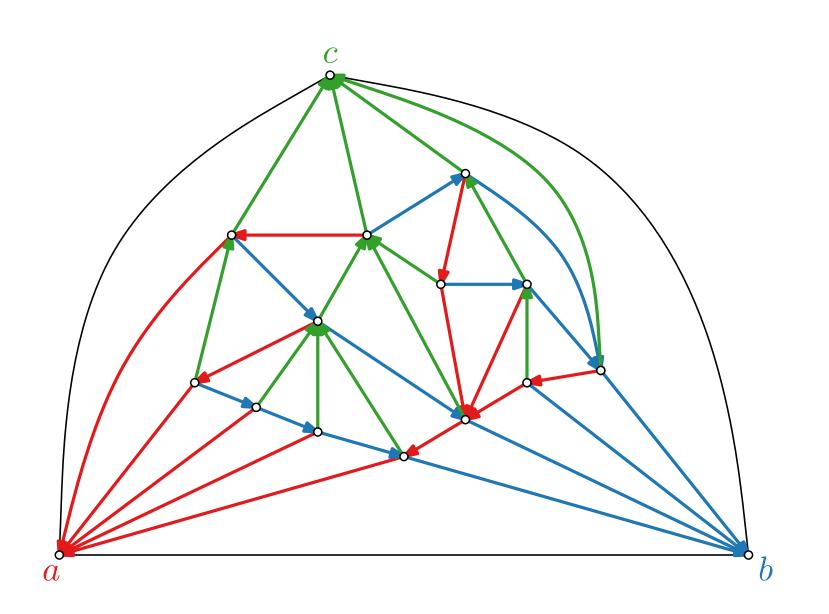


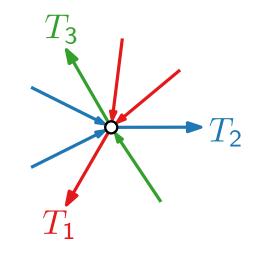


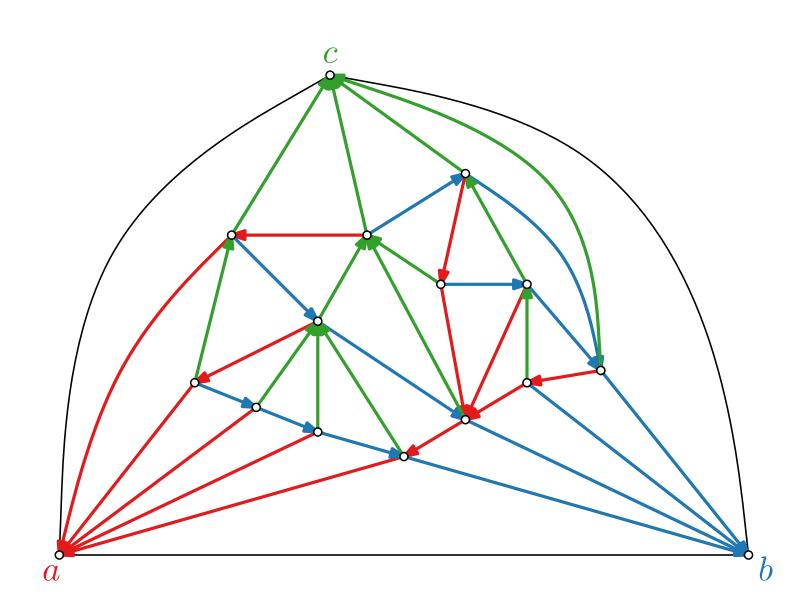


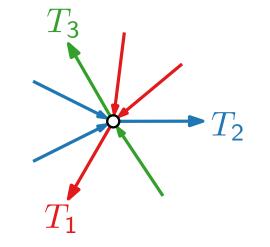






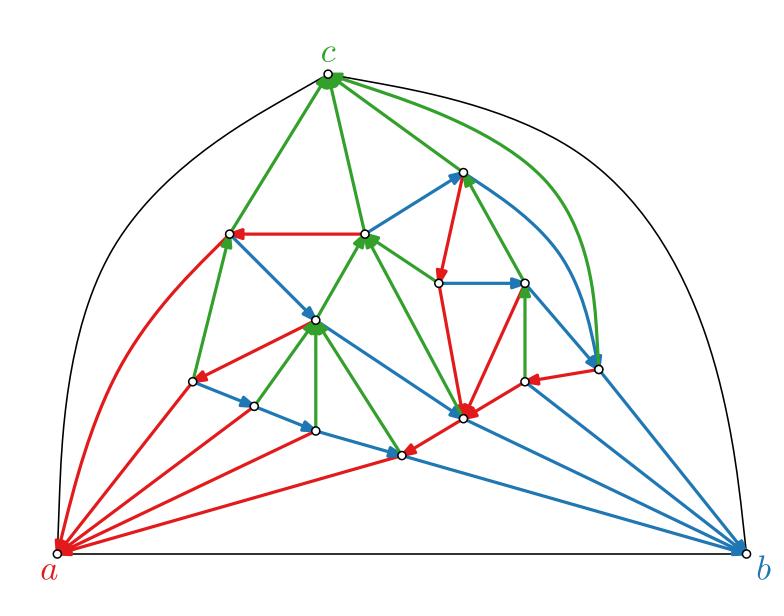


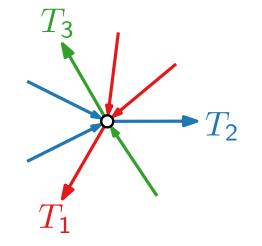




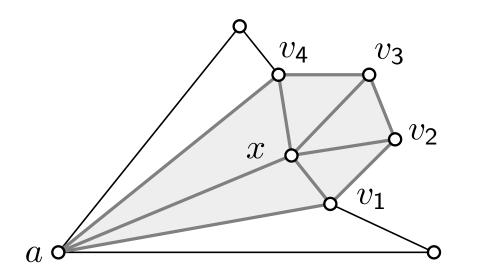
All inner edges incident to a, b, and c are incoming in the same color.

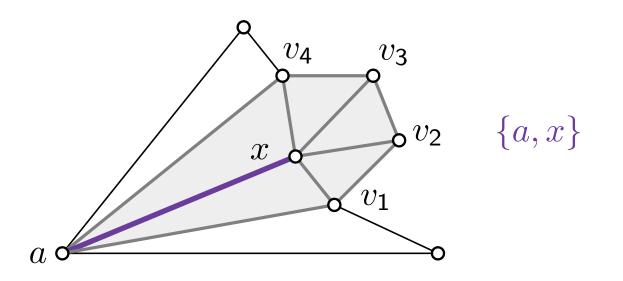
Schnyder Wood – Example and Properties

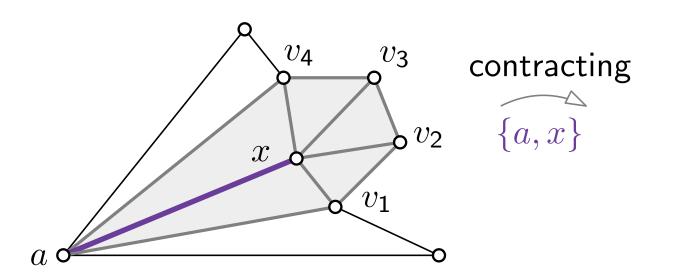


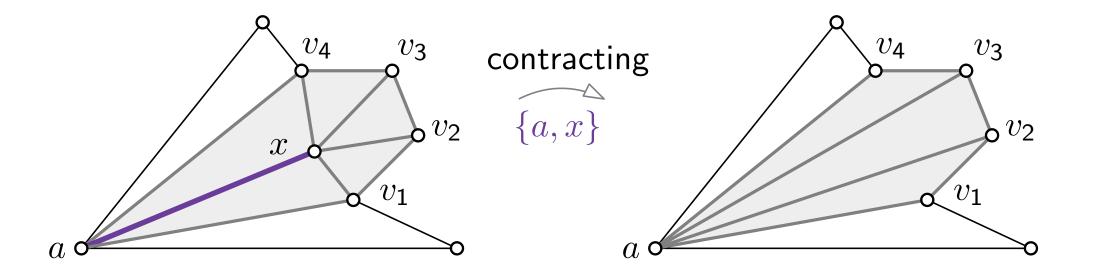


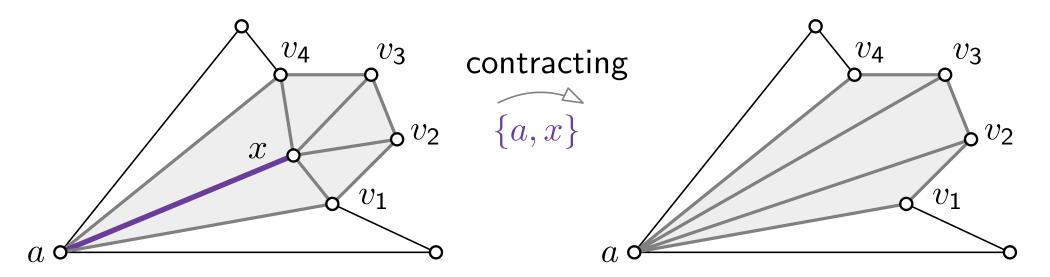
- All inner edges incident to *a*, *b*, and *c* are incoming in the same color.
- T₁, T₂, and T₃ are trees on all inner vertices and one outer vertex each (as its root).



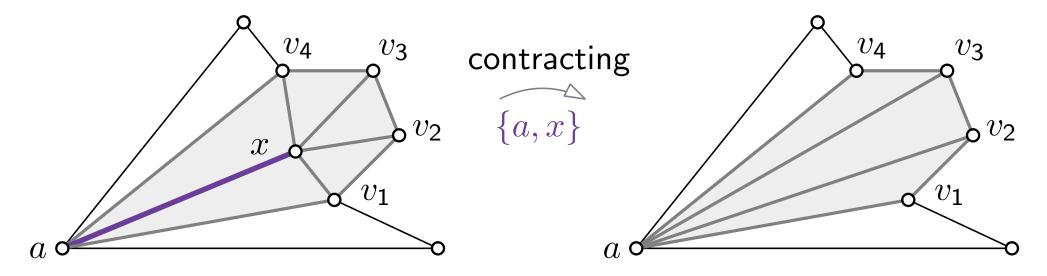








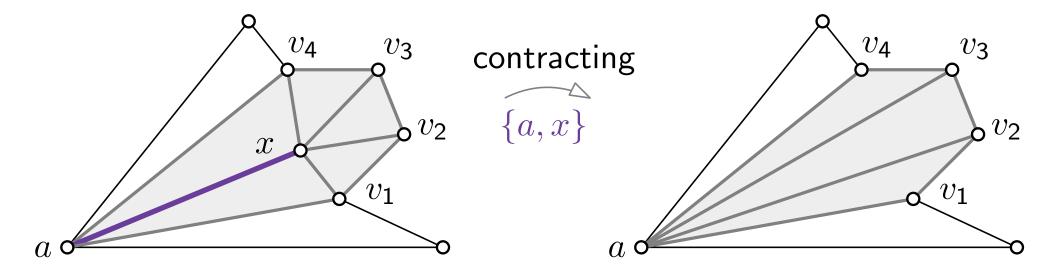
Lemma. [Kampen 1976] Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b, c$.



Lemma. [Kampen 1976] Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every plane triangulation has a Schnyder Labeling and Wood.

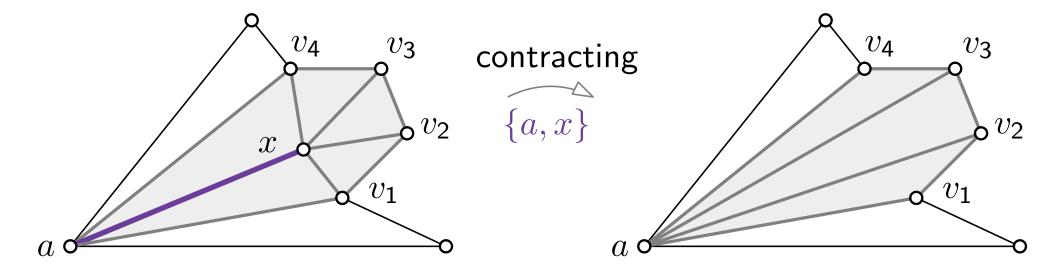


Lemma. [Kampen 1976] Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every plane triangulation has a Schnyder Labeling and Wood.

Proof by induction on # vertices via edge contractions.

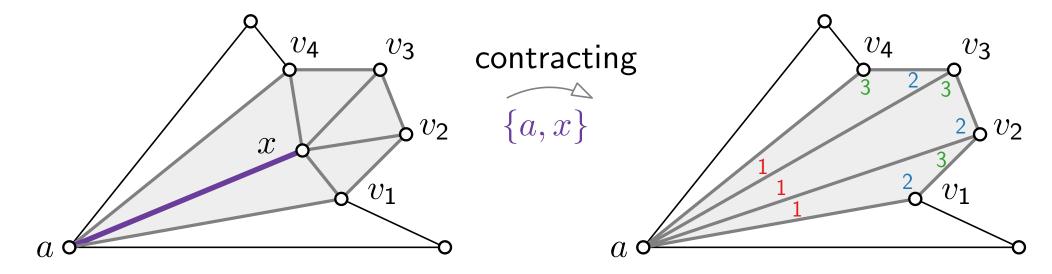


Lemma. [Kampen 1976] Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every plane triangulation has a Schnyder Labeling and Wood.

Proof by induction on # vertices via edge contractions.

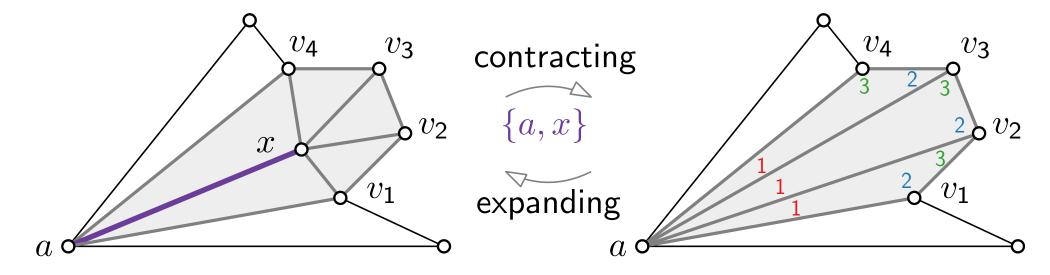


Lemma. [Kampen 1976] Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every plane triangulation has a Schnyder Labeling and Wood.

Proof by induction on # vertices via edge contractions.

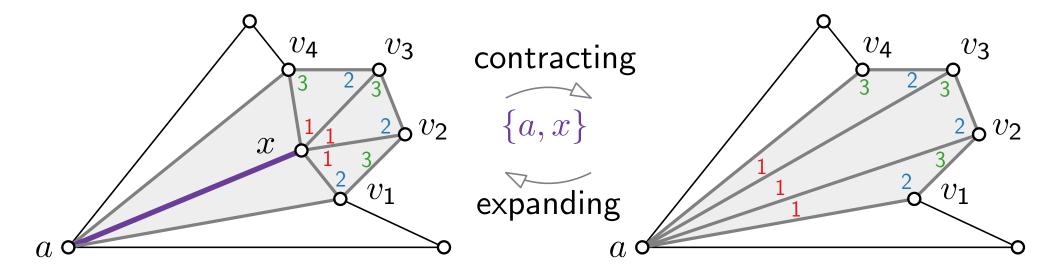


Lemma. [Kampen 1976] Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every plane triangulation has a Schnyder Labeling and Wood.

Proof by induction on # vertices via edge contractions.

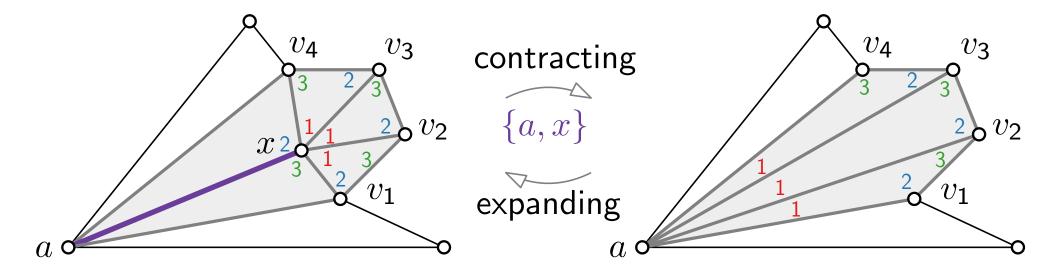


Lemma. [Kampen 1976] Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every plane triangulation has a Schnyder Labeling and Wood.

Proof by induction on # vertices via edge contractions.

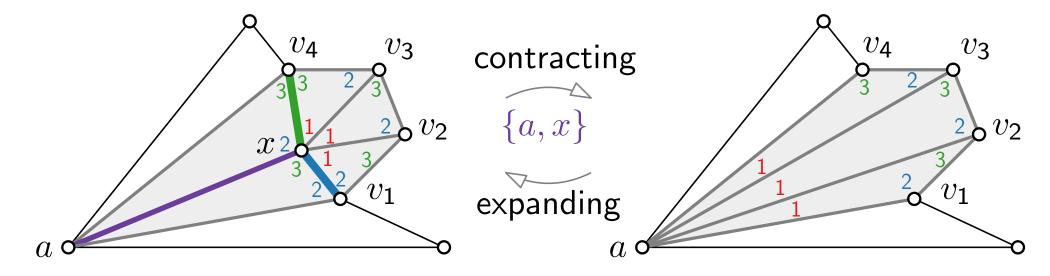


Lemma. [Kampen 1976] Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every plane triangulation has a Schnyder Labeling and Wood.

Proof by induction on # vertices via edge contractions.

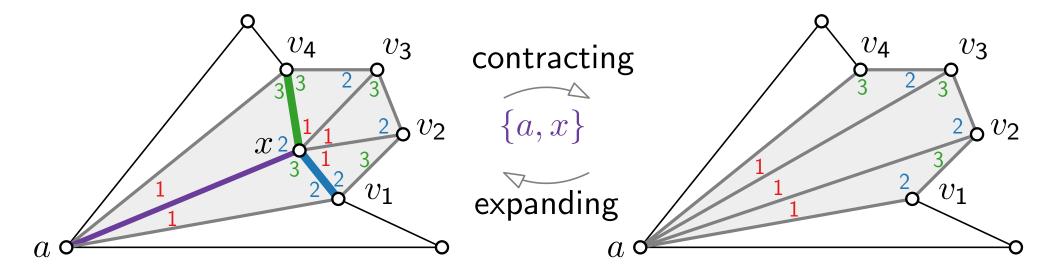


Lemma. [Kampen 1976] Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every plane triangulation has a Schnyder Labeling and Wood.

Proof by induction on # vertices via edge contractions.

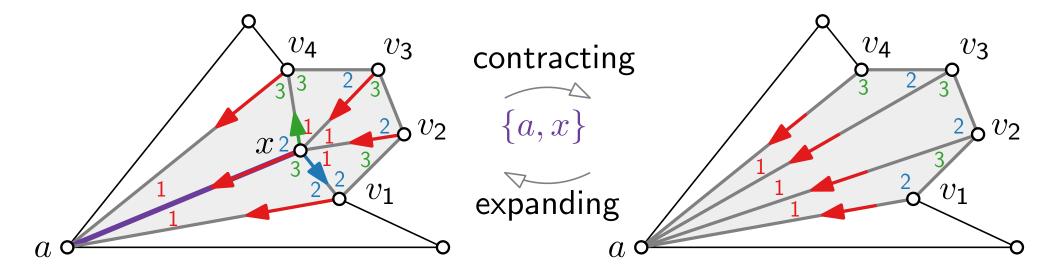


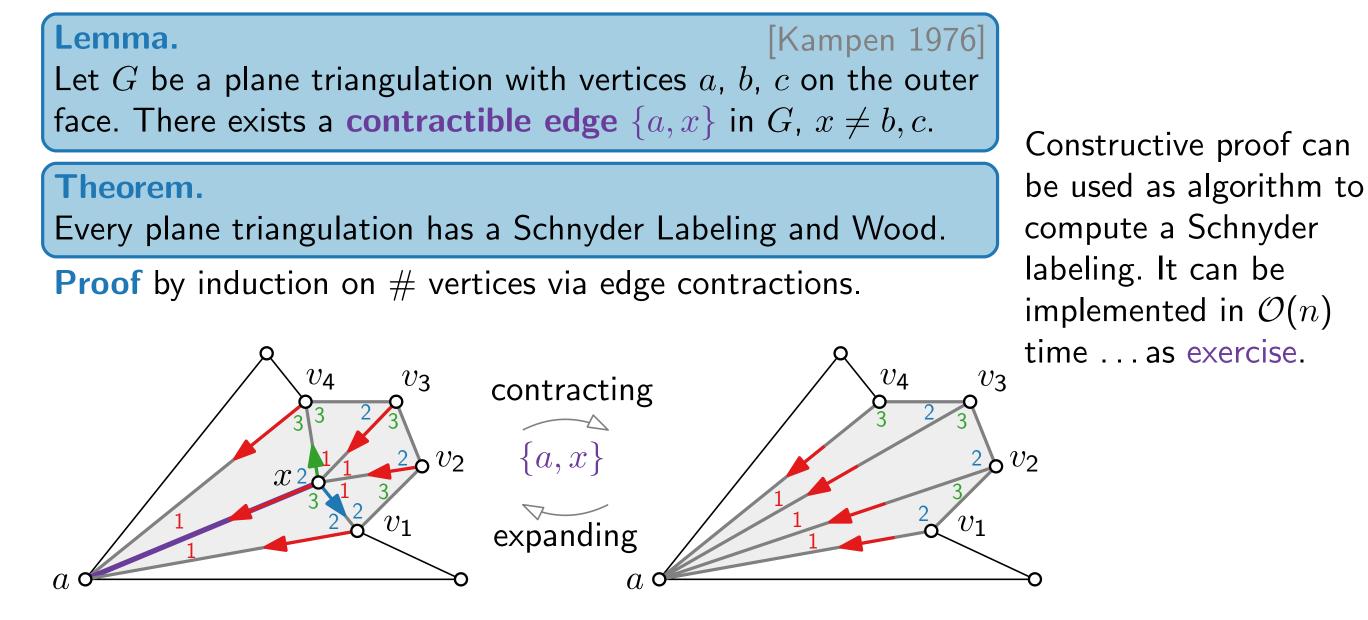
Lemma. [Kampen 1976] Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

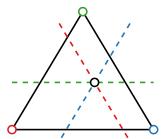
Every plane triangulation has a Schnyder Labeling and Wood.

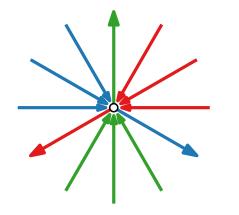
Proof by induction on # vertices via edge contractions.





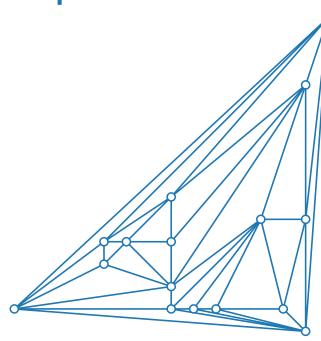
Visualization of Graphs Lecture 4: Straight-Line Drawings of Planar Graphs II: Schnyder Woods

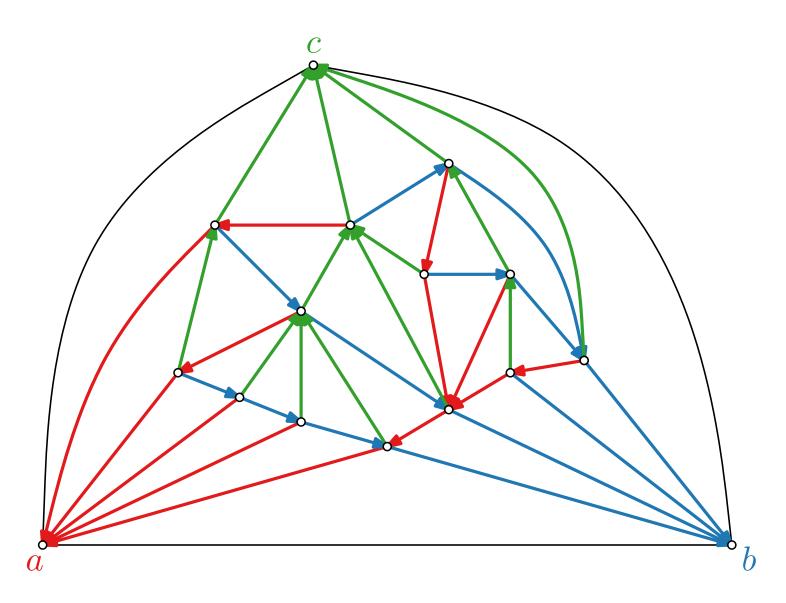


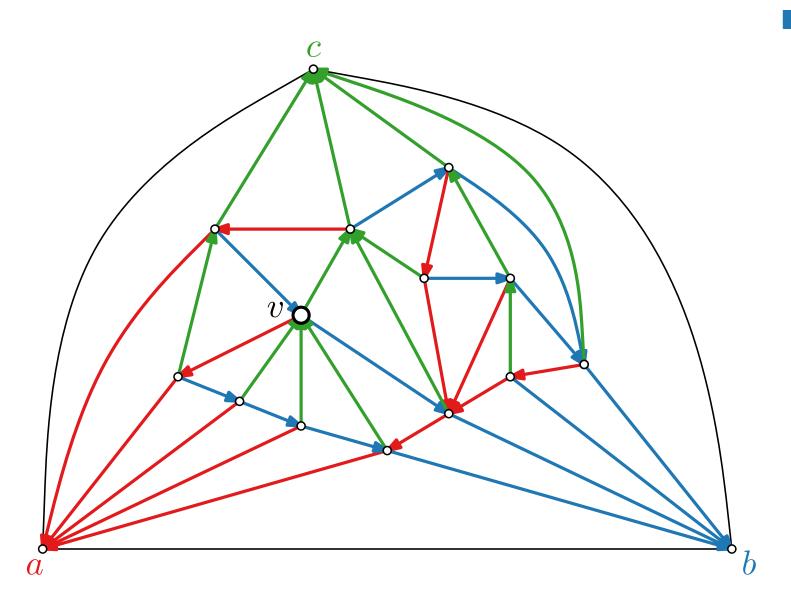


Part III: Schnyder Drawings

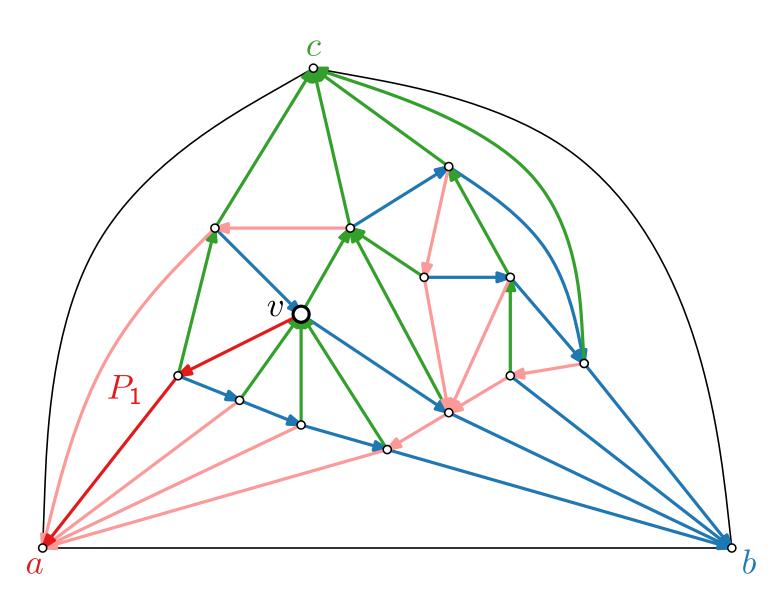
Jonathan Klawitter



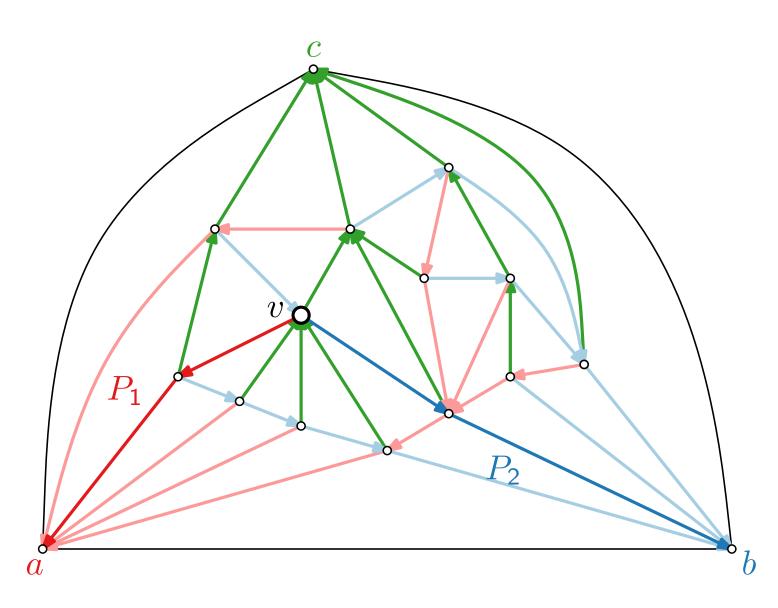




From each vertex v there exists

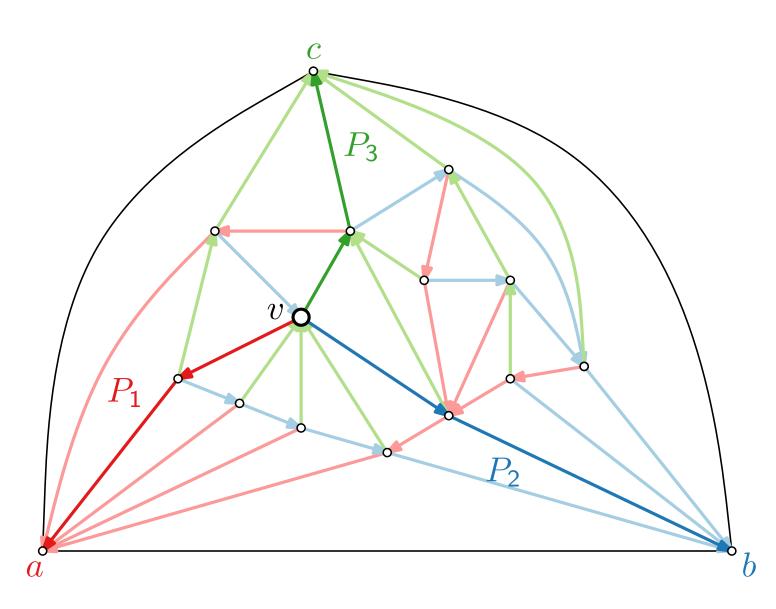


From each vertex v there exists a directed red path $P_1(v)$ to a,

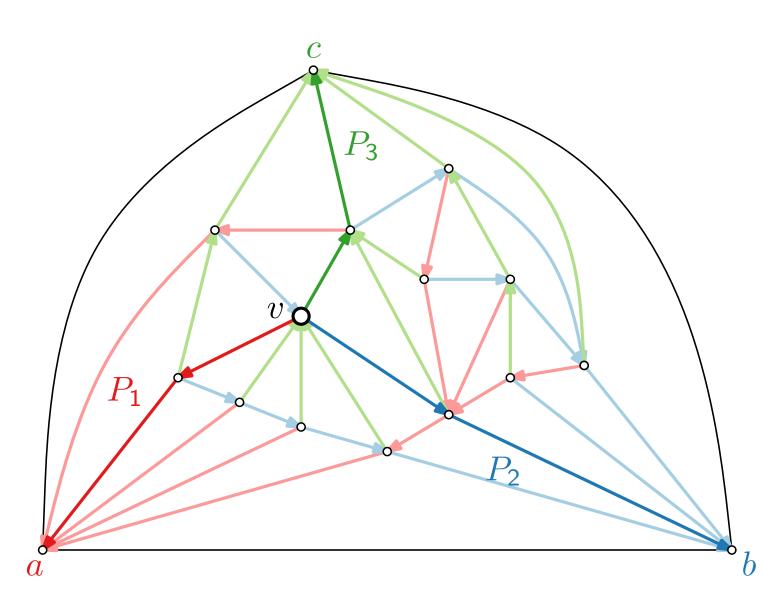


From each vertex v there exists

 a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and

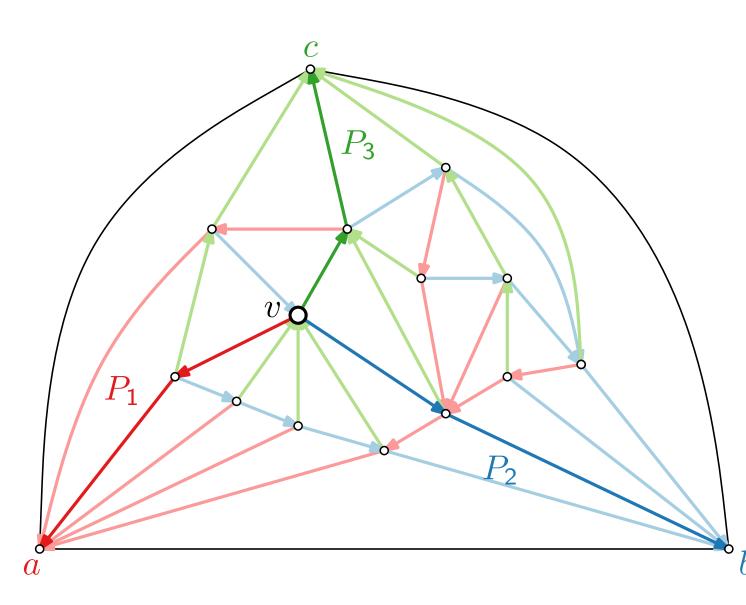


 From each vertex v there exists a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.



 From each vertex v there exists a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.

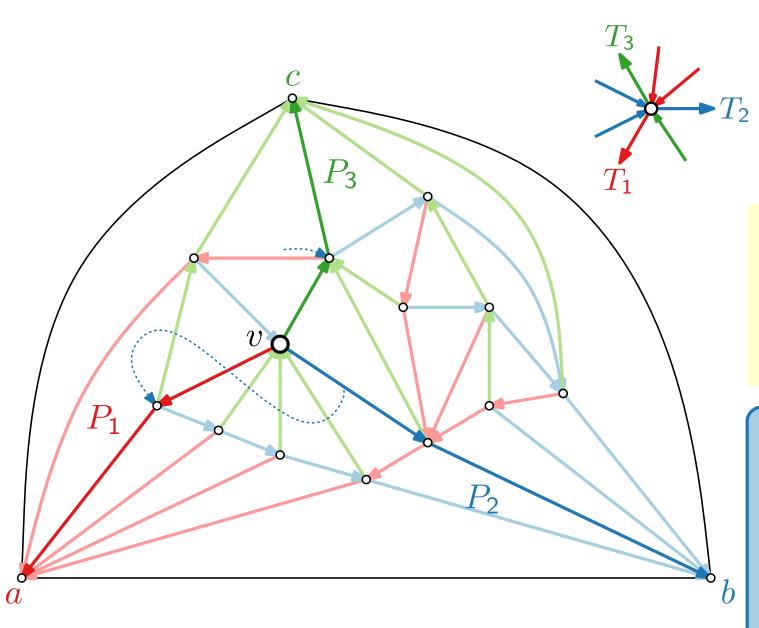
 $P_i(v)$: path from v to root of T_i .



From each vertex v there exists a directed red path P₁(v) to a, a directed blue path P₂(v) to b, and a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i .

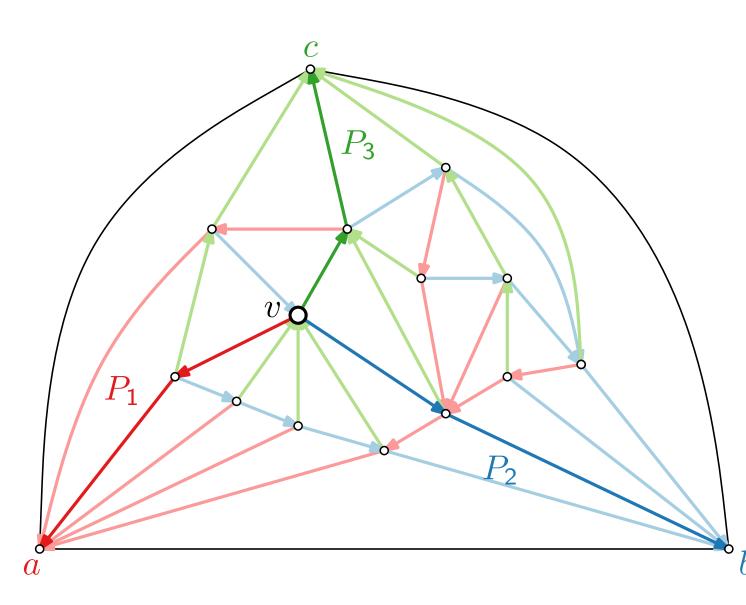
Lemma.



 From each vertex v there exists a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i .

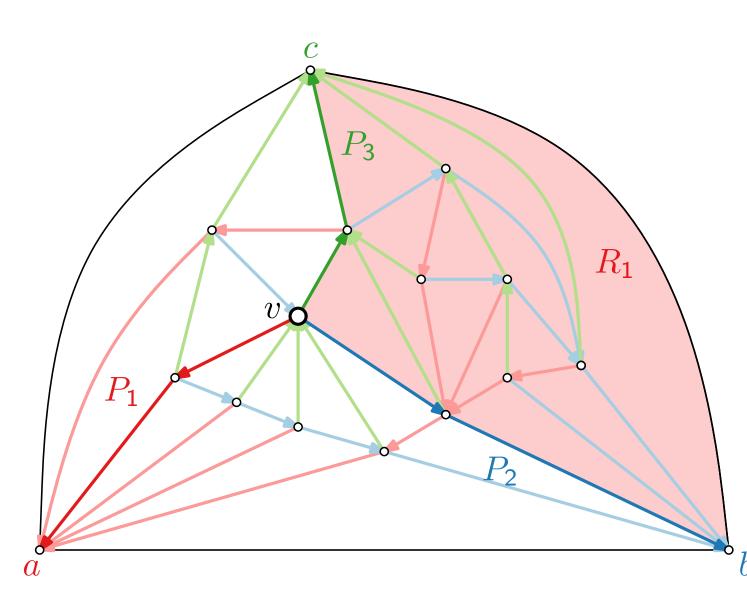
Lemma.



 From each vertex v there exists a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i .

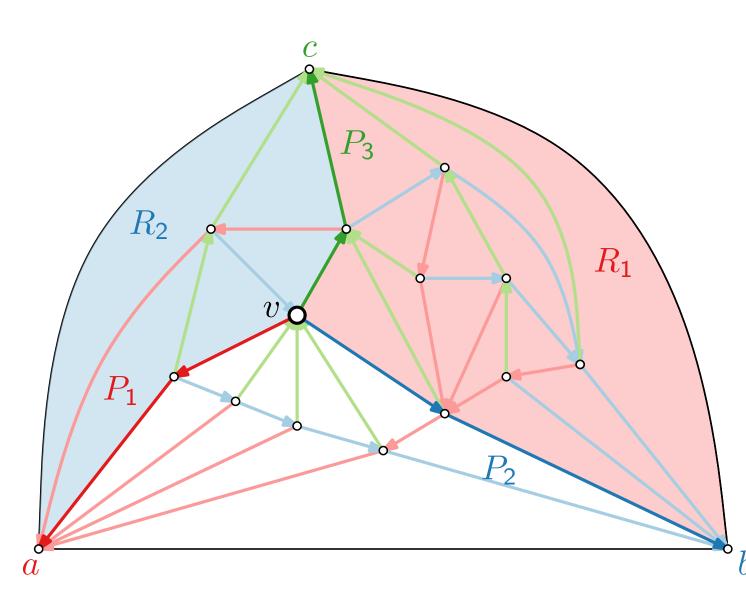
Lemma.



From each vertex v there exists a directed red path P₁(v) to a, a directed blue path P₂(v) to b, and a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 .

Lemma.

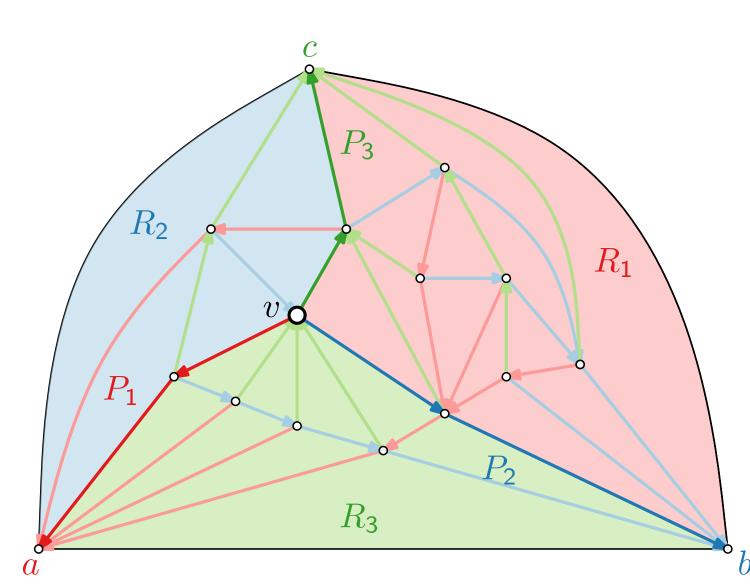


From each vertex v there exists

 a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 .

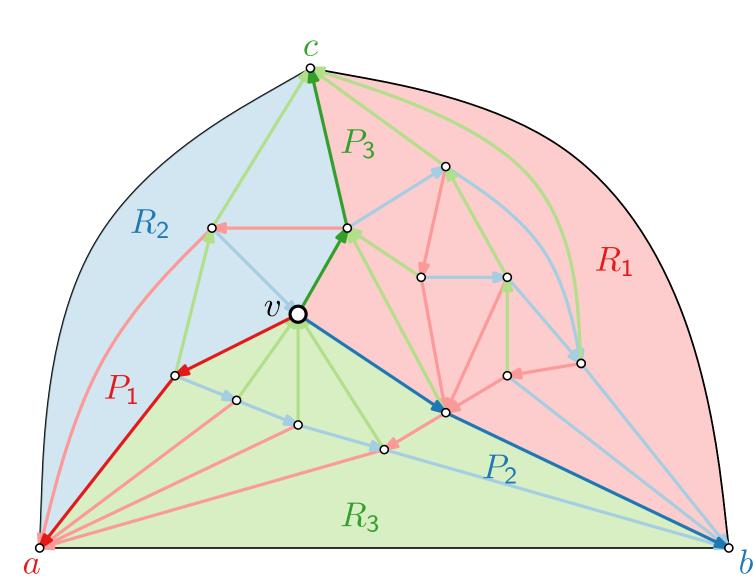
Lemma.



 From each vertex v there exists a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

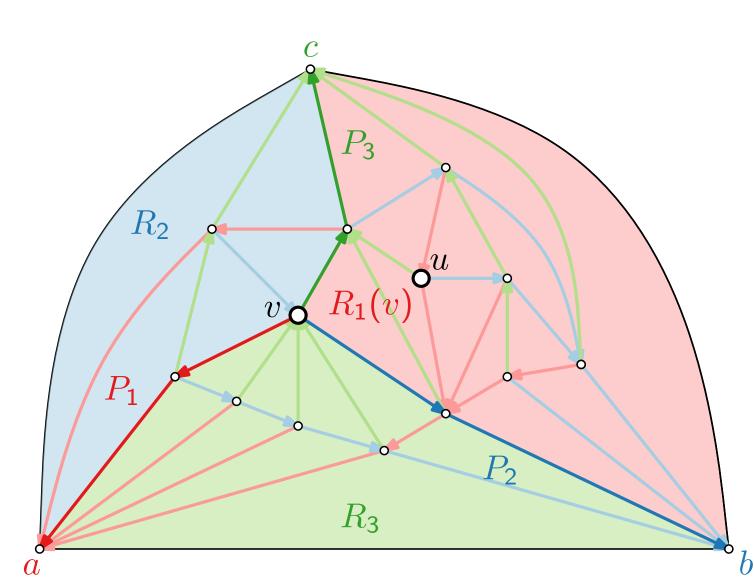
Lemma.



 From each vertex v there exists a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

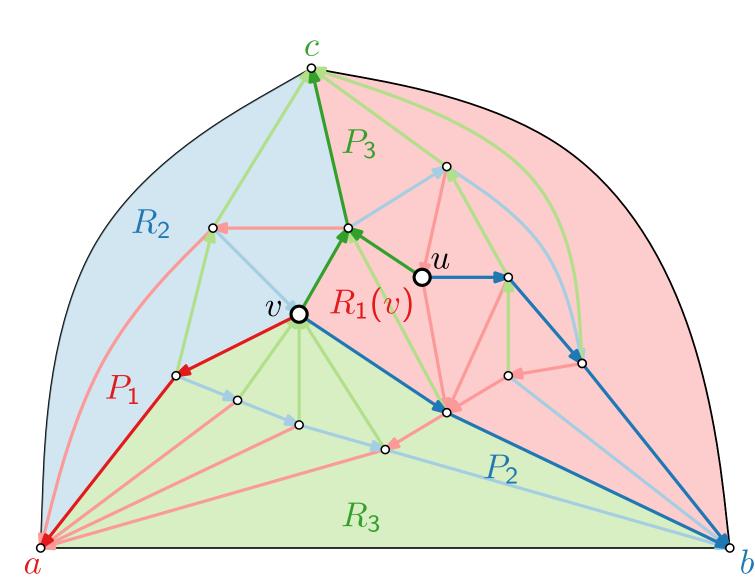
- $\blacksquare P_1(v), P_2(v), P_3(v) \text{ cross only at } v.$
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.



 From each vertex v there exists a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

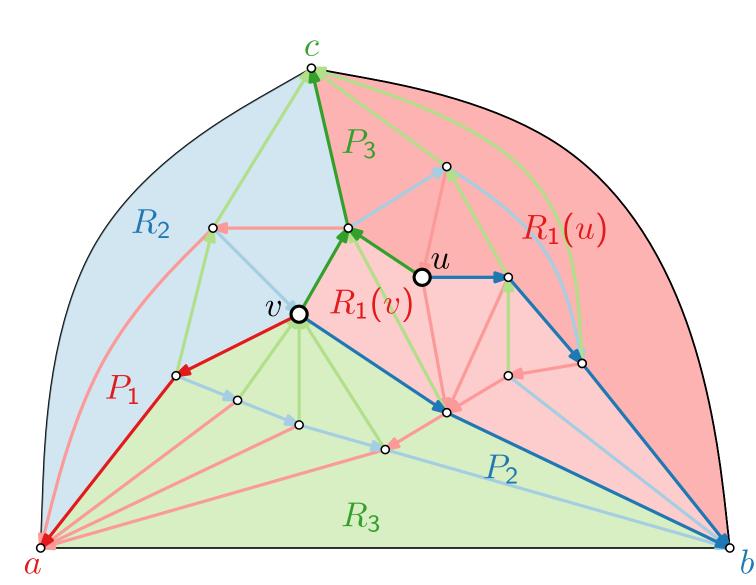
- $\blacksquare P_1(v), P_2(v), P_3(v) \text{ cross only at } v.$
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.



 From each vertex v there exists a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

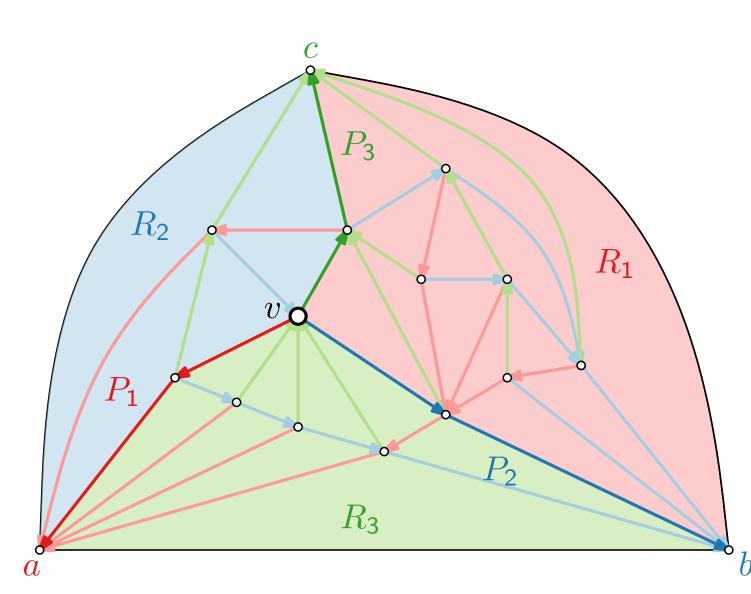
- $\blacksquare P_1(v), P_2(v), P_3(v) \text{ cross only at } v.$
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.



 From each vertex v there exists a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

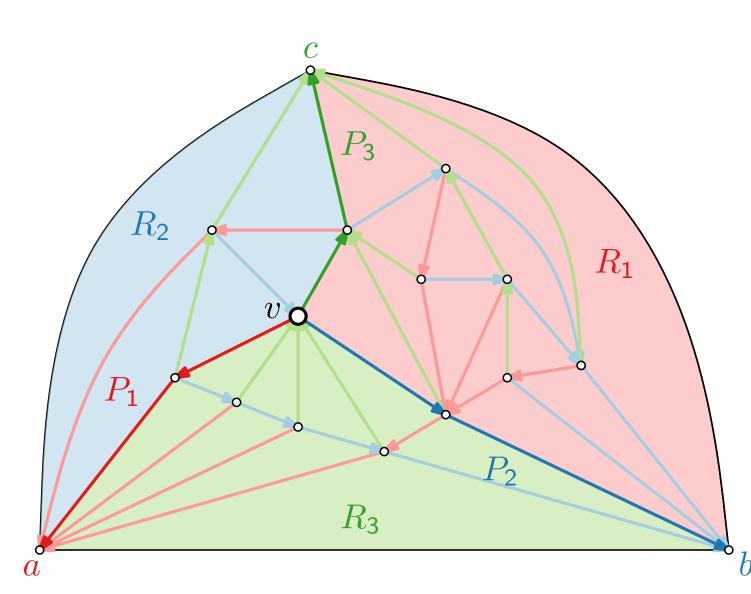
- $\blacksquare P_1(v), P_2(v), P_3(v) \text{ cross only at } v.$
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.



 From each vertex v there exists a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

- $\blacksquare P_1(v), P_2(v), P_3(v) \text{ cross only at } v.$
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| =$

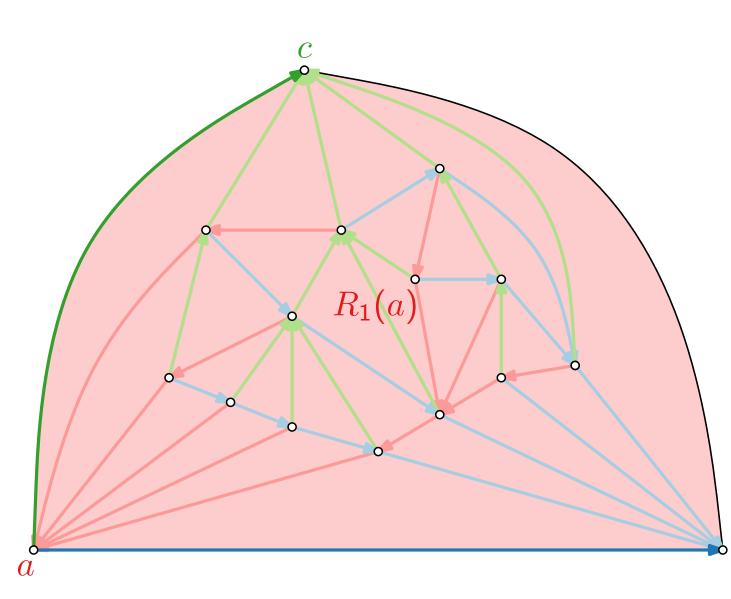


 From each vertex v there exists a directed red path P₁(v) to a,
 a directed blue path P₂(v) to b, and
 a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

- $\blacksquare P_1(v), P_2(v), P_3(v) \text{ cross only at } v.$
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

Schnyder Wood – More Properties



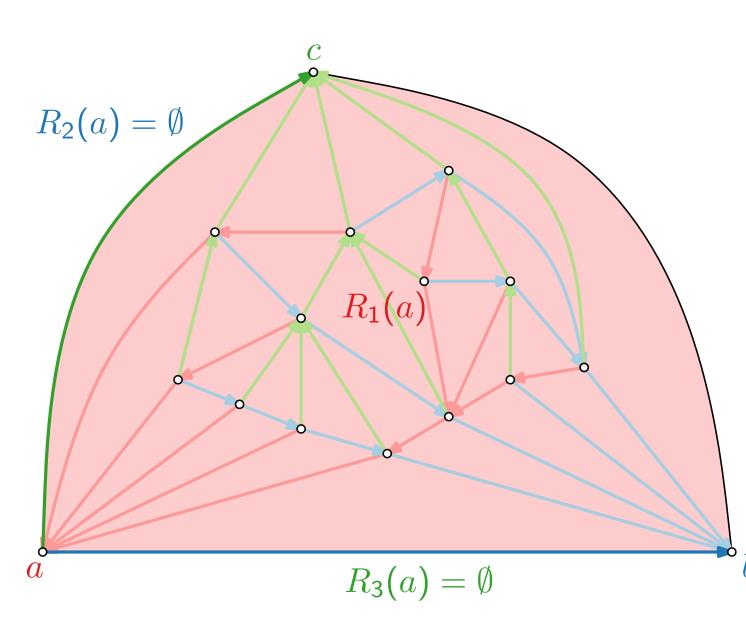
From each vertex v there exists a directed red path P₁(v) to a, a directed blue path P₂(v) to b, and a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

Lemma.

- $\blacksquare P_1(v), P_2(v), P_3(v) \text{ cross only at } v.$
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

Schnyder Wood – More Properties



From each vertex v there exists a directed red path P₁(v) to a, a directed blue path P₂(v) to b, and a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

Lemma.

- $\blacksquare P_1(v), P_2(v), P_3(v) \text{ cross only at } v.$
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

 $f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5} (|R_1(v)|, |R_2(v)|, |R_3(v)|)$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G

Theorem. For a plane triangulation G, the mapping [Schnyder '90]

 $f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5} (|R_1(v)|, |R_2(v)|, |R_3(v)|)$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$

Theorem. For a plane triangulation G, the mapping

 $f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5} (|R_1(v)|, |R_2(v)|, |R_3(v)|)$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G

[Schnyder '90]

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$ 🗸

Theorem.

For a plane triangulation G, the mapping

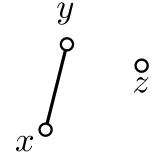
$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G

[Schnyder '90

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$

(B2) for each $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $x_k < z_k$ and $y_k < z_k$



Theorem.

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G

[Schnyder '90]

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$

(B2) for each $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $x_k < z_k$ and $y_k < z_k$

y	
9	•
	z
J	
$x^{\mathbf{U}}$	

Theorem.

For a plane triangulation G, the mapping

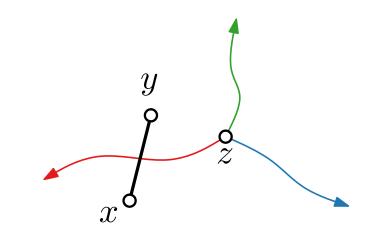
$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G

Schnyder '90

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$

(B2) for each $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $x_k < z_k$ and $y_k < z_k$



Theorem.

For a plane triangulation G, the mapping

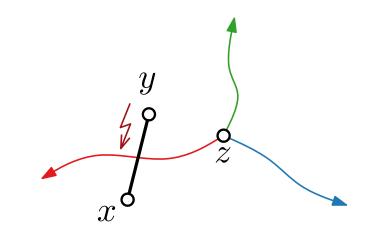
$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G

Schnyder '90

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$

(B2) for each $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $x_k < z_k$ and $y_k < z_k$



Theorem.

For a plane triangulation G, the mapping

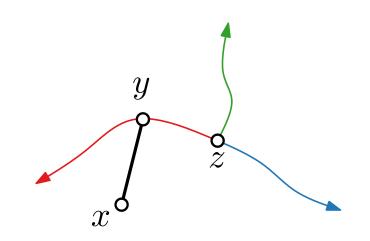
$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G

Schnyder '90

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$

(B2) for each $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $x_k < z_k$ and $y_k < z_k$



Set A = (0, 0), B = (2n - 5, 0), and C = (0, 2n - 5).

Theorem. For a plane triangulation G, the mapping

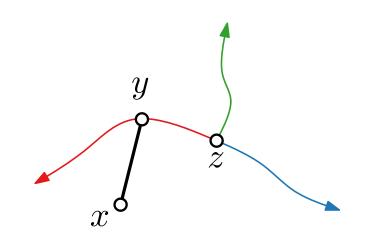
$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5} (|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G

Schnyder '90

(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$

(B2) for each $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $x_k < z_k$ and $y_k < z_k$



Set A = (0,0), B = (2n - 5, 0), and C = (0, 2n - 5).

Theorem. For a plane triangulation *G*, the mapping

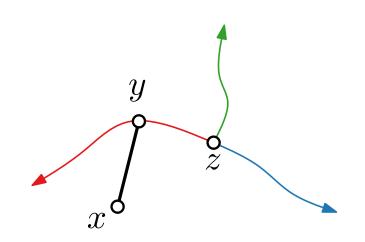
 $f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5} (|R_1(v)|, |R_2(v)|, |R_3(v)|)$

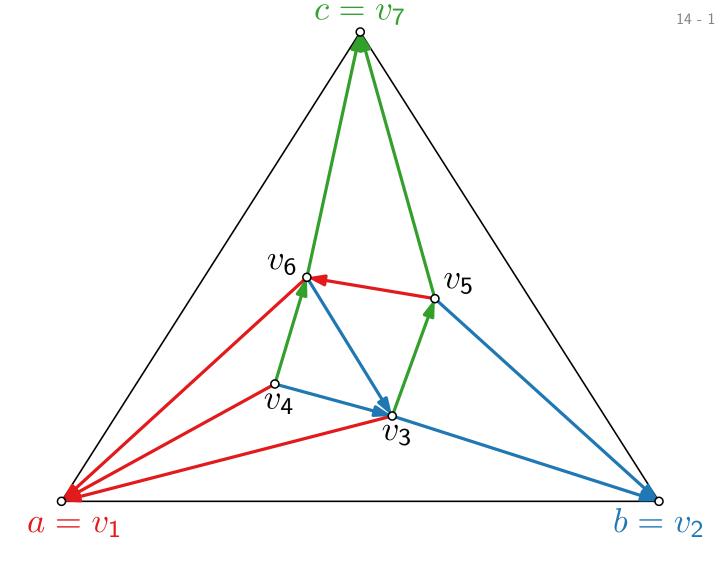
is a barycentric representation of G, which thus gives a planar straight-line drawing of G on the $(2n-5) \times (2n-5)$ grid.

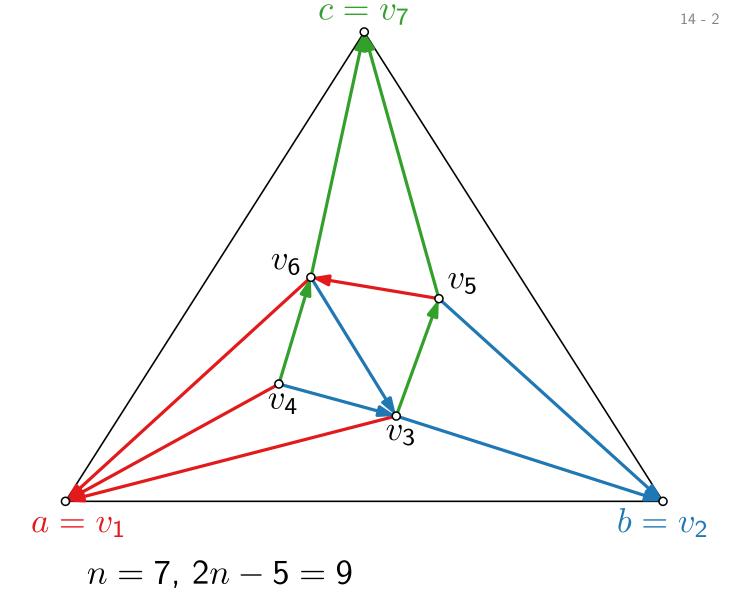
Schnyder '90

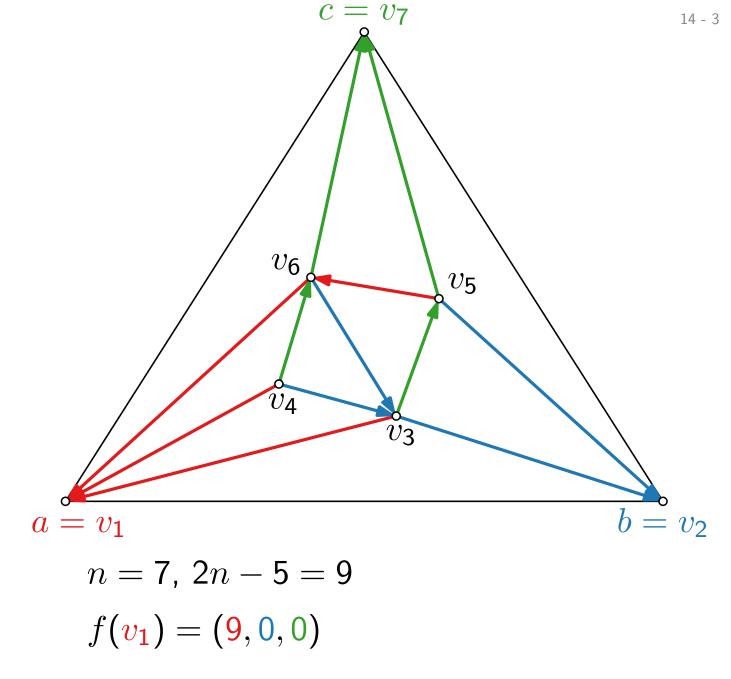
(B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$

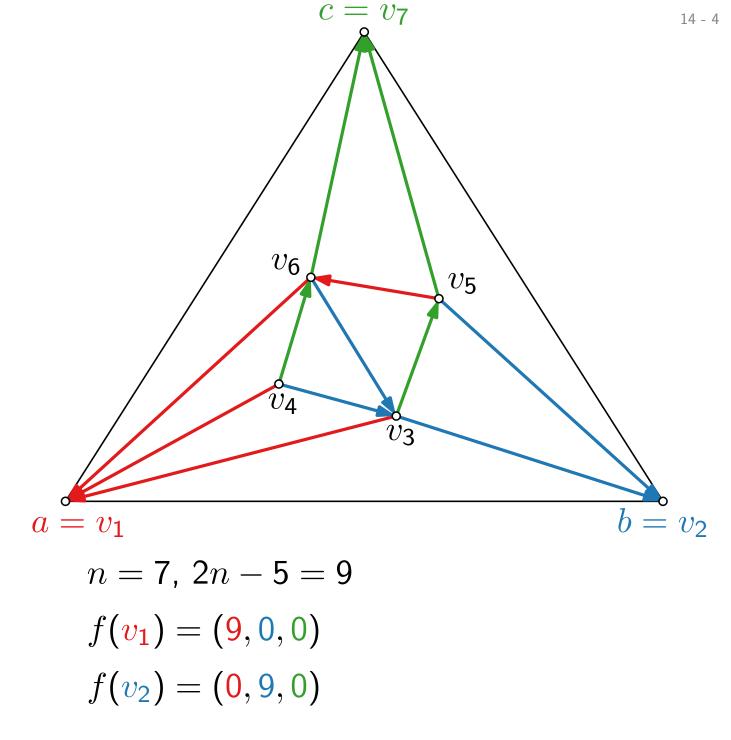
(B2) for each $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $x_k < z_k$ and $y_k < z_k$

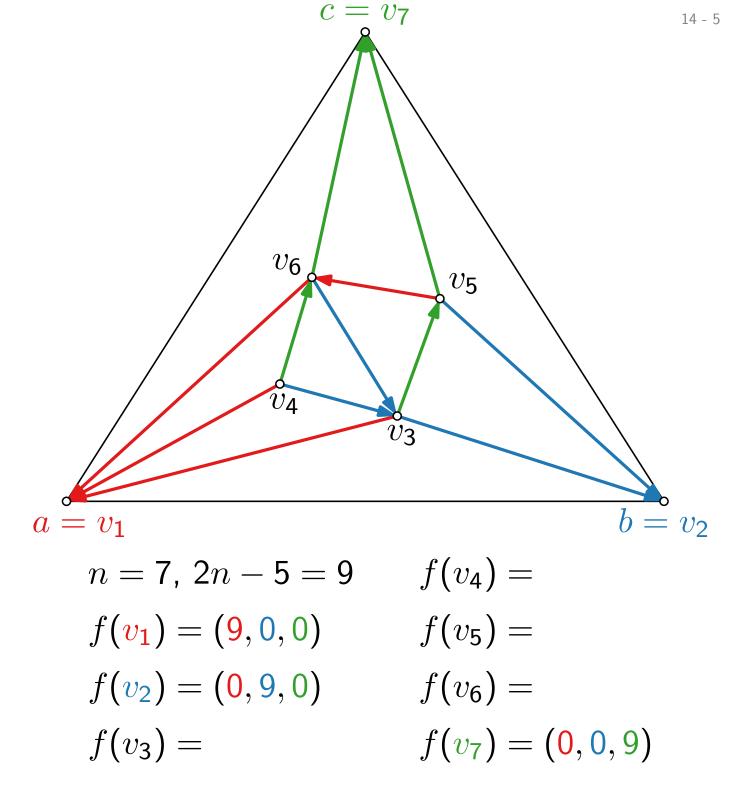


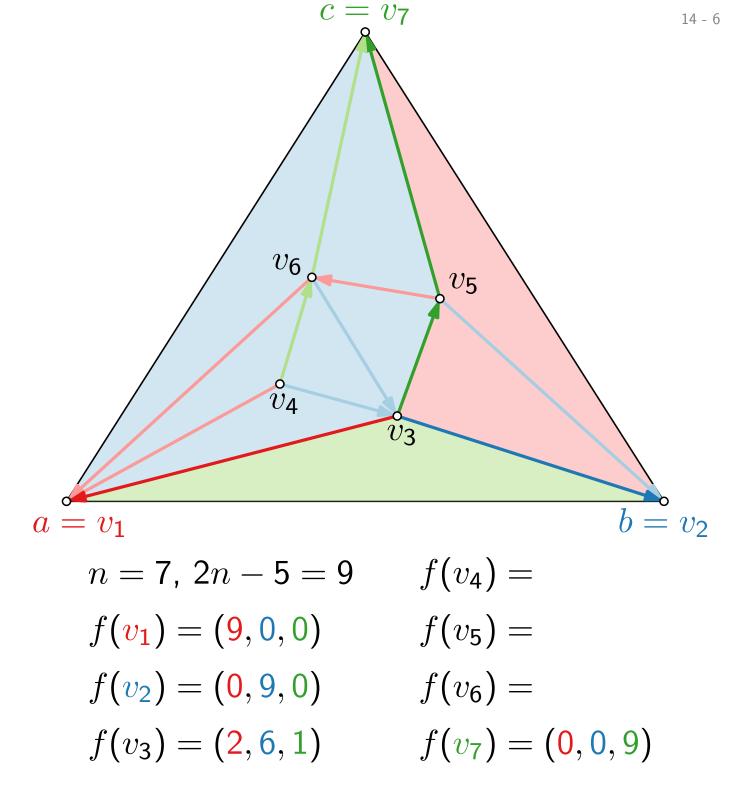


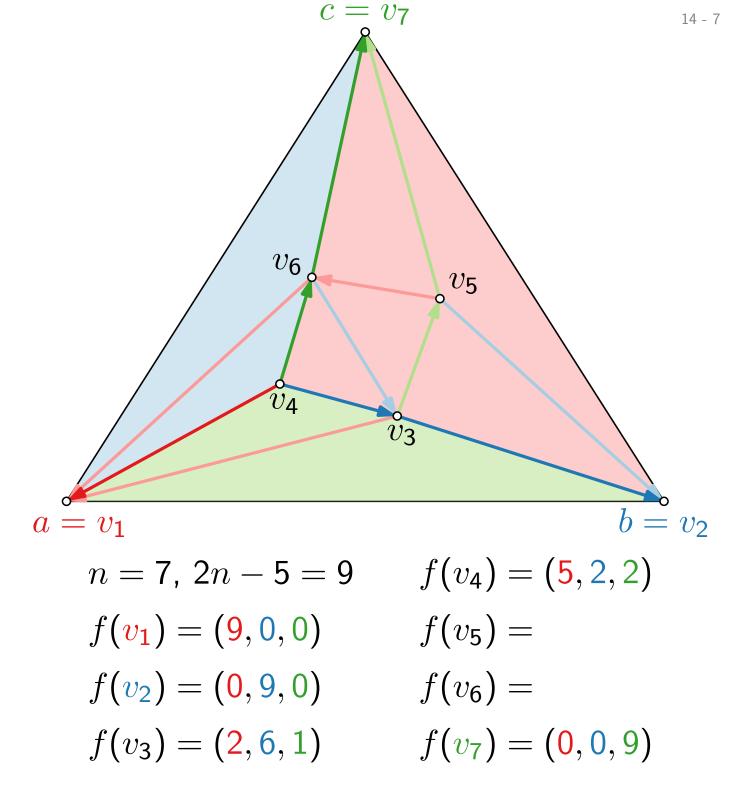


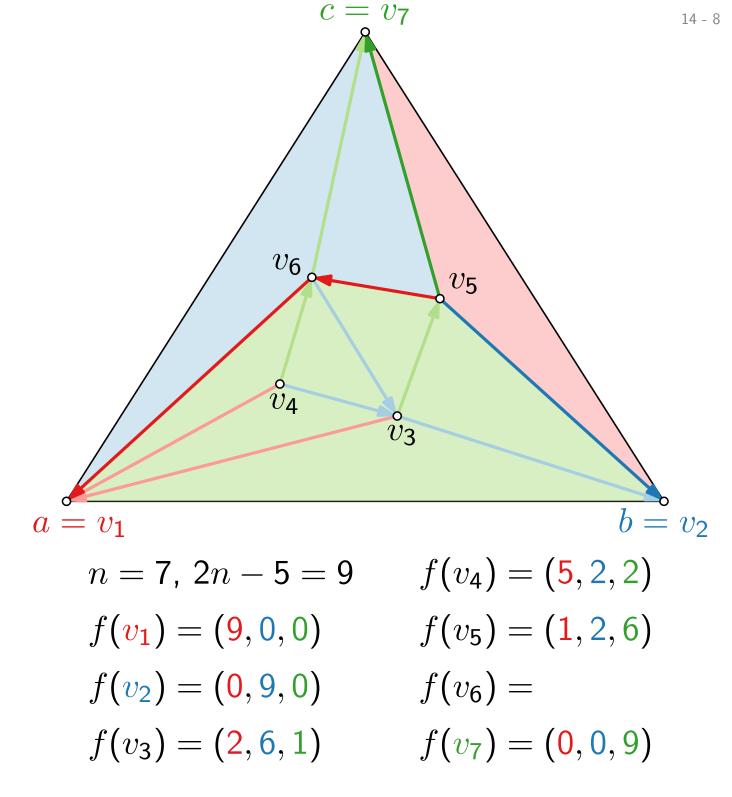


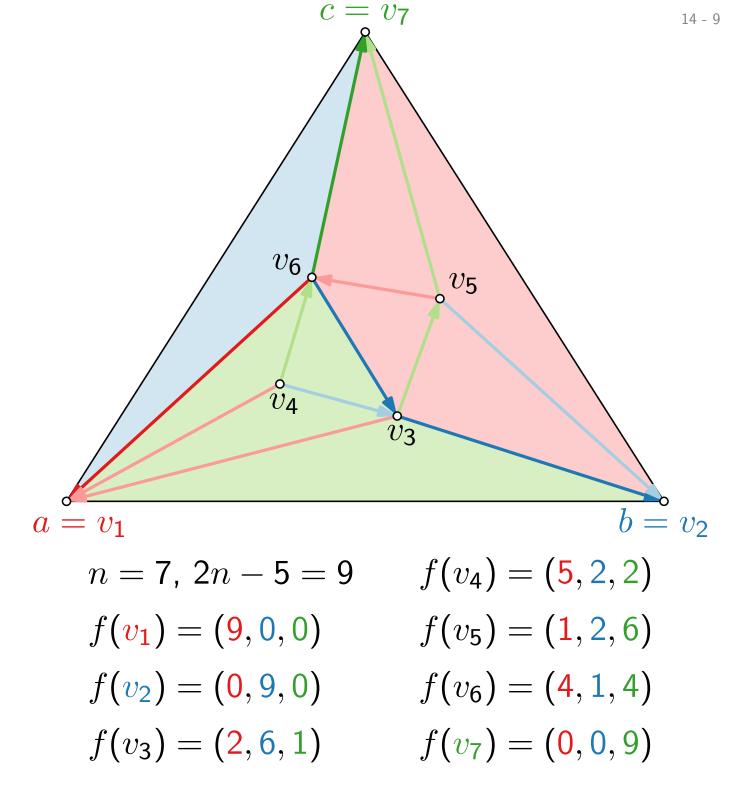


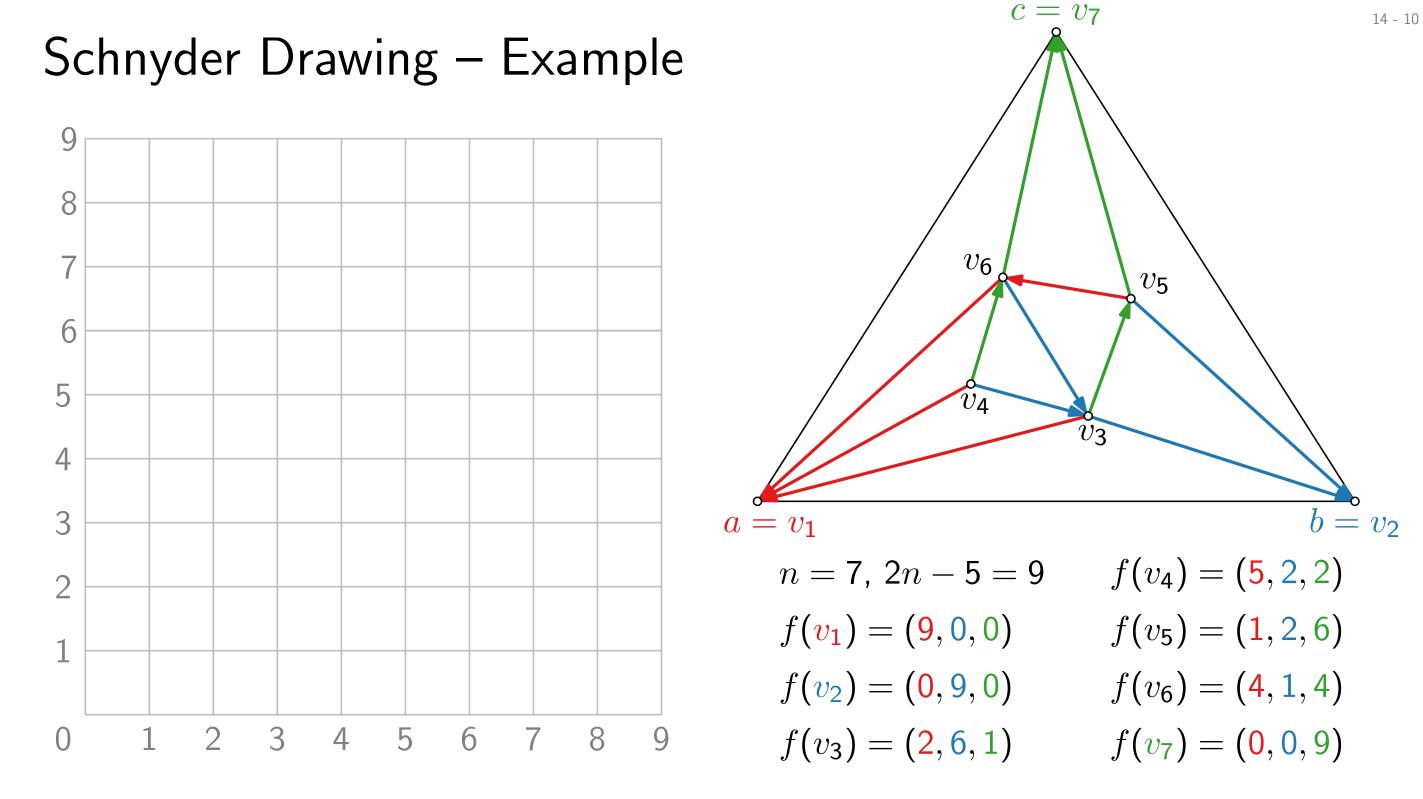


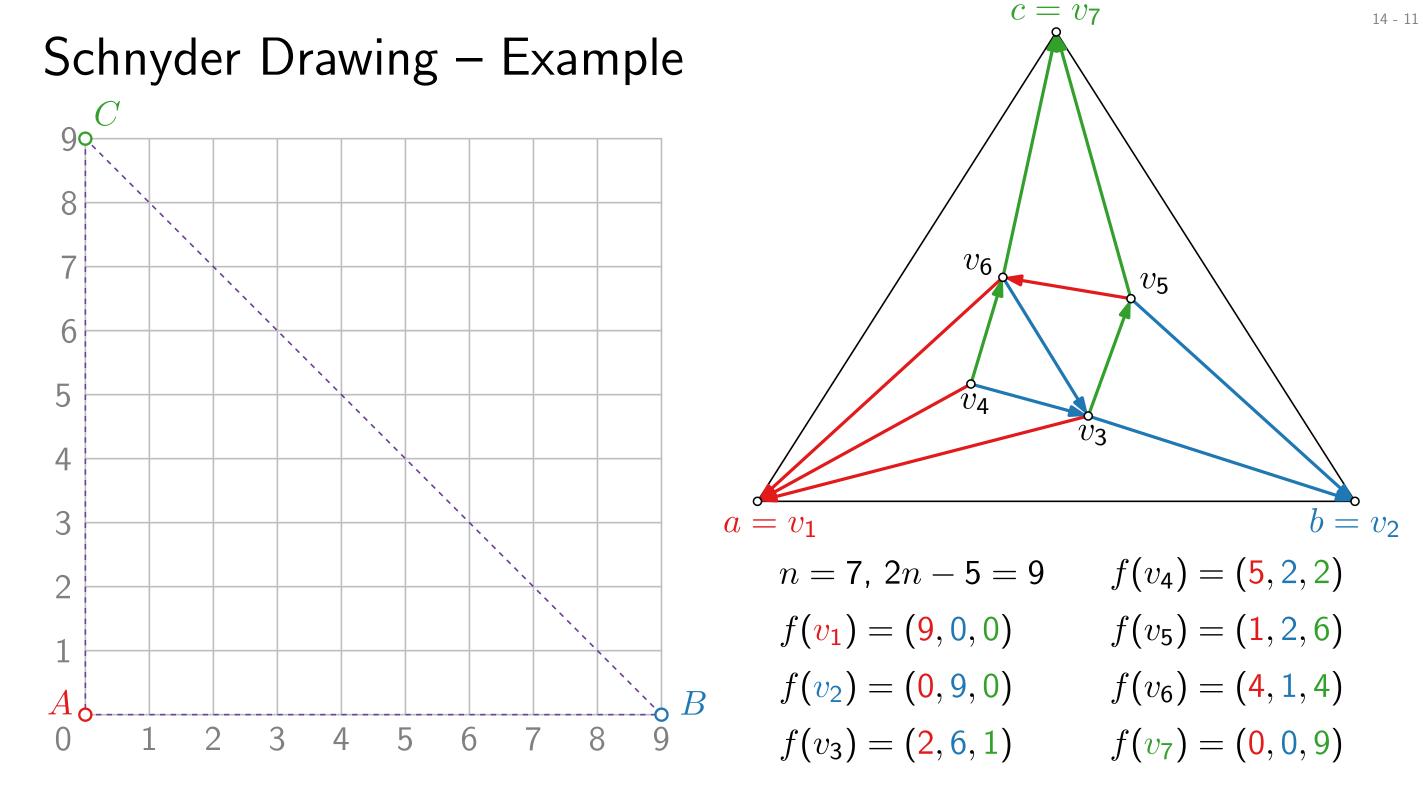


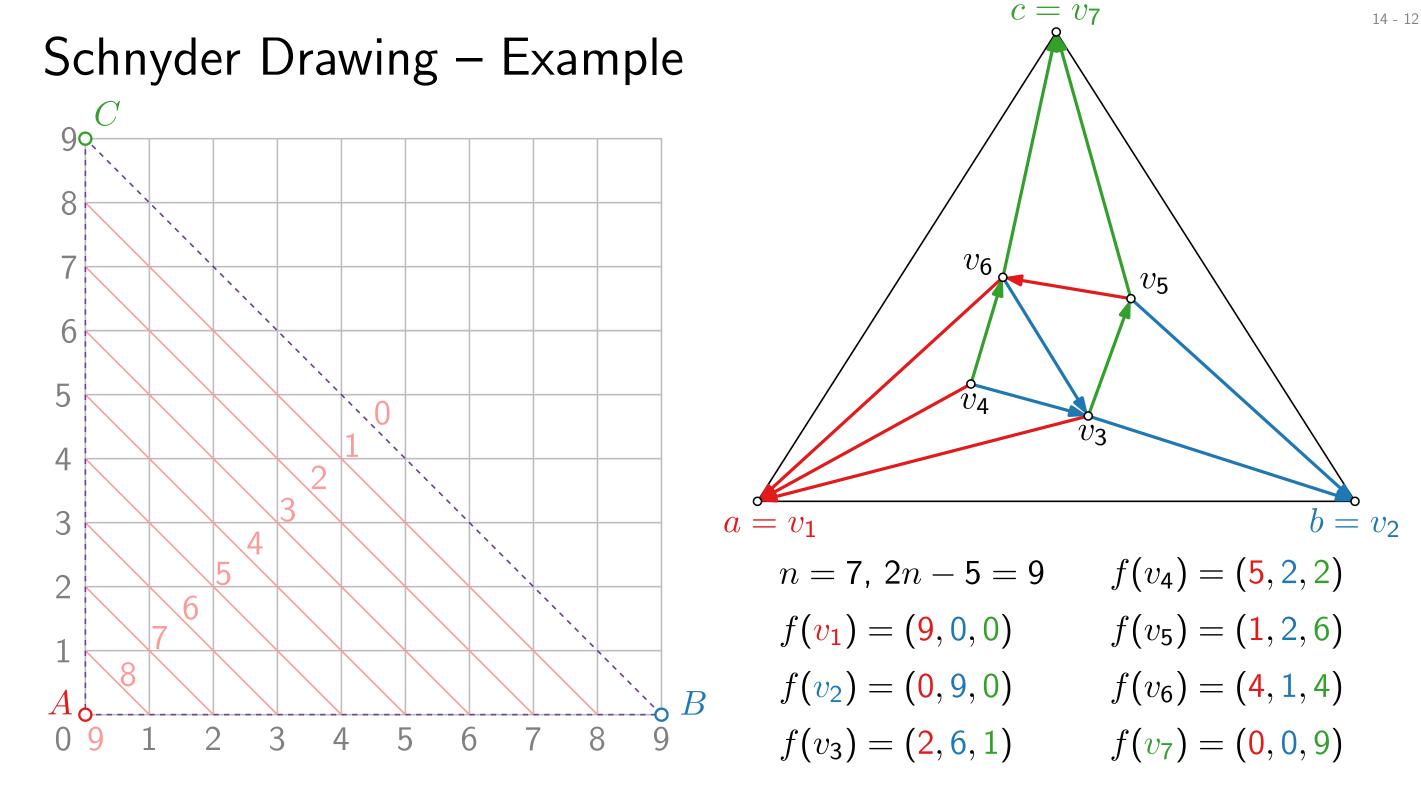


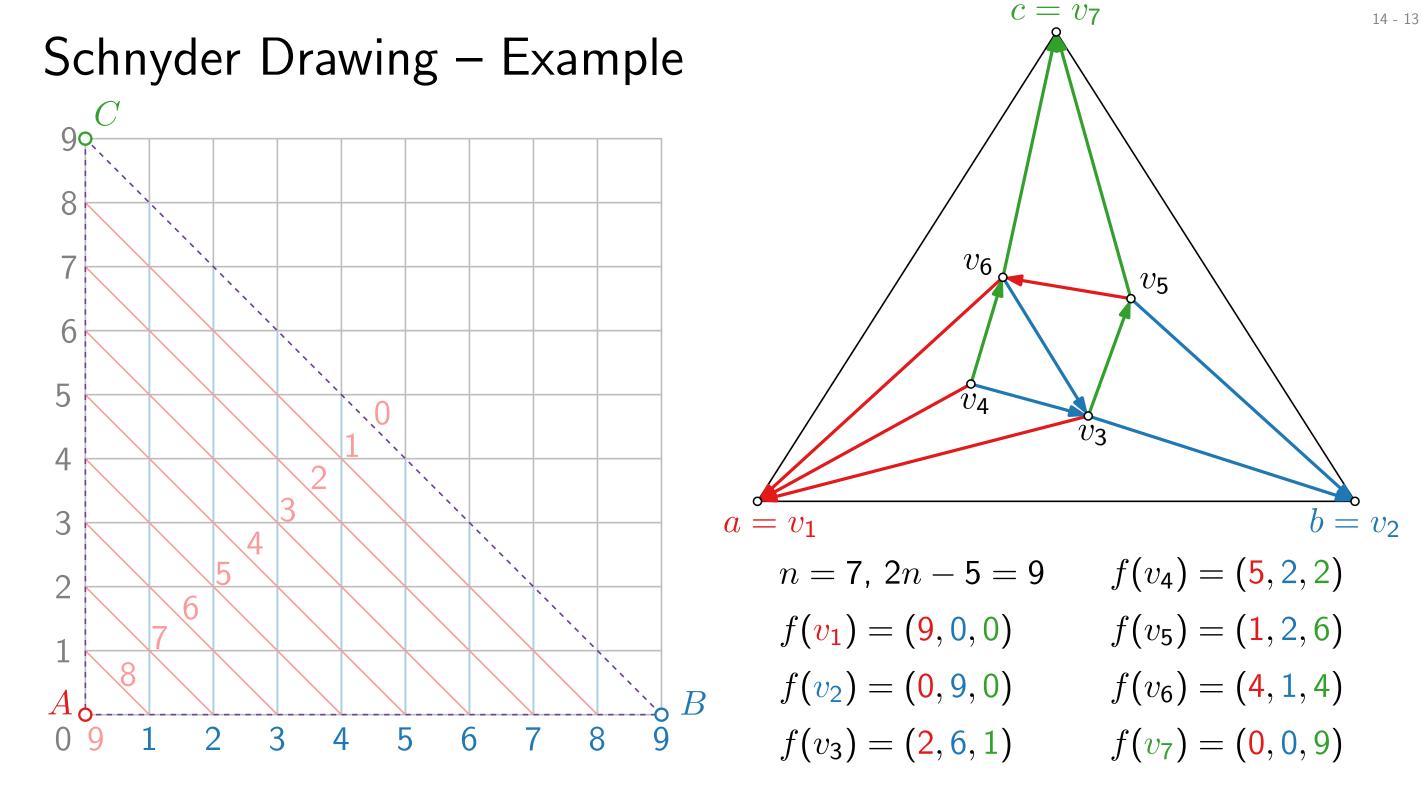


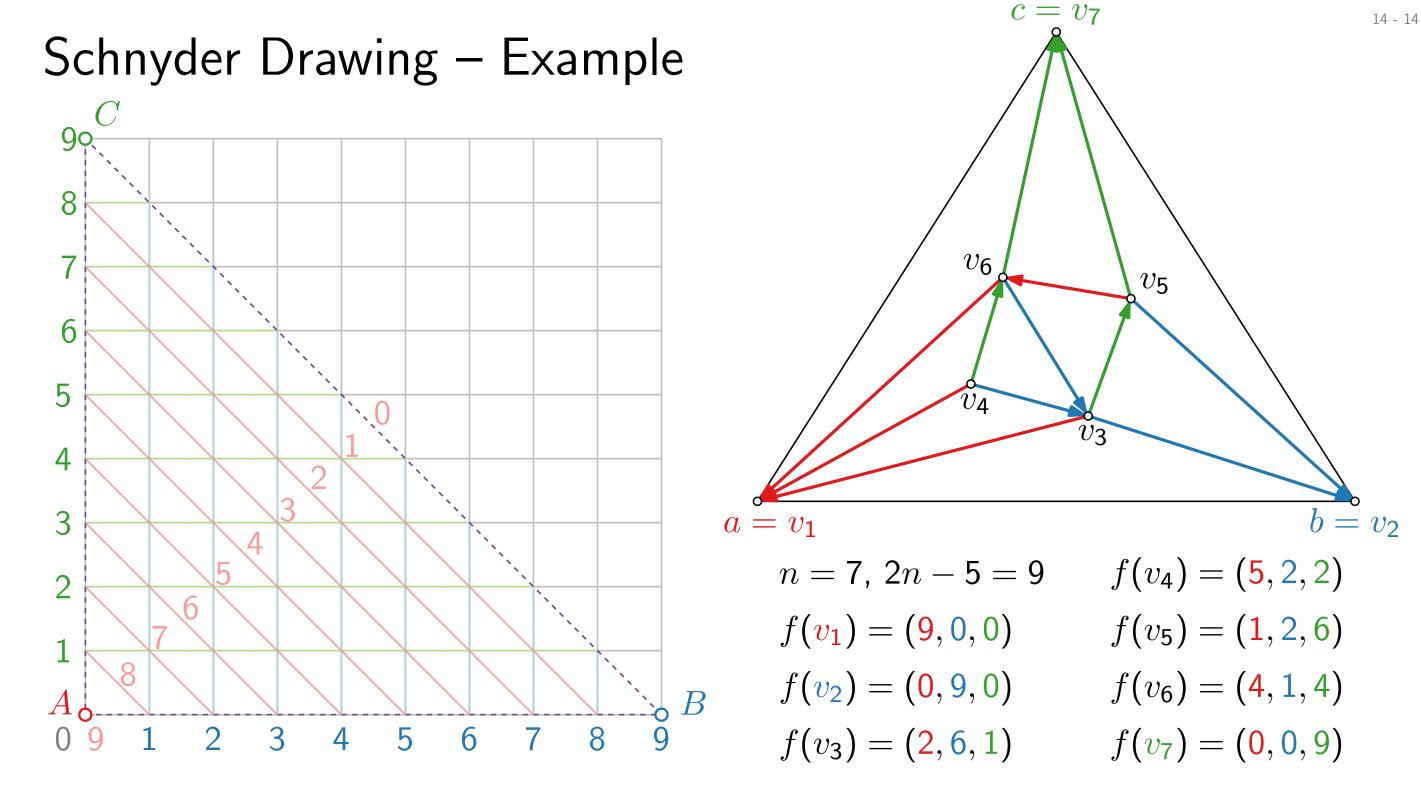


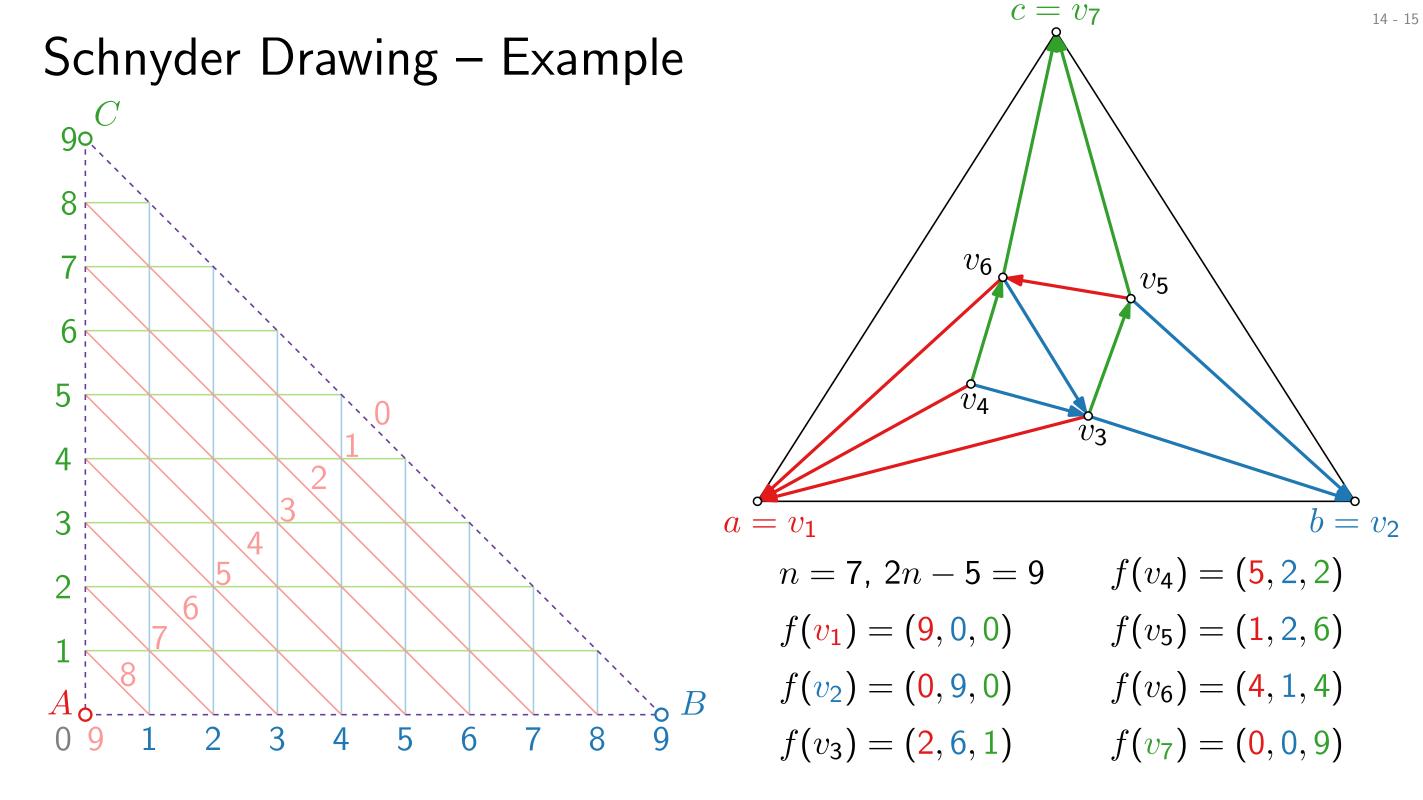


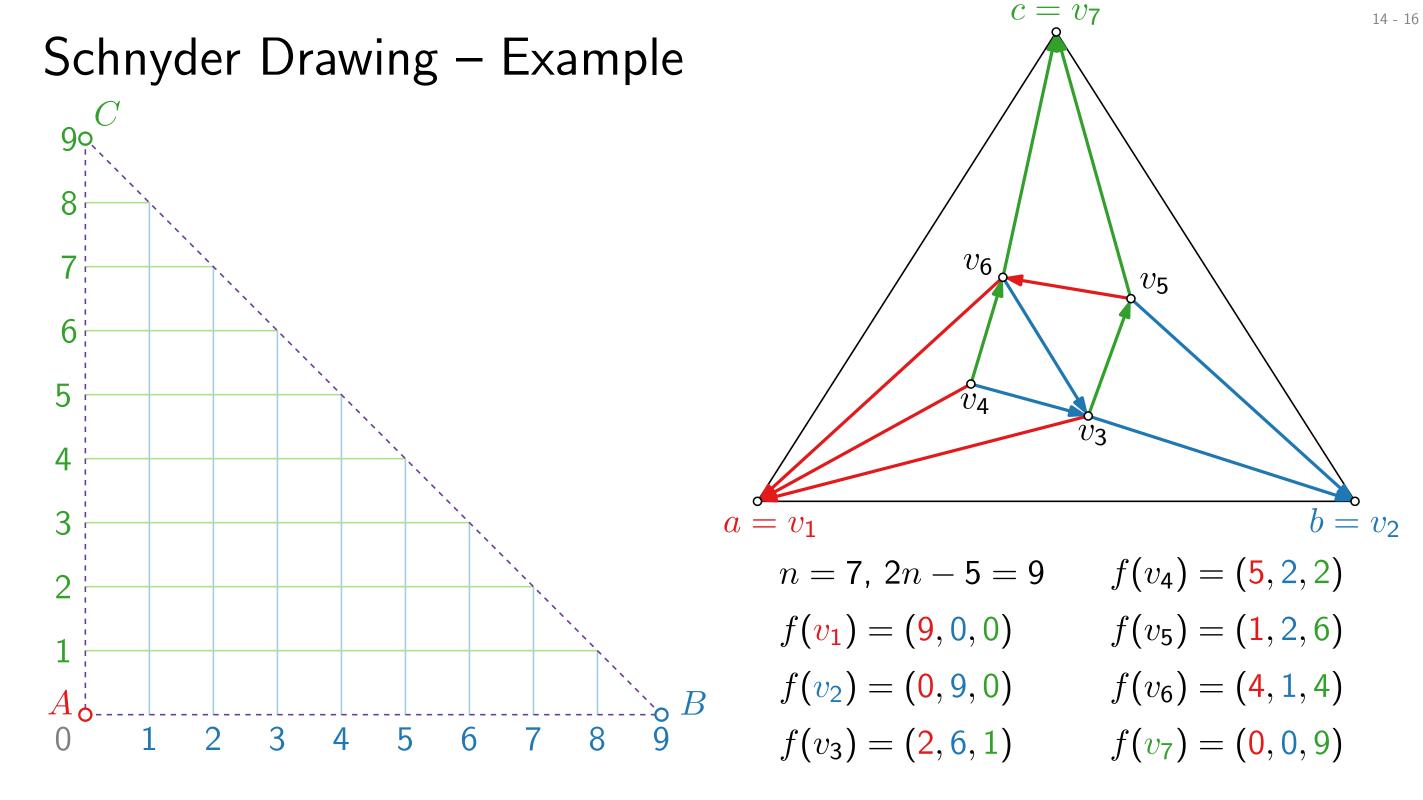


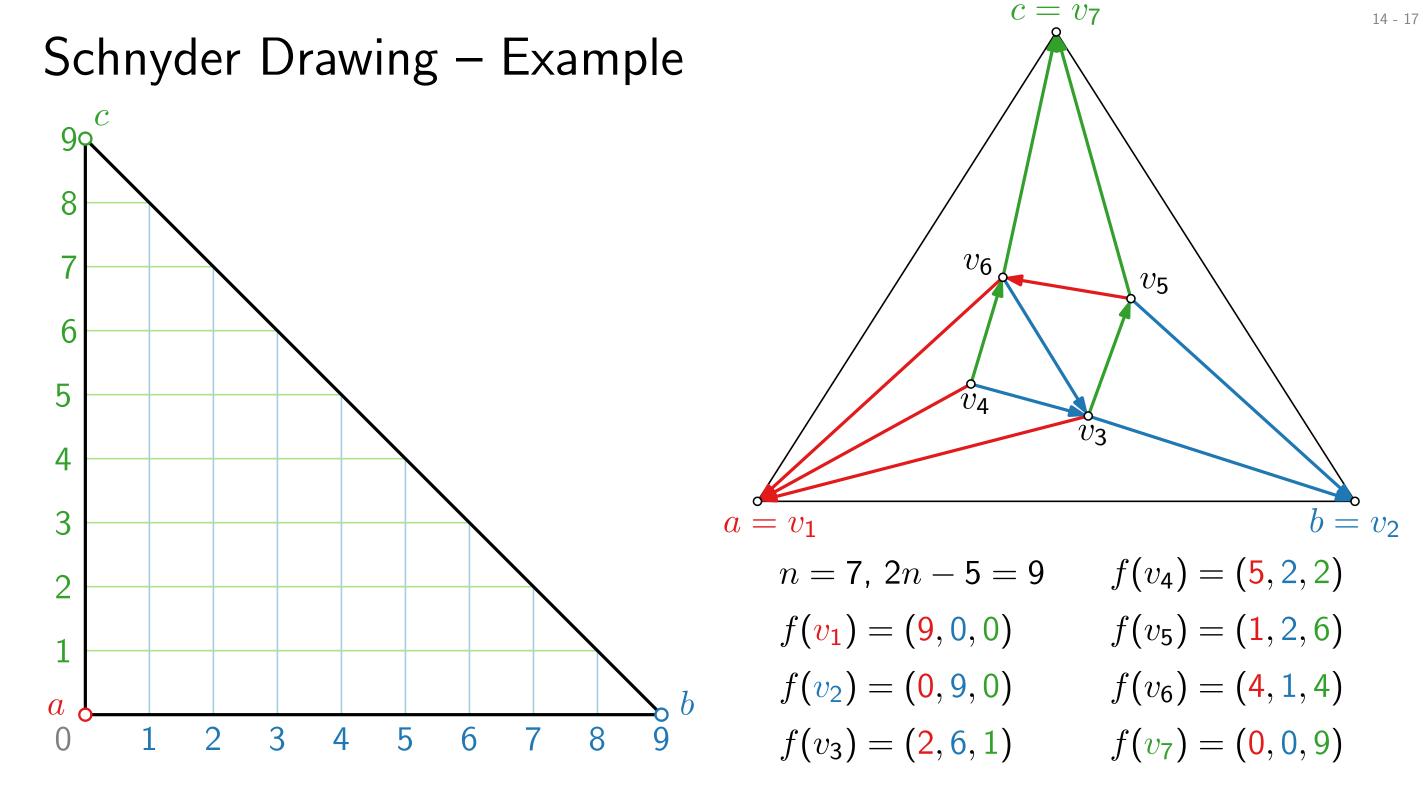


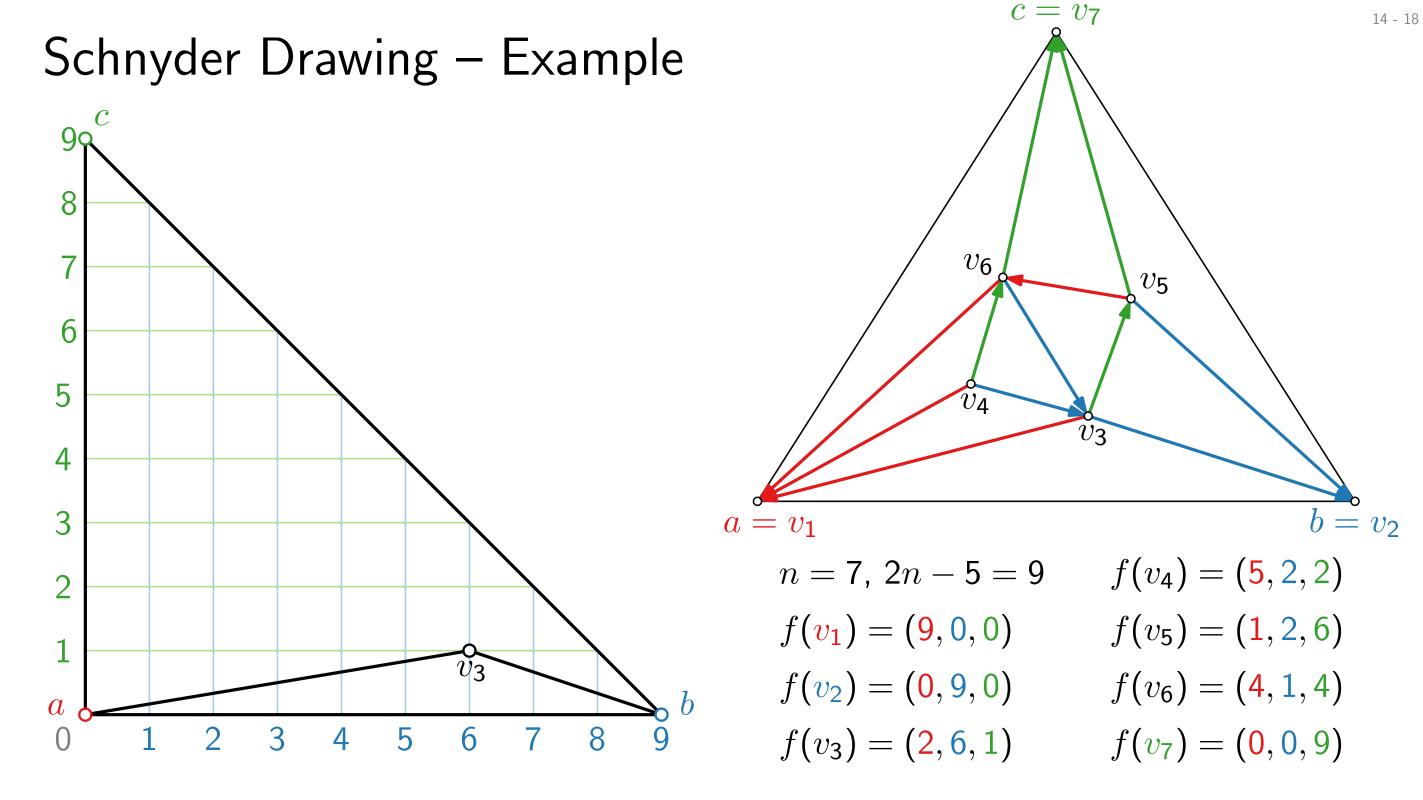


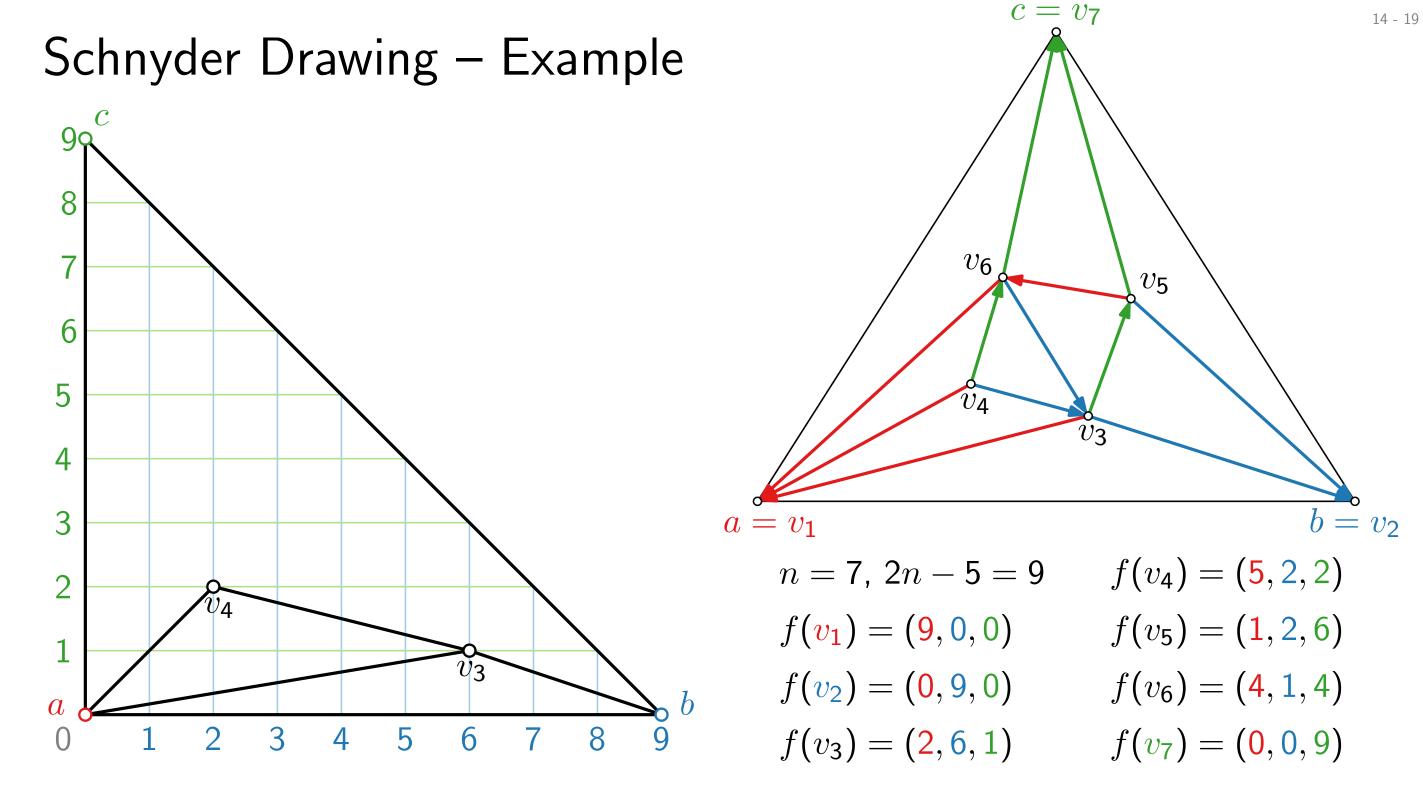


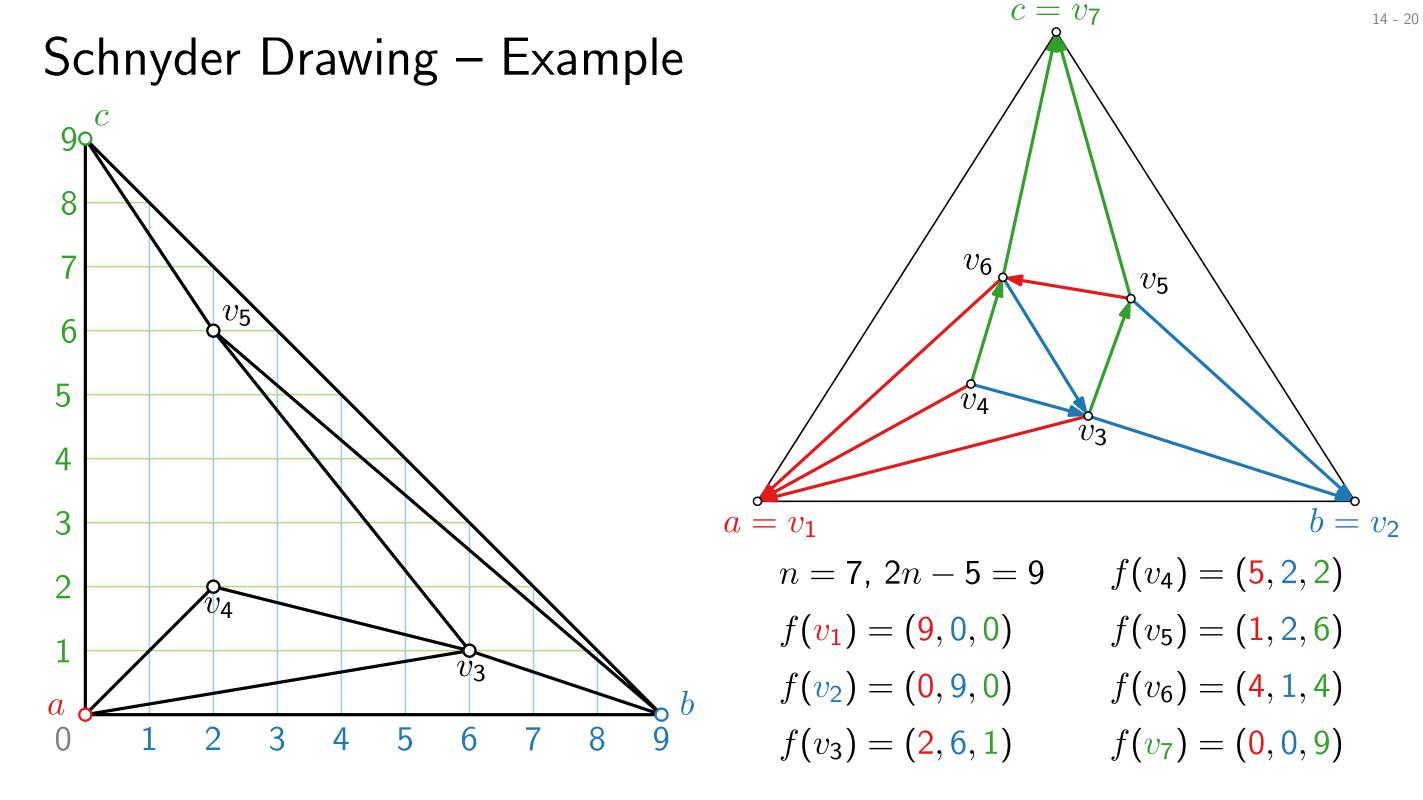


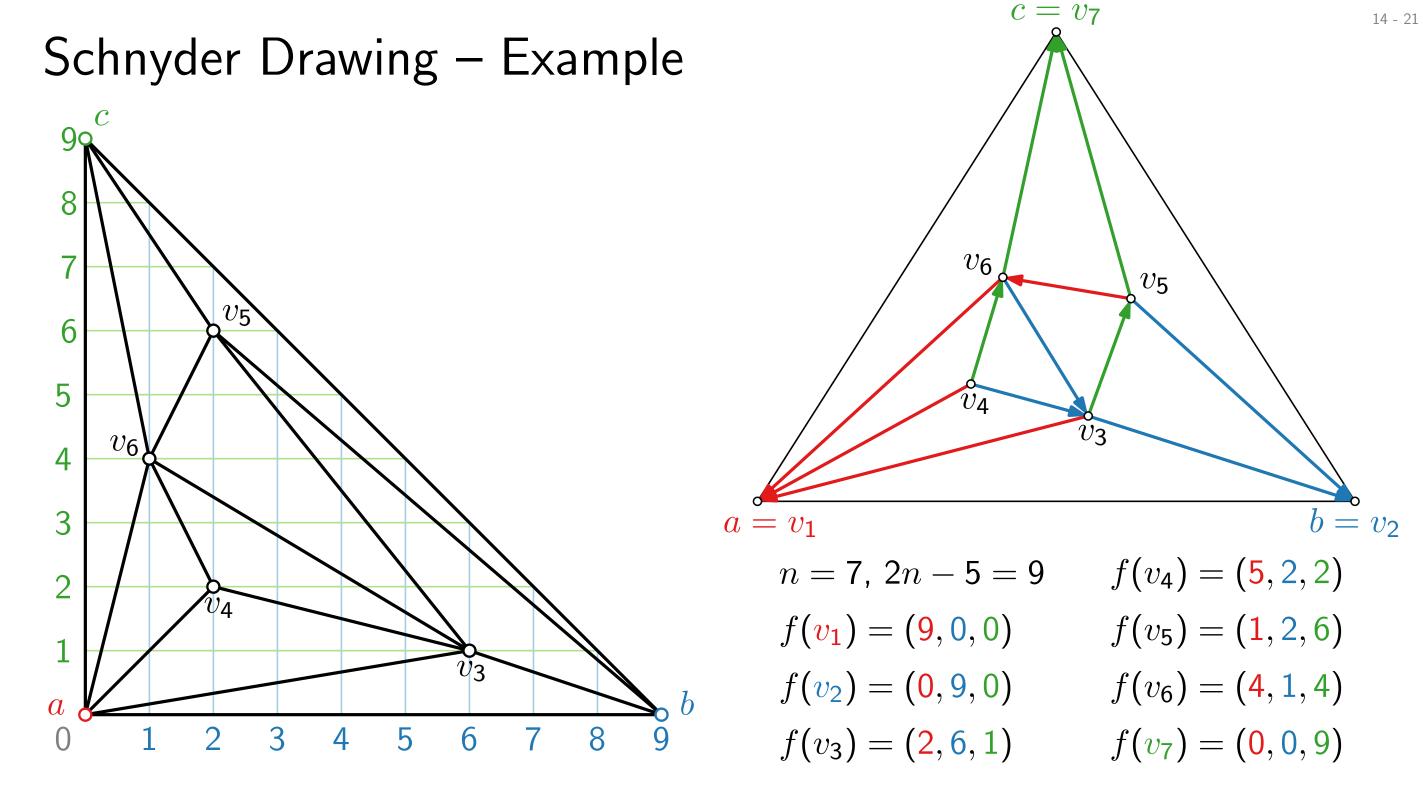












Weak Barycentric Representation

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

Weak Barycentric Representation

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties: (W1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,

Weak Barycentric Representation

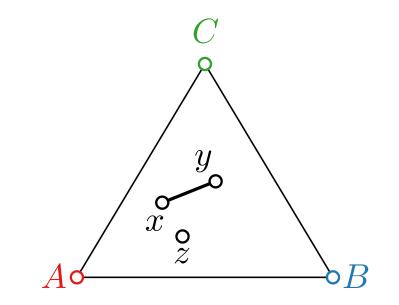
A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each
$$\{x,y\}\in E$$
 and each $z\in V\setminus\{x,y\}$

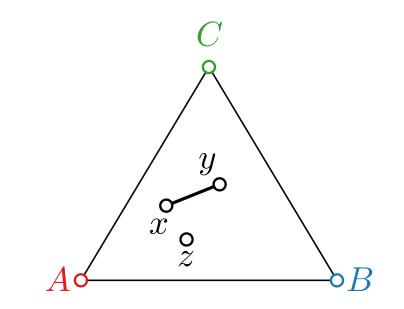


A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,

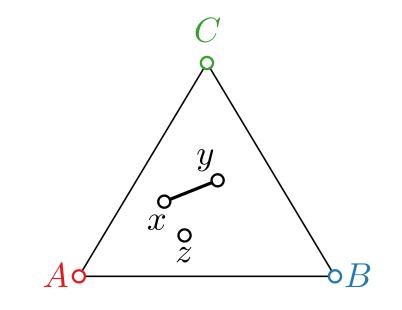


A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,



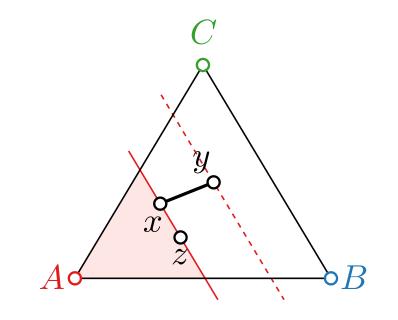
i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,



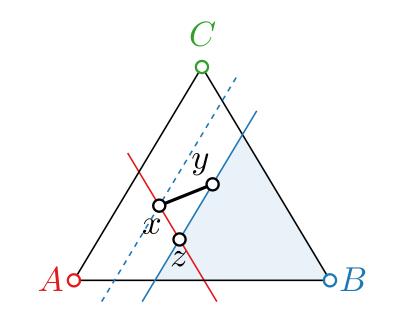
i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,



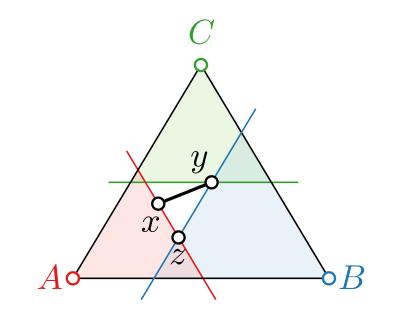
i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,



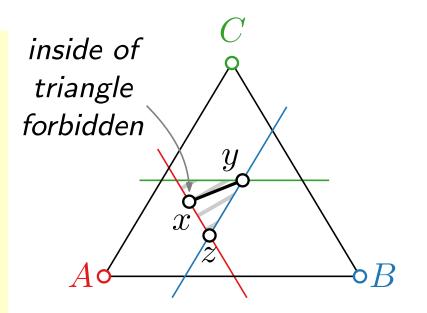
i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,



i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,

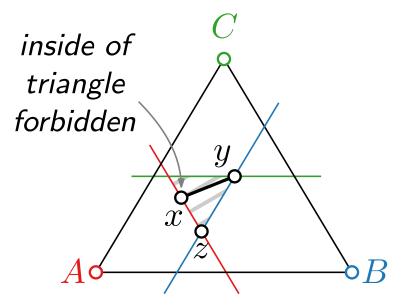
(W2) for each
$$\{x, y\} \in E$$
 and each $z \in V \setminus \{x, y\}$
there exists $k \in \{1, 2, 3\}$ with
 $(x_k, x_{k+1}) <_{\mathsf{lex}} (z_k, z_{k+1})$ and $(y_k, y_{k+1}) <_{\mathsf{lex}} (z_k, z_{k+1})$

Lemma.

For a weak barycentric representation $\phi : v \mapsto (v_1, v_2, v_3)$ and a triangle A, B, C, the mapping

$$f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a planar drawing of G inside $\triangle ABC$.



i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,

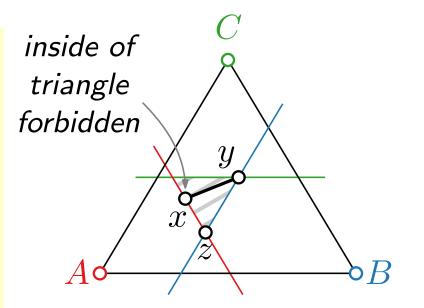
(W2) for each
$$\{x, y\} \in E$$
 and each $z \in V \setminus \{x, y\}$
there exists $k \in \{1, 2, 3\}$ with
 $(x_k, x_{k+1}) <_{\mathsf{lex}} (z_k, z_{k+1})$ and $(y_k, y_{k+1}) <_{\mathsf{lex}} (z_k, z_{k+1})$

Lemma.

For a weak barycentric representation $\phi : v \mapsto (v_1, v_2, v_3)$ and a triangle A, B, C, the mapping

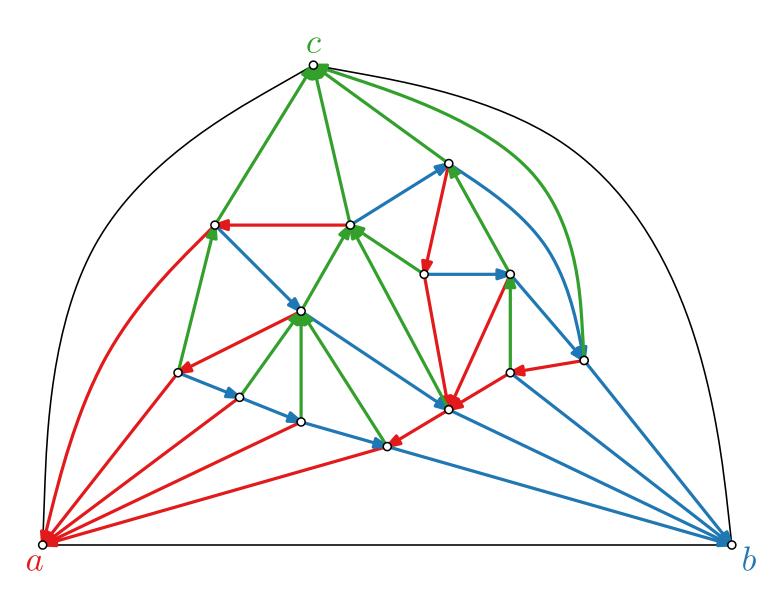
$$f: v \in V \mapsto v_1 A + v_2 B + v_3 C$$

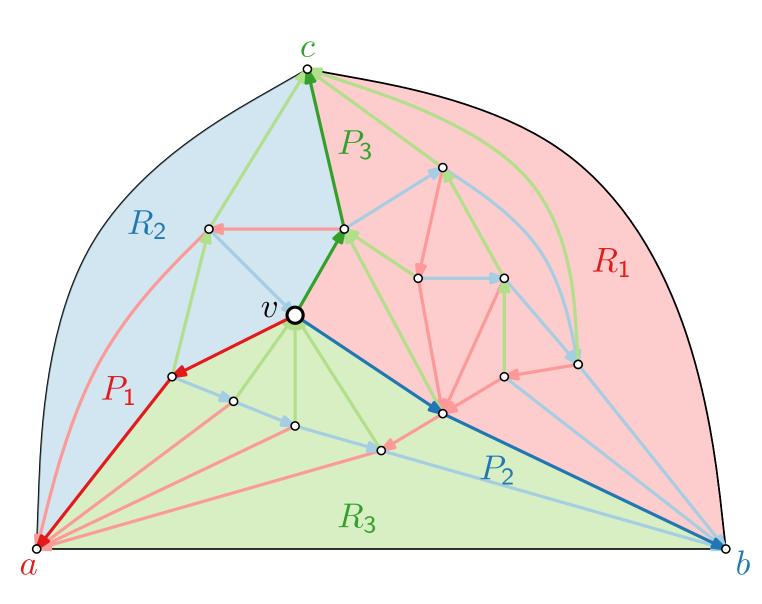
gives a planar drawing of G inside $\triangle ABC$.



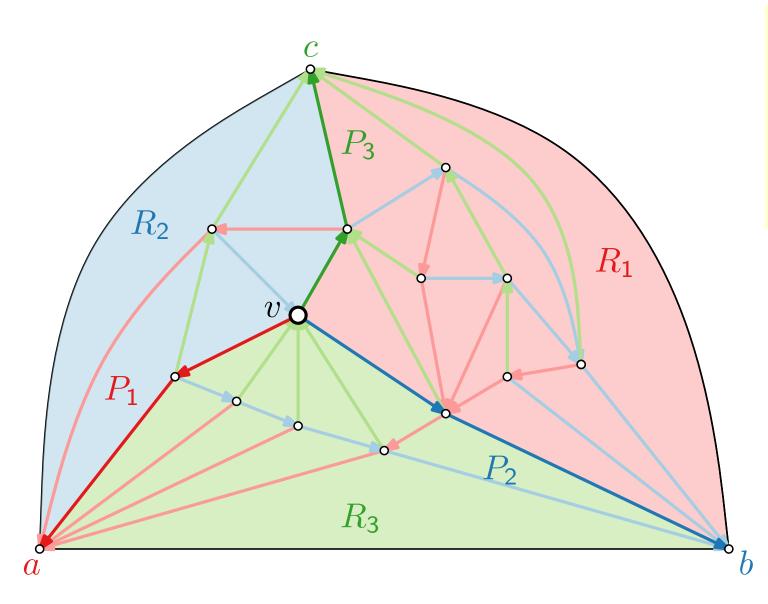
i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

Proof as exercise.

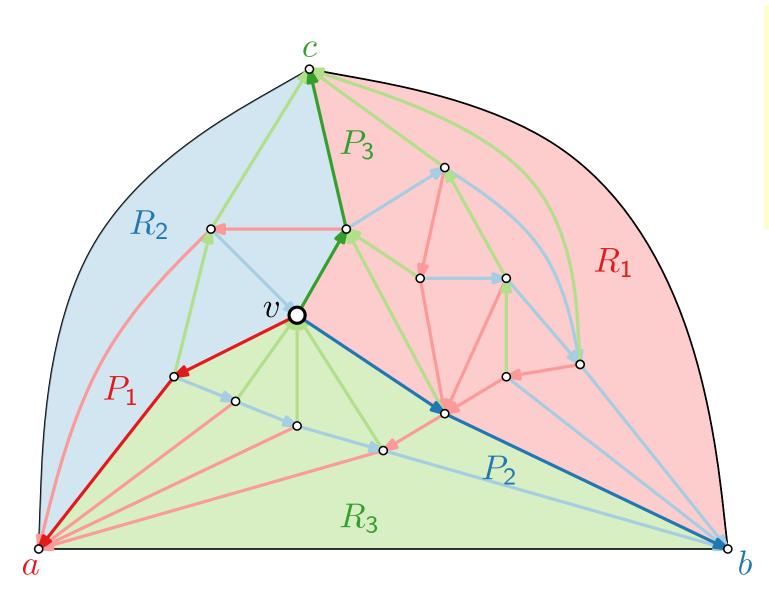




 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

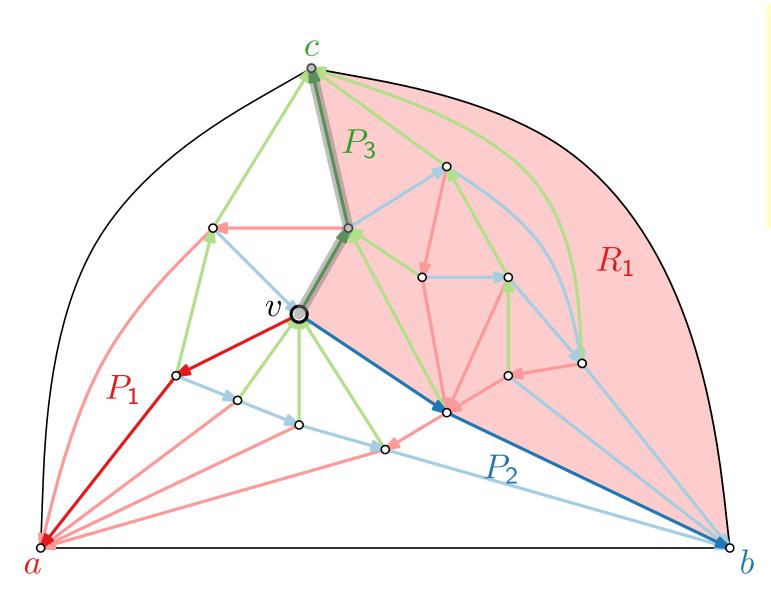


 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$



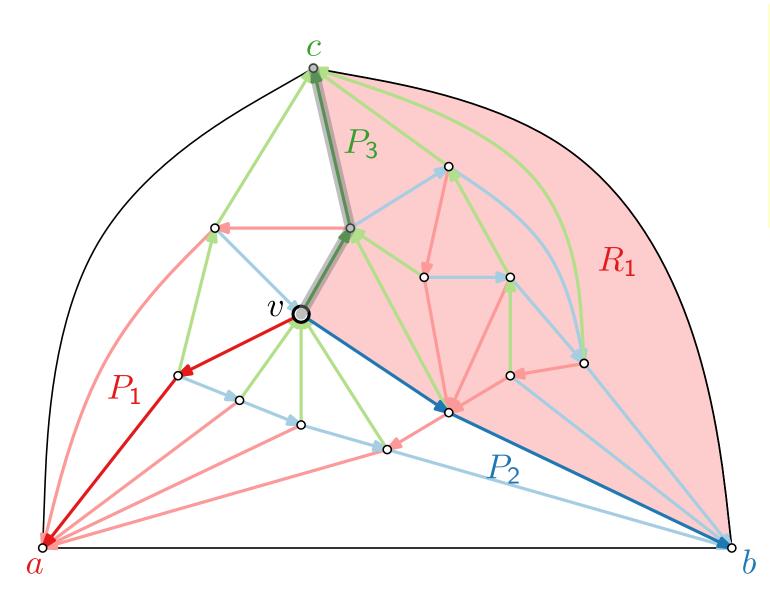
 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

 $v_1 =$



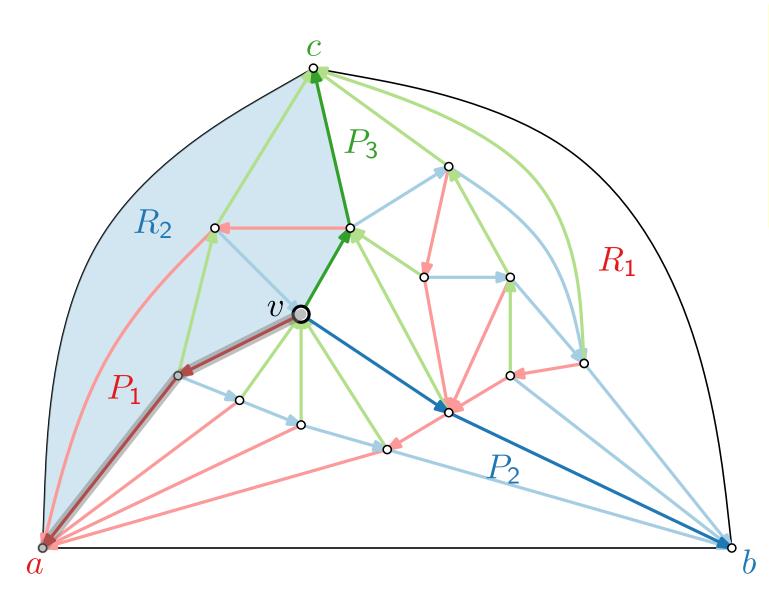
 $\begin{aligned} P_i(v): \text{ path from } v \text{ to root of } T_i. \\ R_1(v): \text{ set of faces contained in } P_2, bc, P_3. \\ R_2(v): \text{ set of faces contained in } P_3, ca, P_1. \\ R_3(v): \text{ set of faces contained in } P_1, ab, P_2. \\ v_i &= |V(R_i(v))| - |P_{i-1}(v)| \end{aligned}$

 $v_1 =$



 $\begin{array}{l} P_i(v): \text{ path from } v \text{ to root of } T_i.\\ R_1(v): \text{ set of faces contained in } P_2, bc, P_3.\\ R_2(v): \text{ set of faces contained in } P_3, ca, P_1.\\ R_3(v): \text{ set of faces contained in } P_1, ab, P_2.\\ v_i = |V(R_i(v))| - |P_{i-1}(v)| \end{array}$

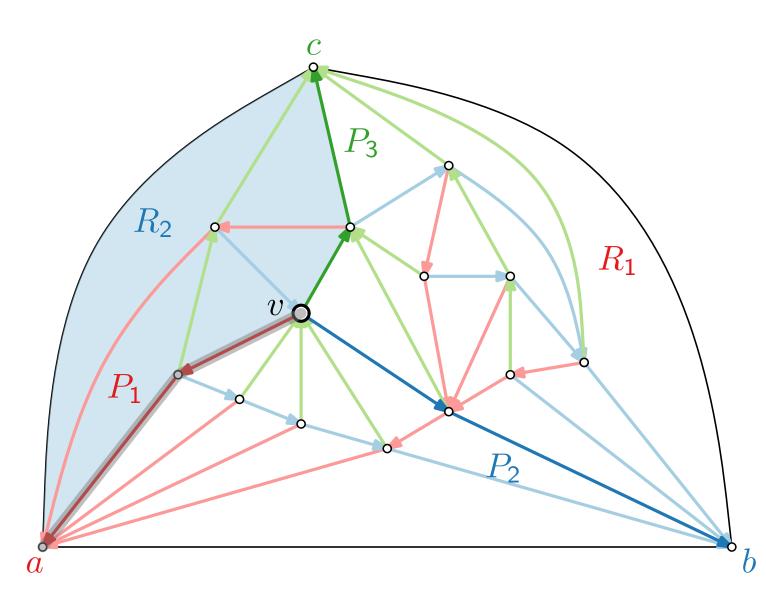
$$v_1 = 10 - 3 = 7$$



 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$

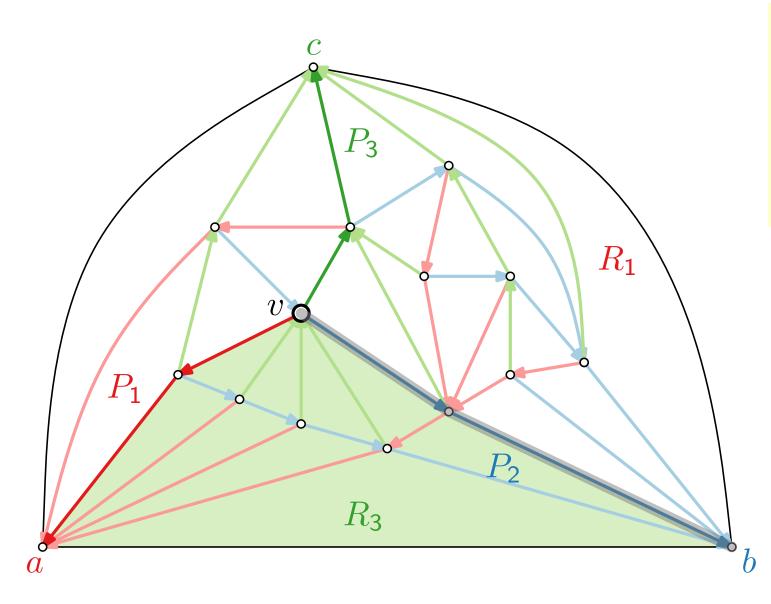
 $v_2 =$



 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

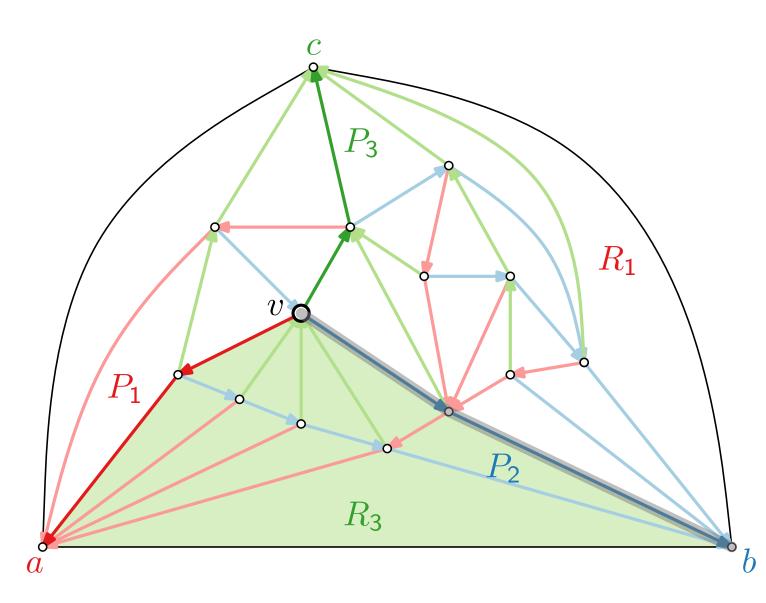


 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

 $v_3 =$

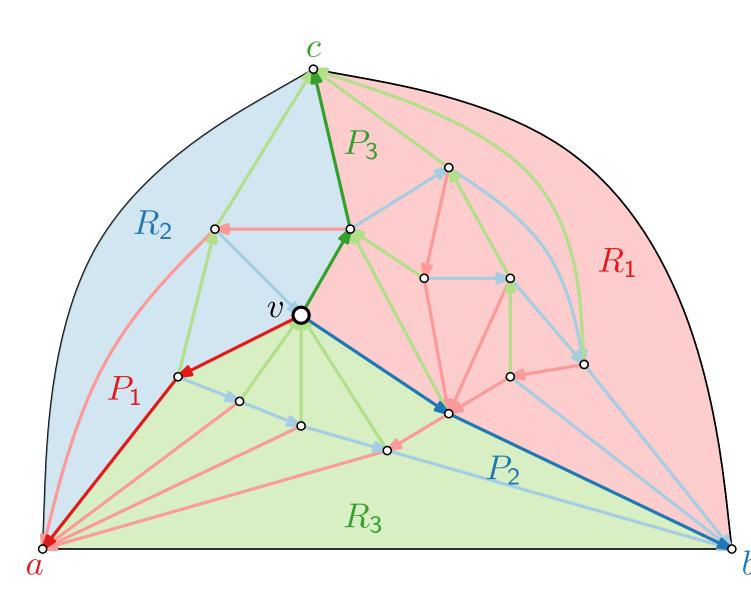


 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$



 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

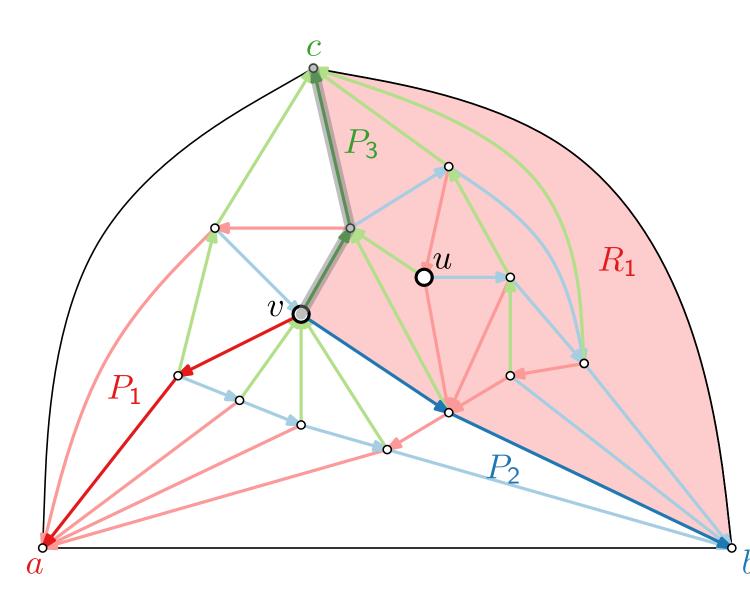
$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.

For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\text{lex}} (v_i, v_{i+1}).$



 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

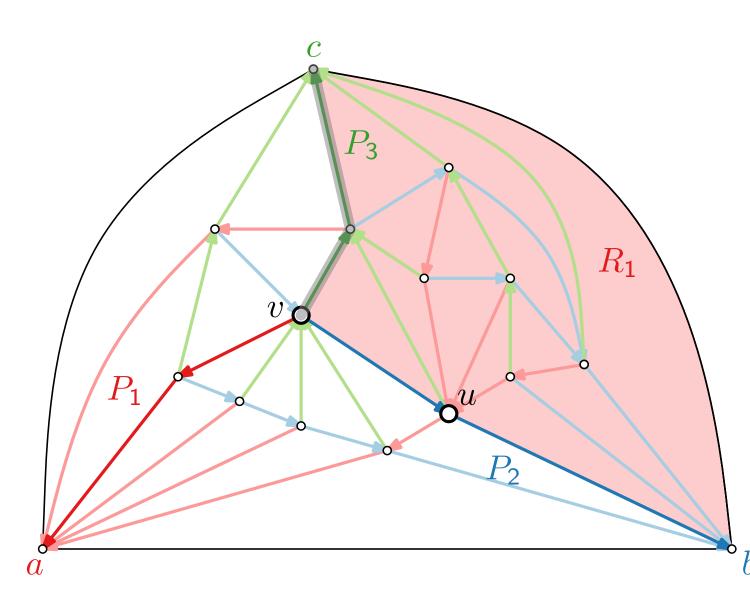
$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.

For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\text{lex}} (v_i, v_{i+1}).$



 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

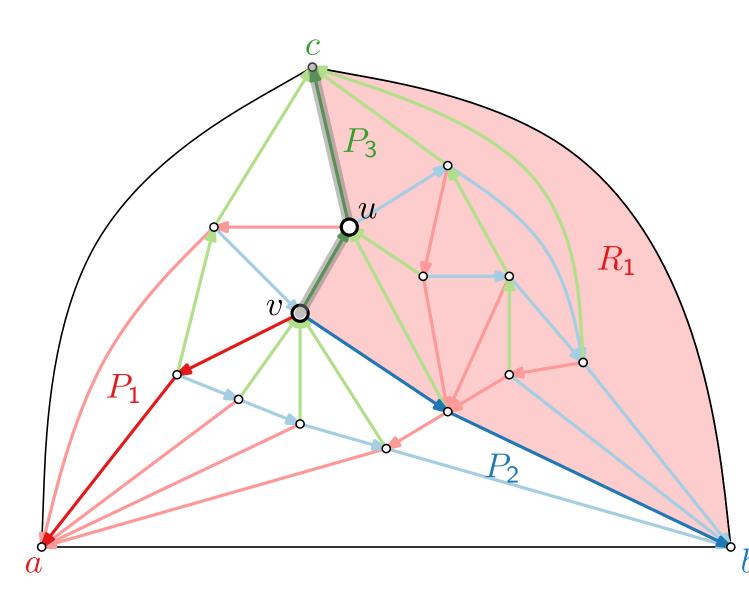
$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.

For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\mathsf{lex}} (v_i, v_{i+1}).$



 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

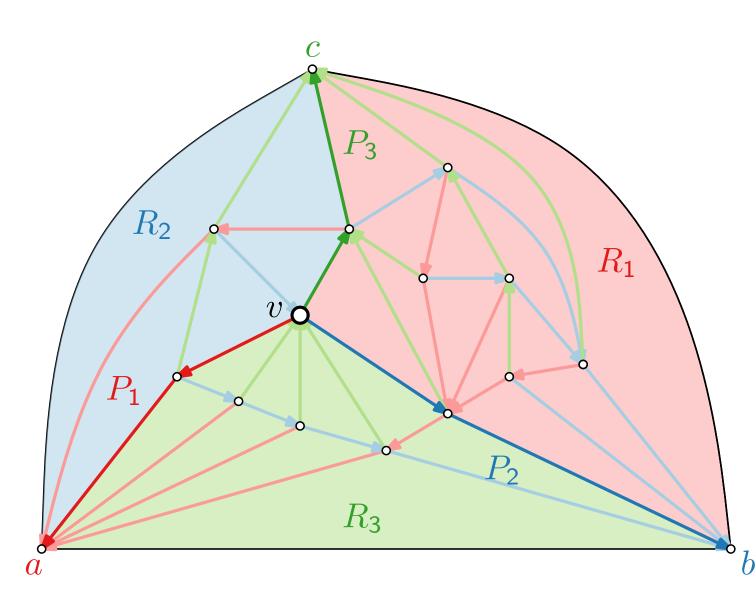
$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.

For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\text{lex}} (v_i, v_{i+1}).$



 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

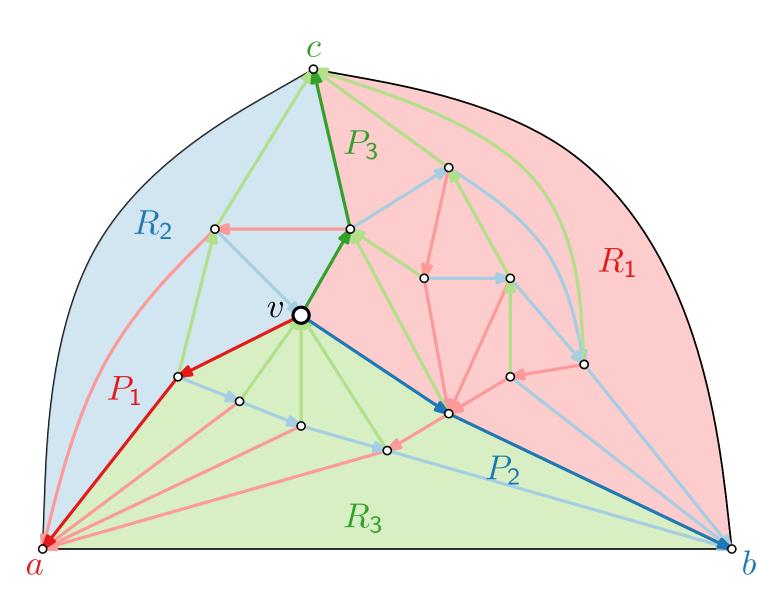
$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.

 For inner vertices u ≠ v it holds that u ∈ R_i(v) ⇒ (u_i, u_{i+1}) <_{lex} (v_i, v_{i+1}).
 v₁ + v₂ + v₃ =



 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

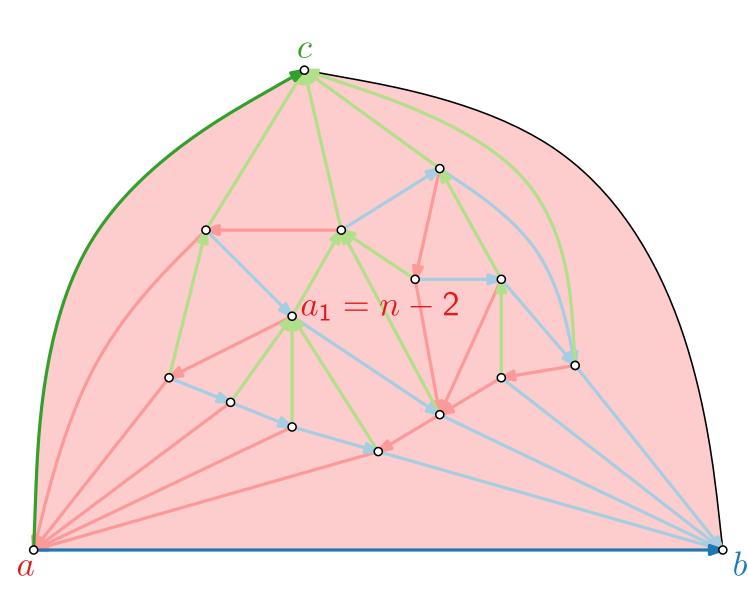
$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.

For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\text{lex}} (v_i, v_{i+1}).$ $v_1 + v_2 + v_3 = n - 1$



 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

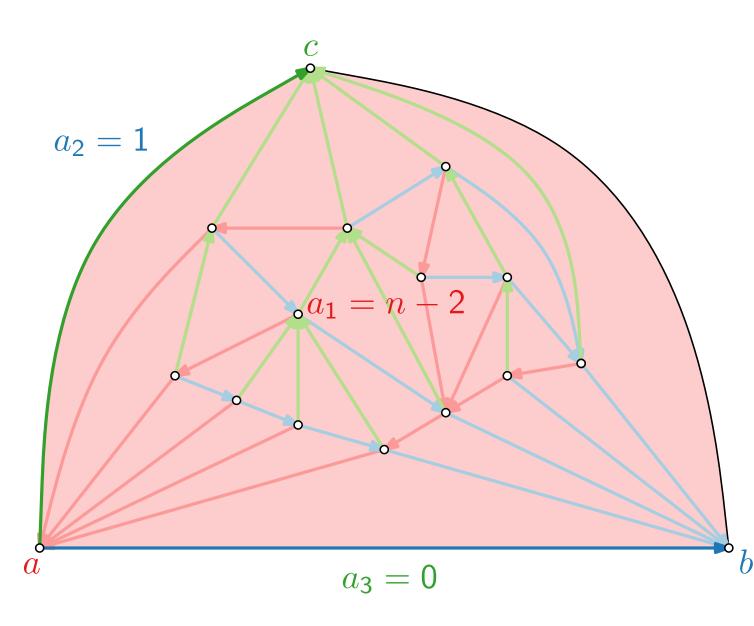
$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.

For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\text{lex}} (v_i, v_{i+1}).$ $v_1 + v_2 + v_3 = n - 1$



 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.

For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\text{lex}} (v_i, v_{i+1}).$ $v_1 + v_2 + v_3 = n - 1$

Schnyder Drawing*

Set
$$A = (0,0)$$
, $B = (n-1,0)$, and $C = (0, n-1)$.

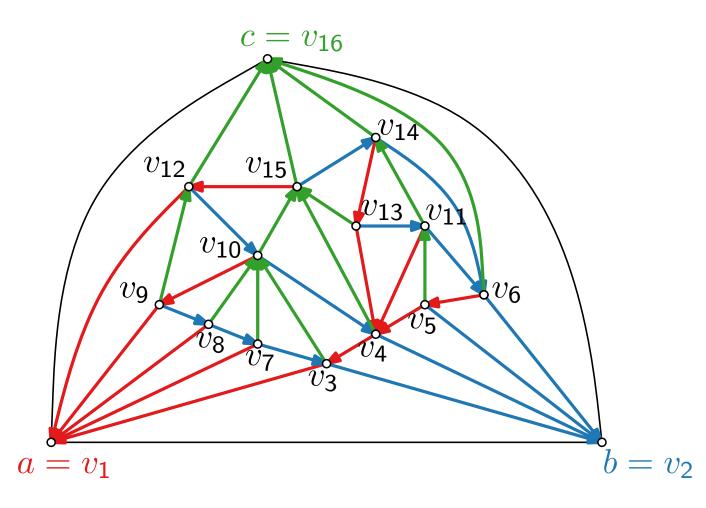
Theorem. For a plane triangulation G, the mapping

[Schnyder '90]

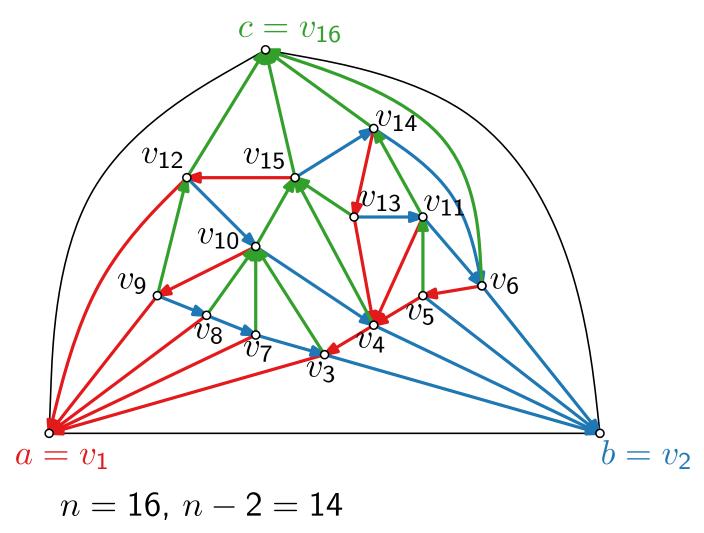
 $f: v \mapsto \frac{1}{n-1}(v_1, v_2, v_3)$

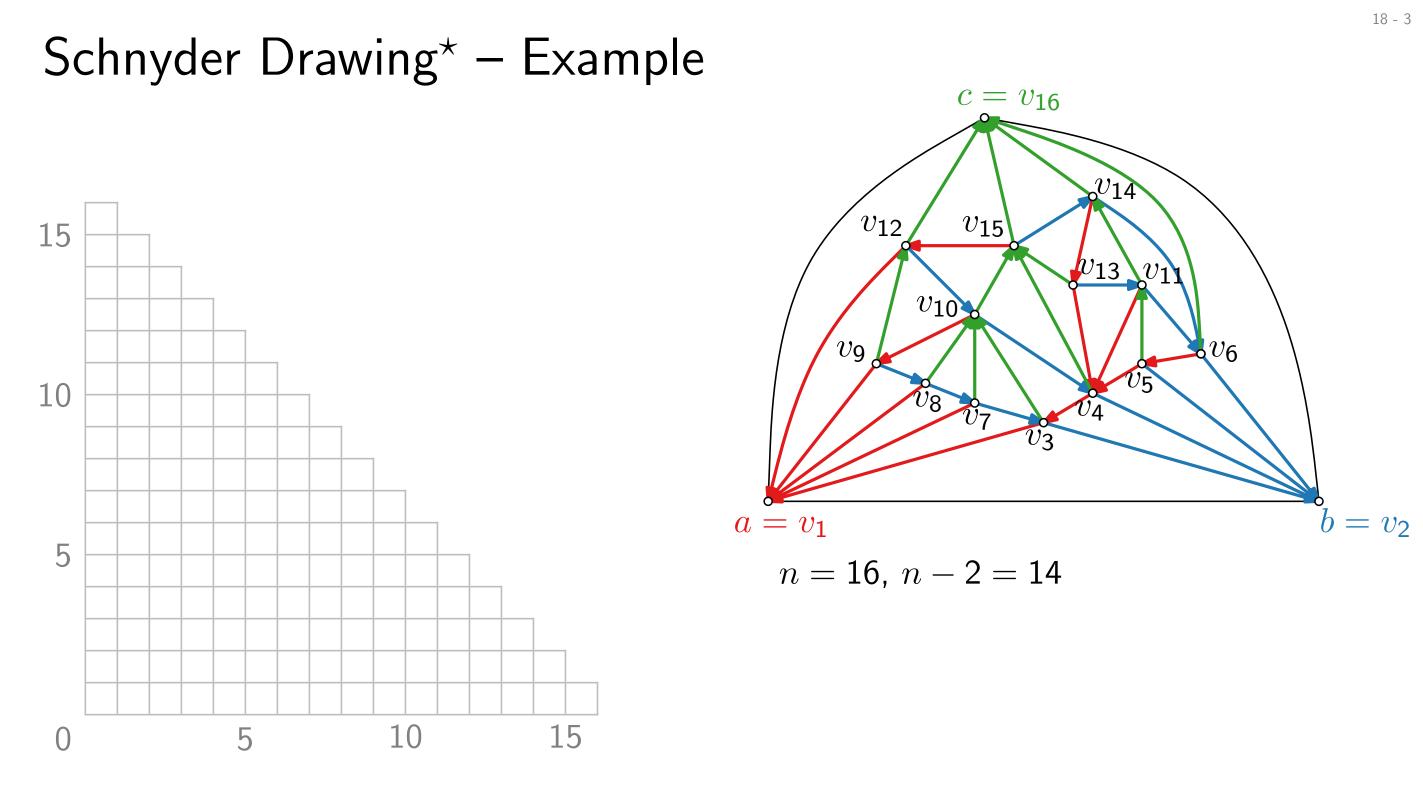
is a barycentric representation of G, which thus gives a planar straight-line drawing of G on the $(n-2) \times (n-2)$ grid.

Schnyder Drawing^{*} – Example



Schnyder Drawing^{*} – Example



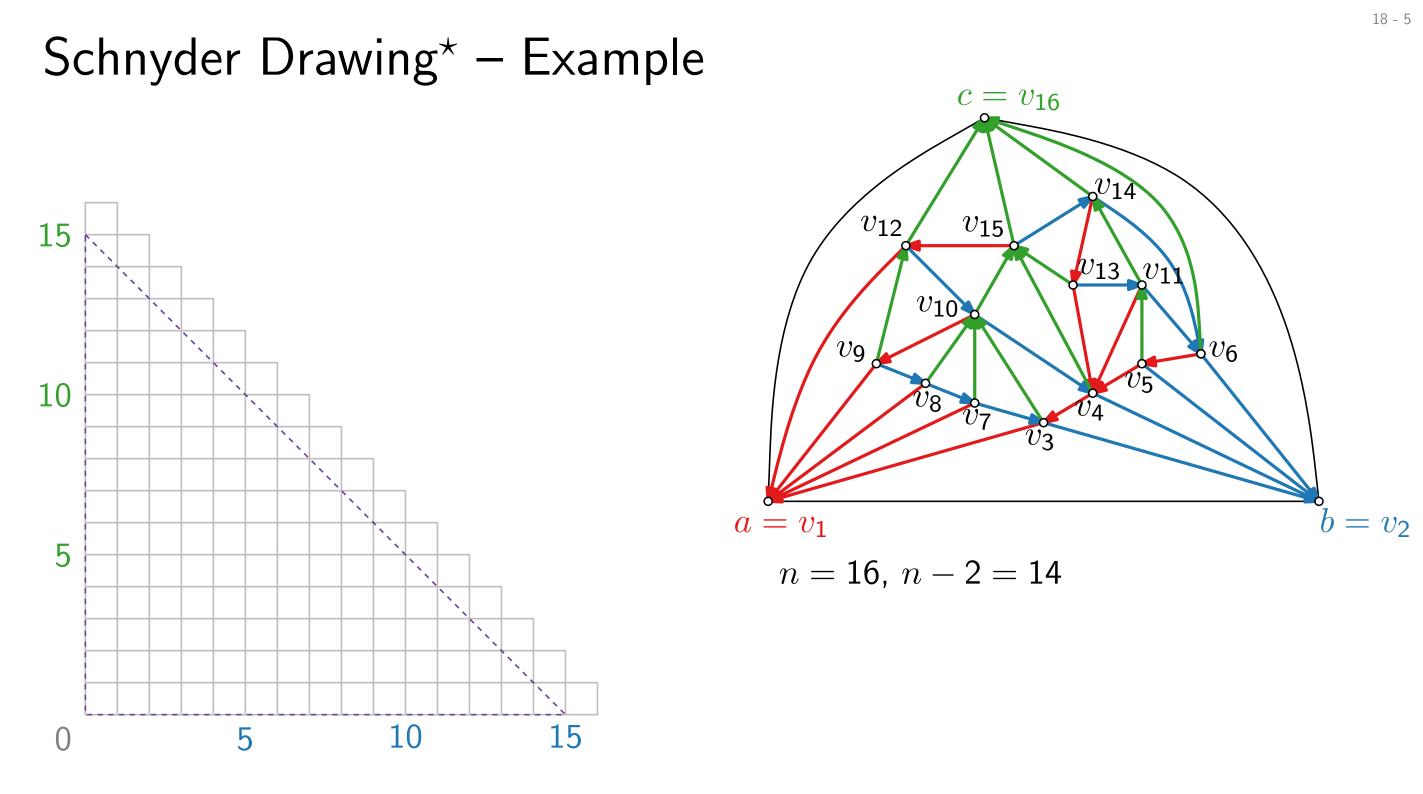


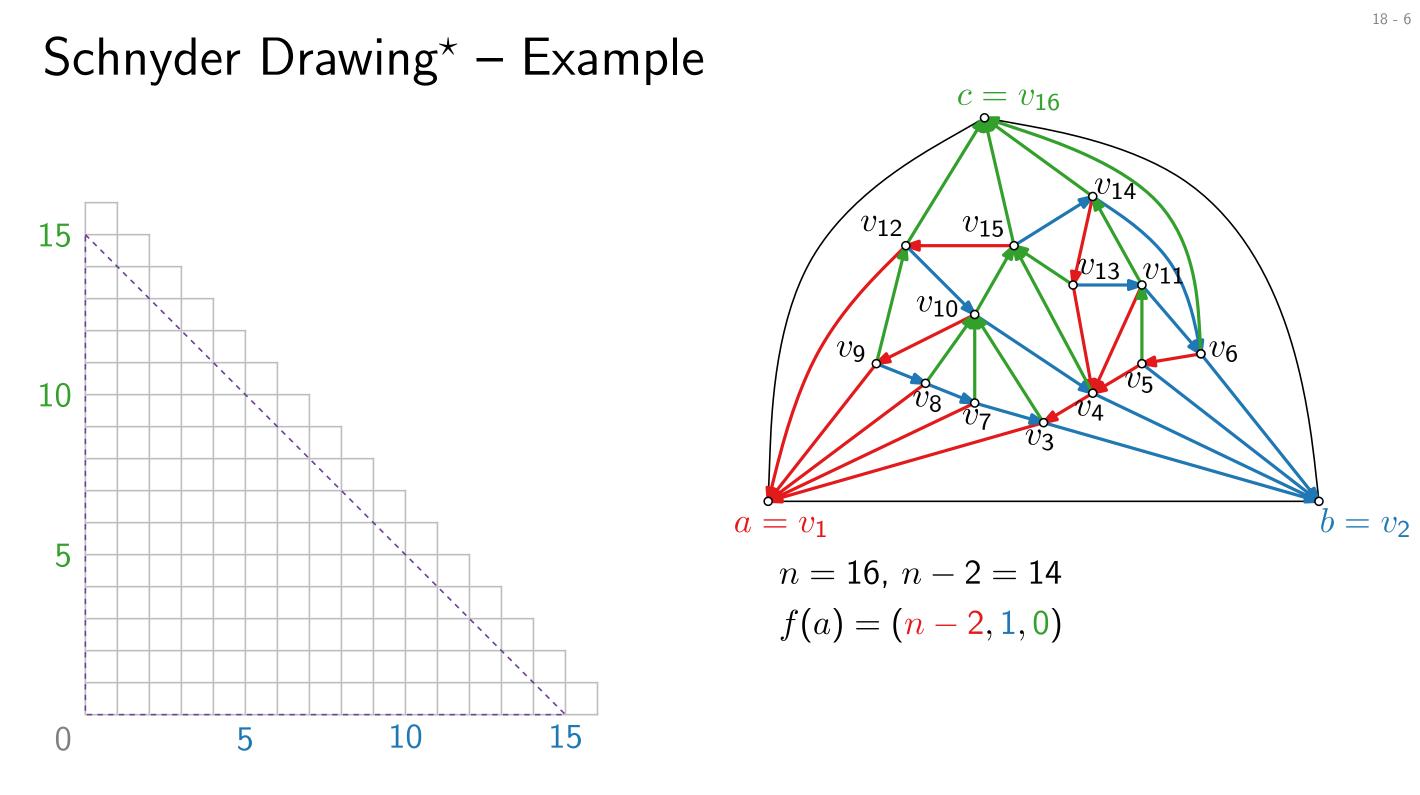
Schnyder Drawing^{*} – Example $c = v_{16}$ _o v_{14} v_{15} v_{12} 15 v_{10} $v_{\mathbf{9}}$ 10 \widetilde{v}_8 v_4 117 v_3 $a = v_1$ 1 5 n = 16, n - 2 = 1415 5 10 0

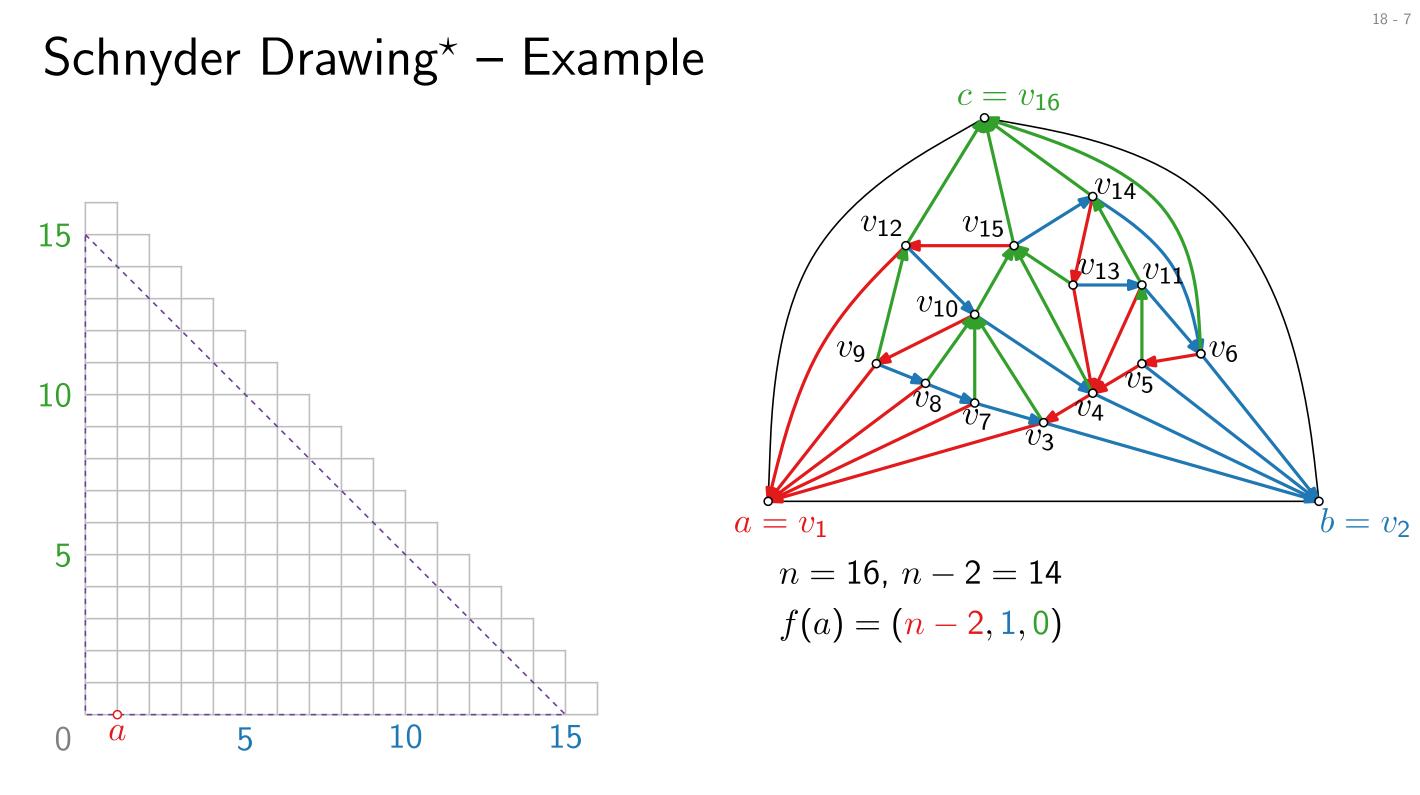
 $b = v_2$

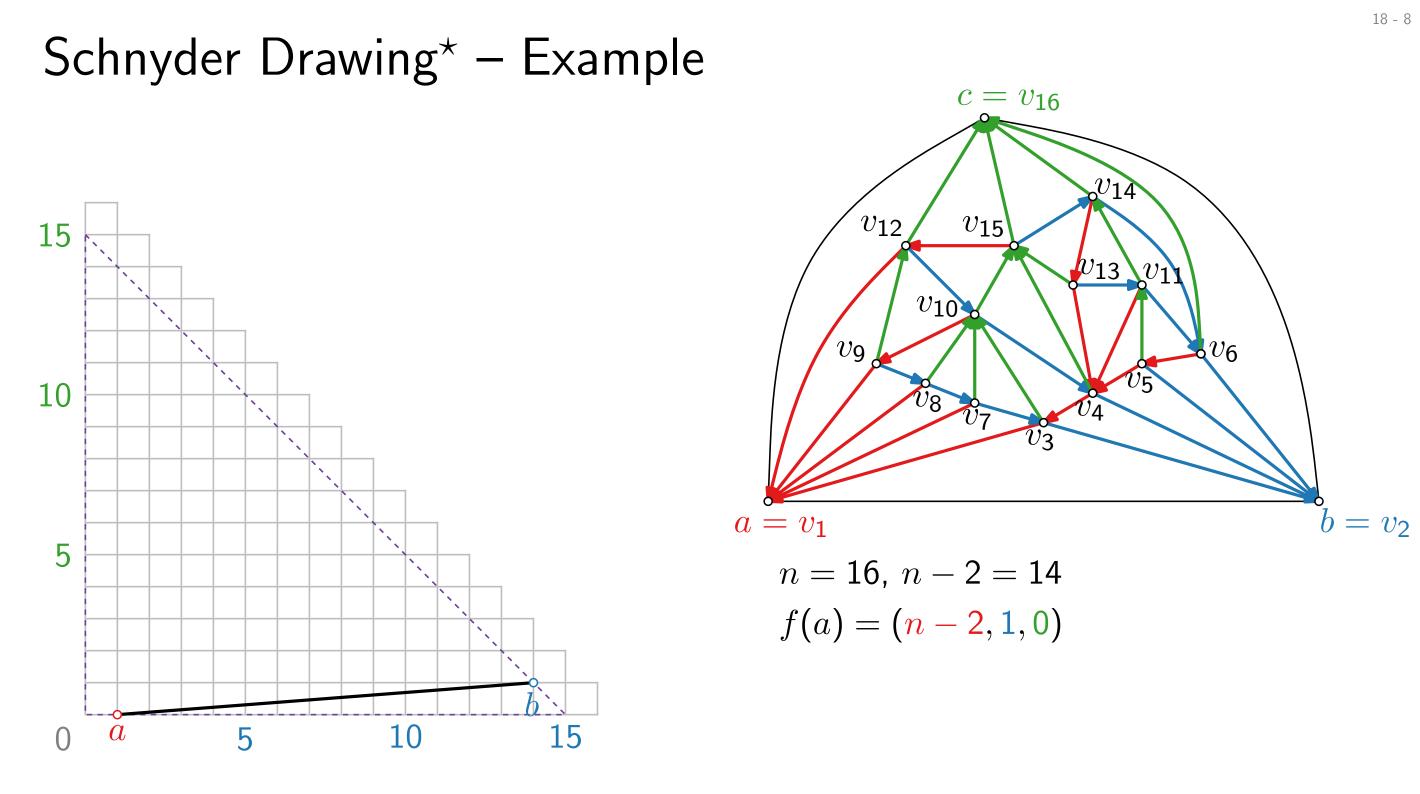
 v_6

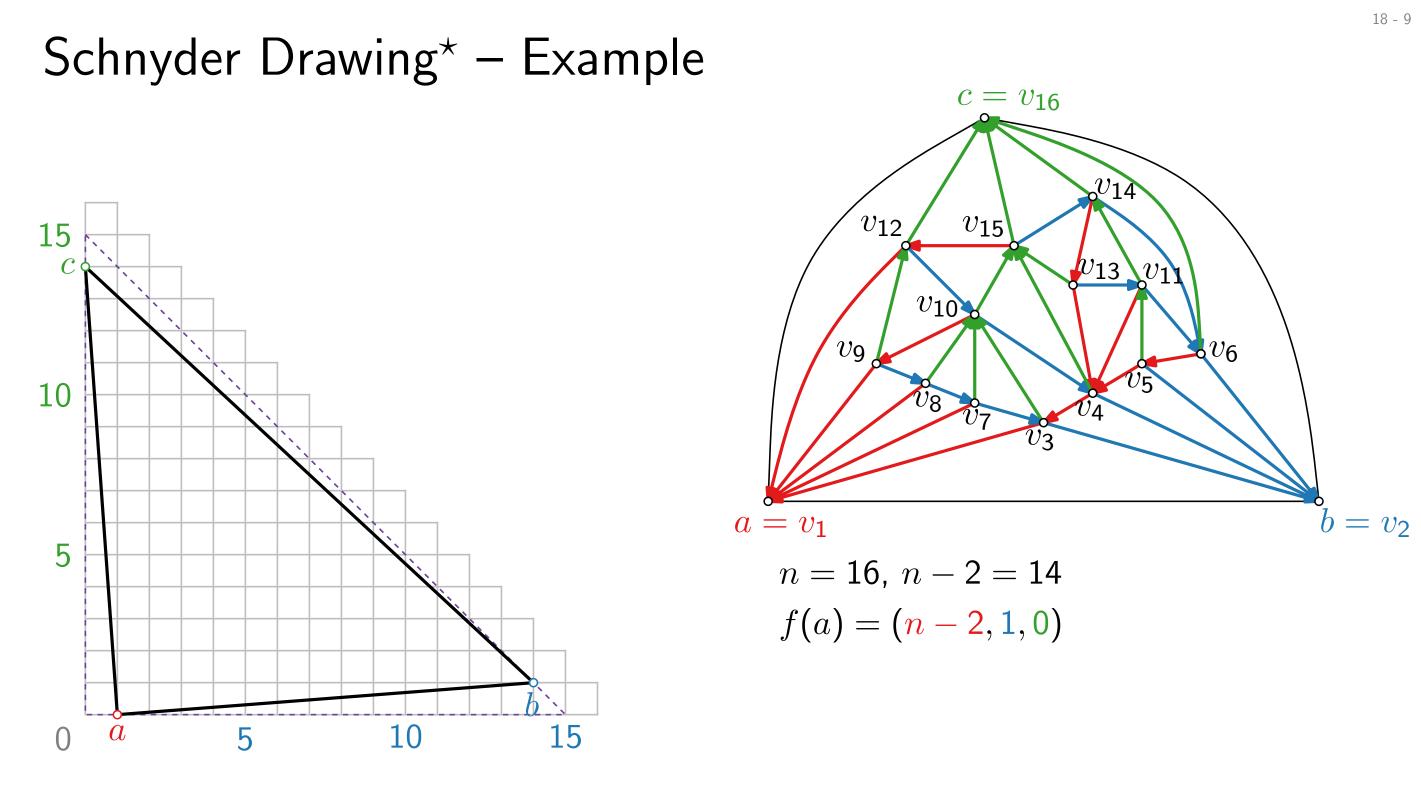
 v_5

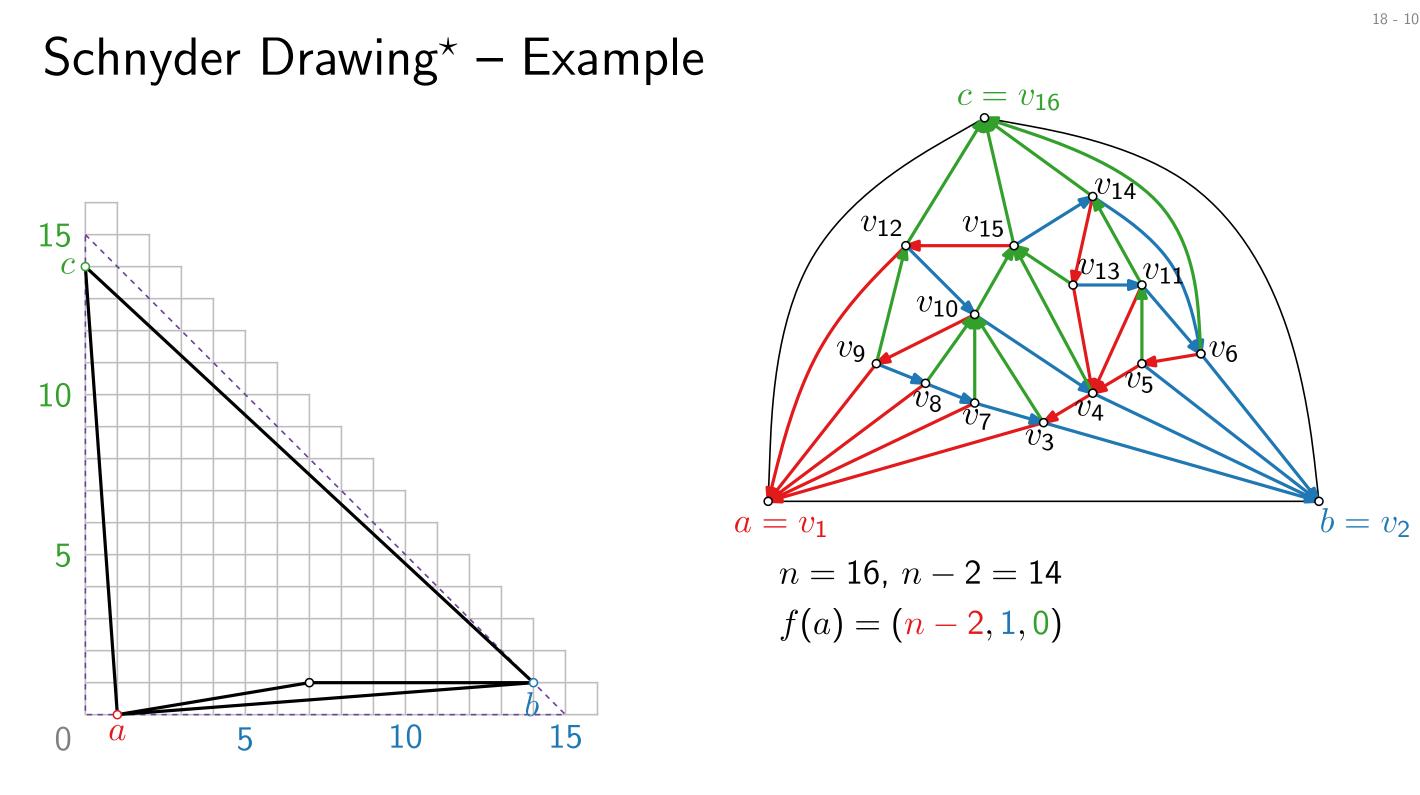


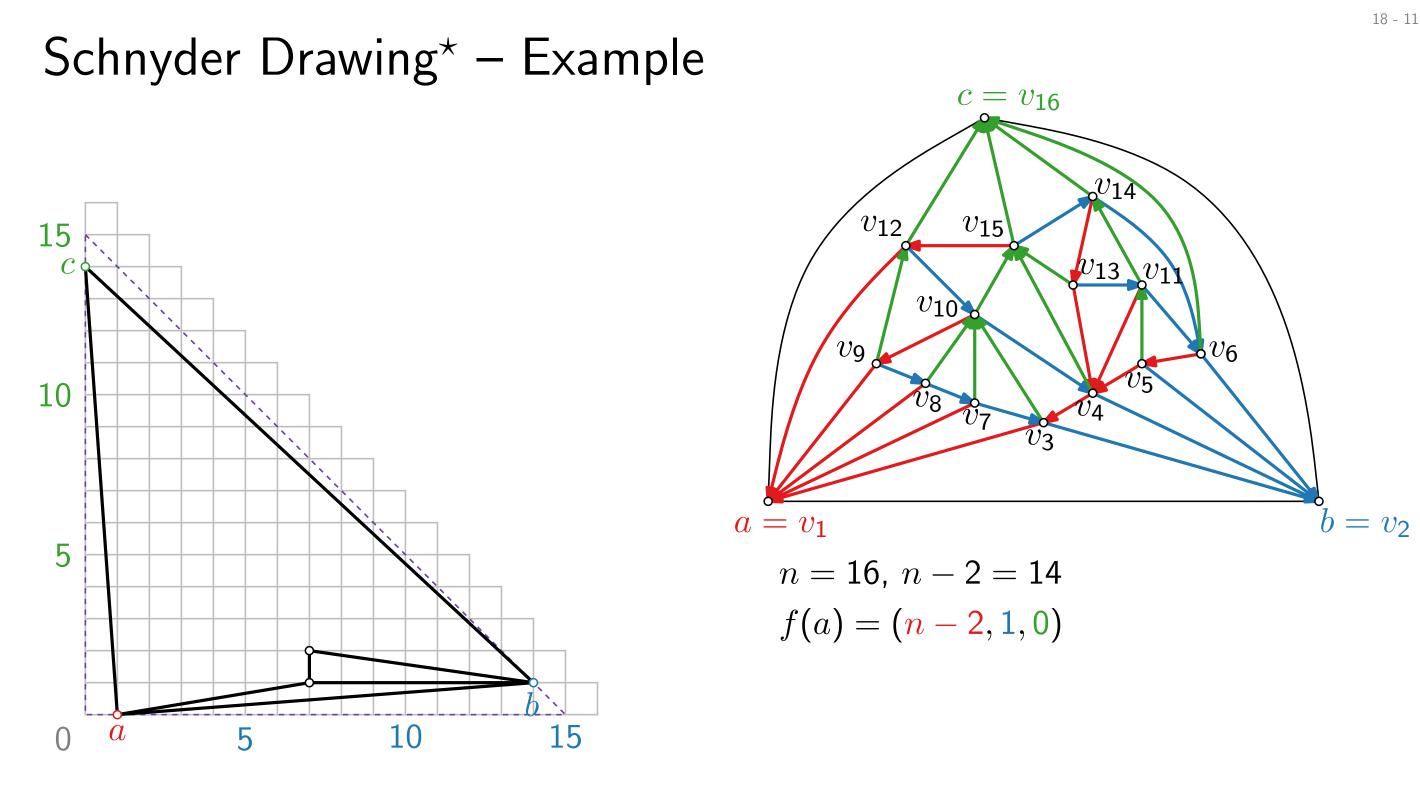


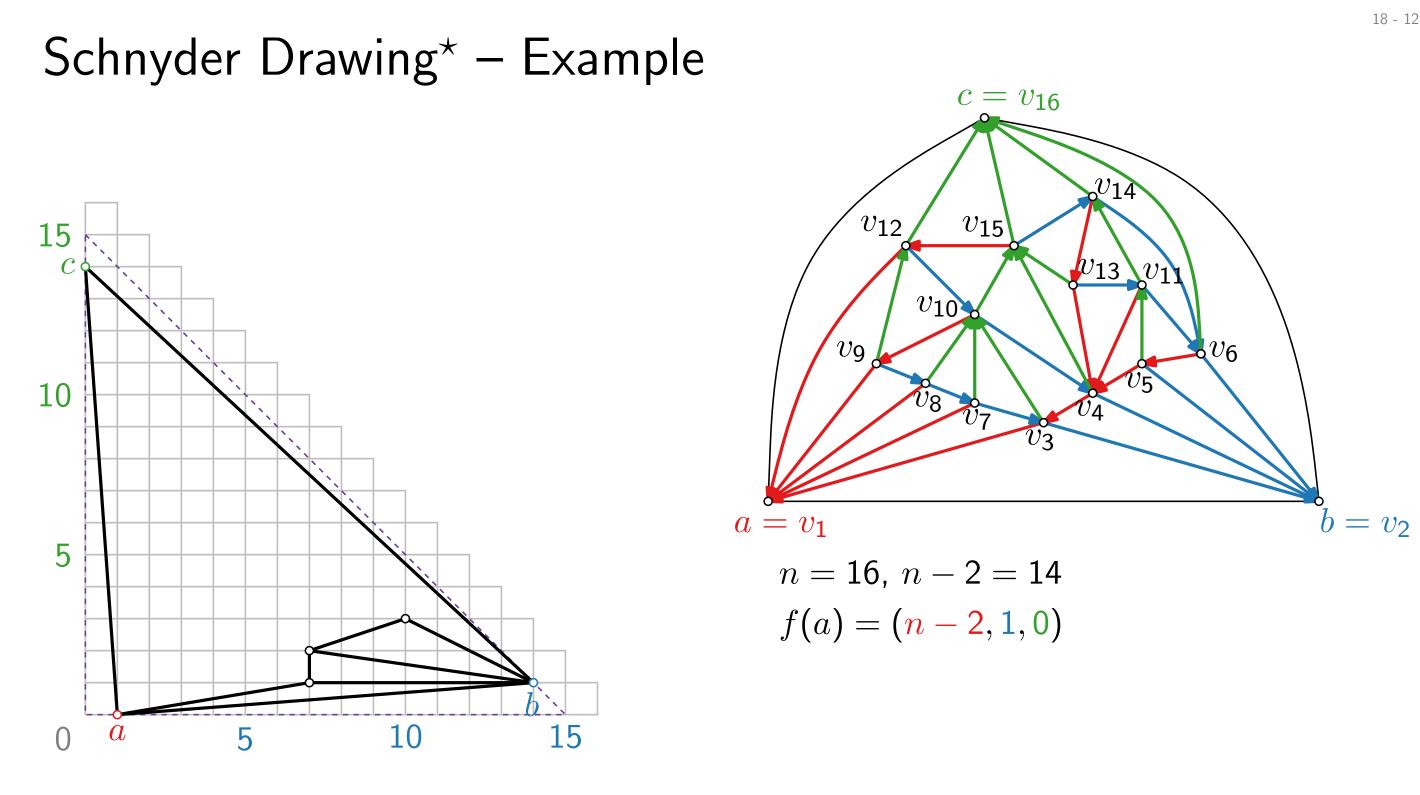


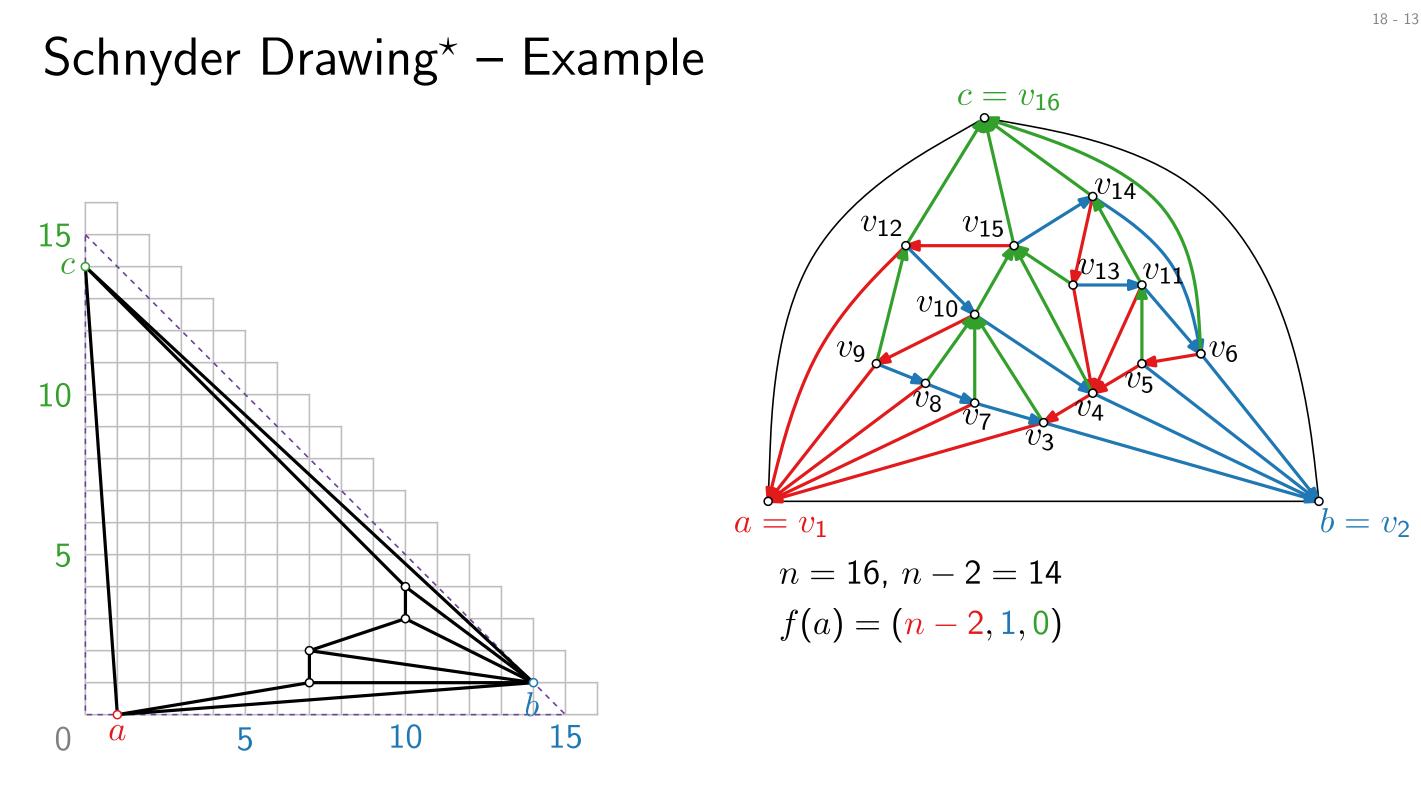


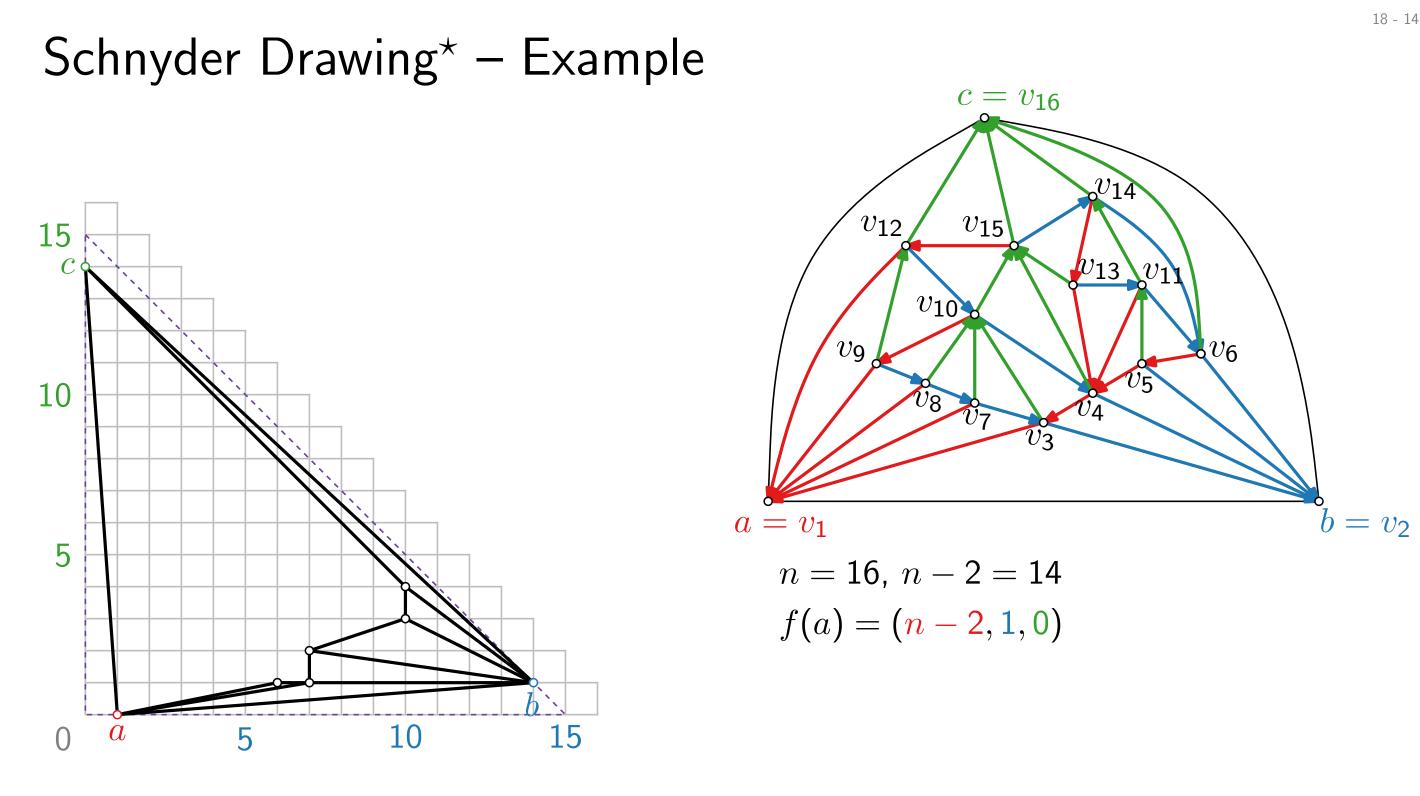


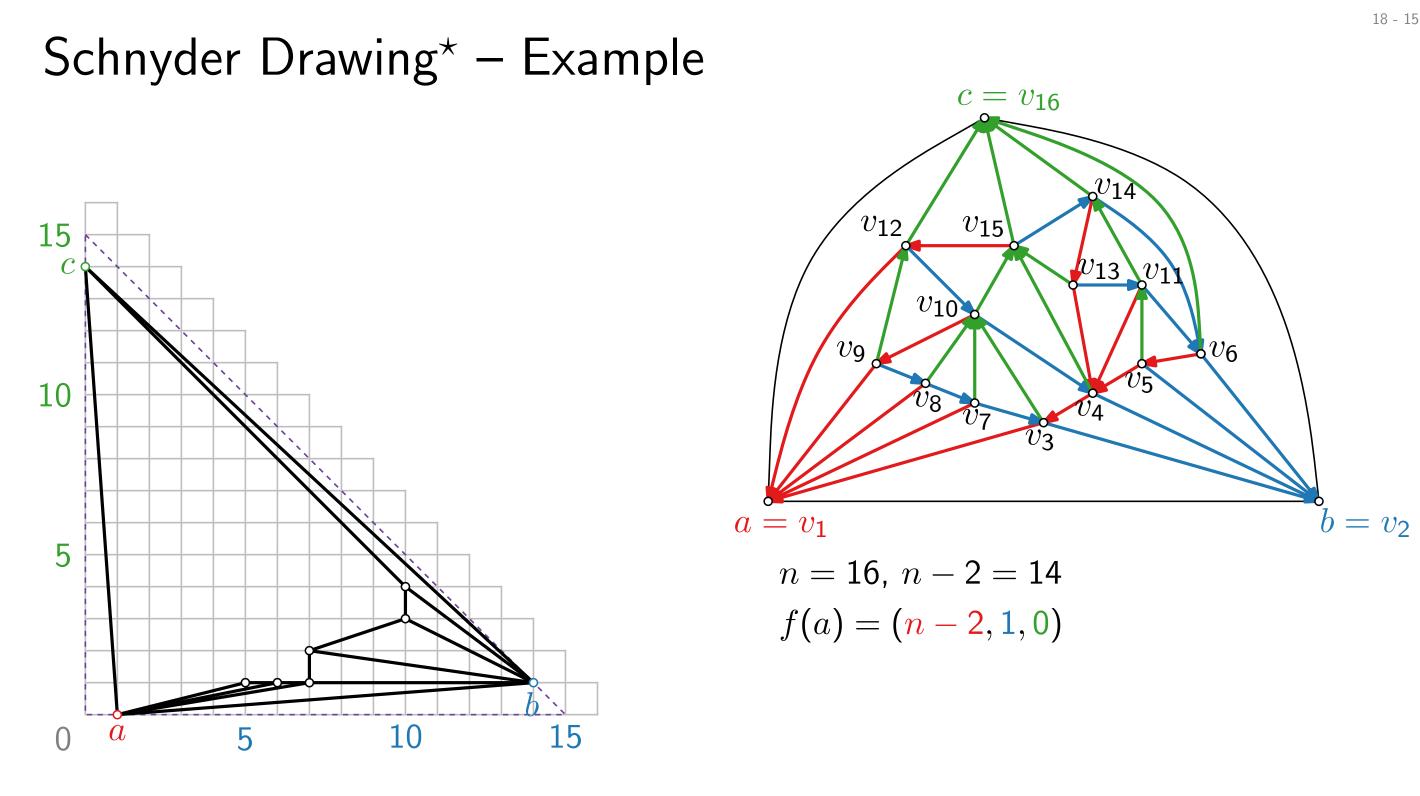


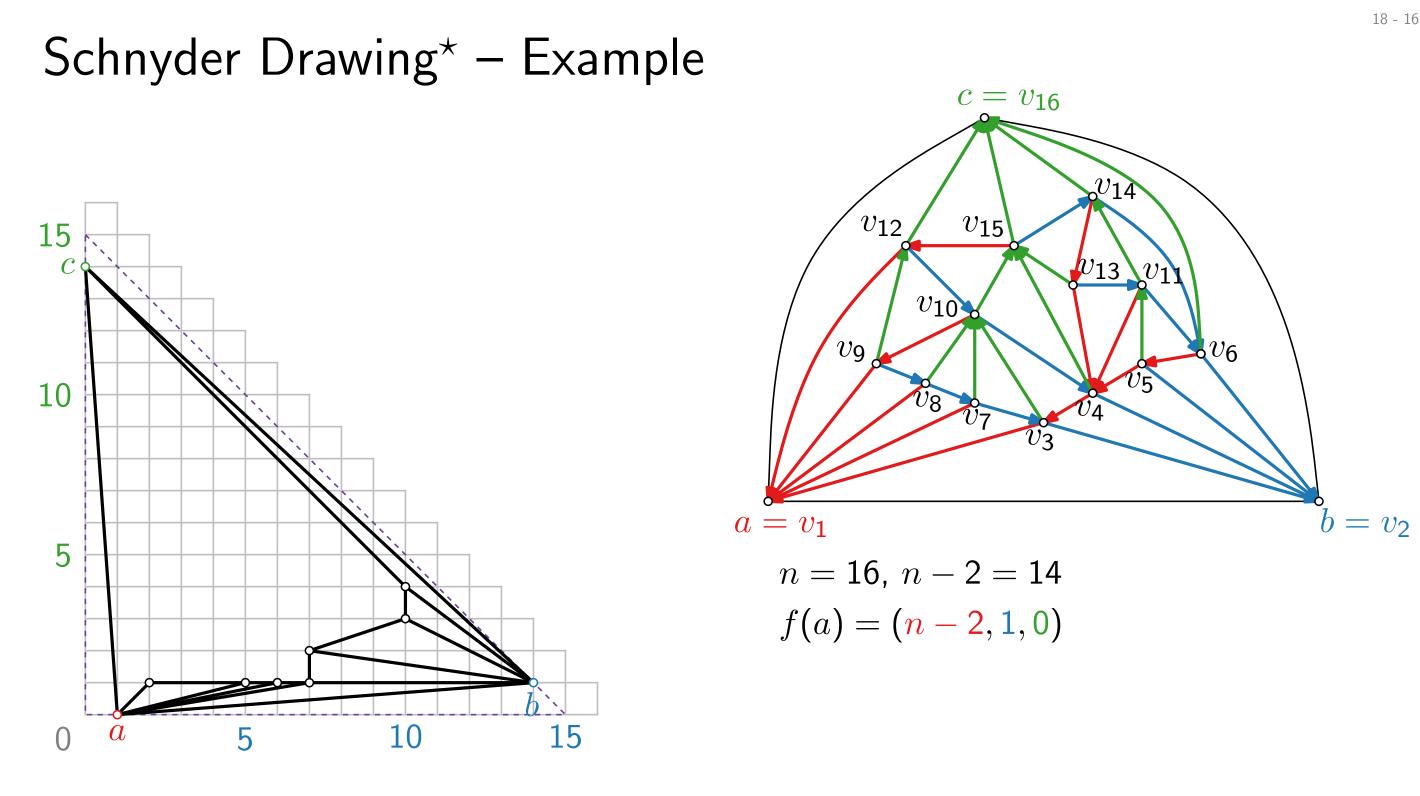


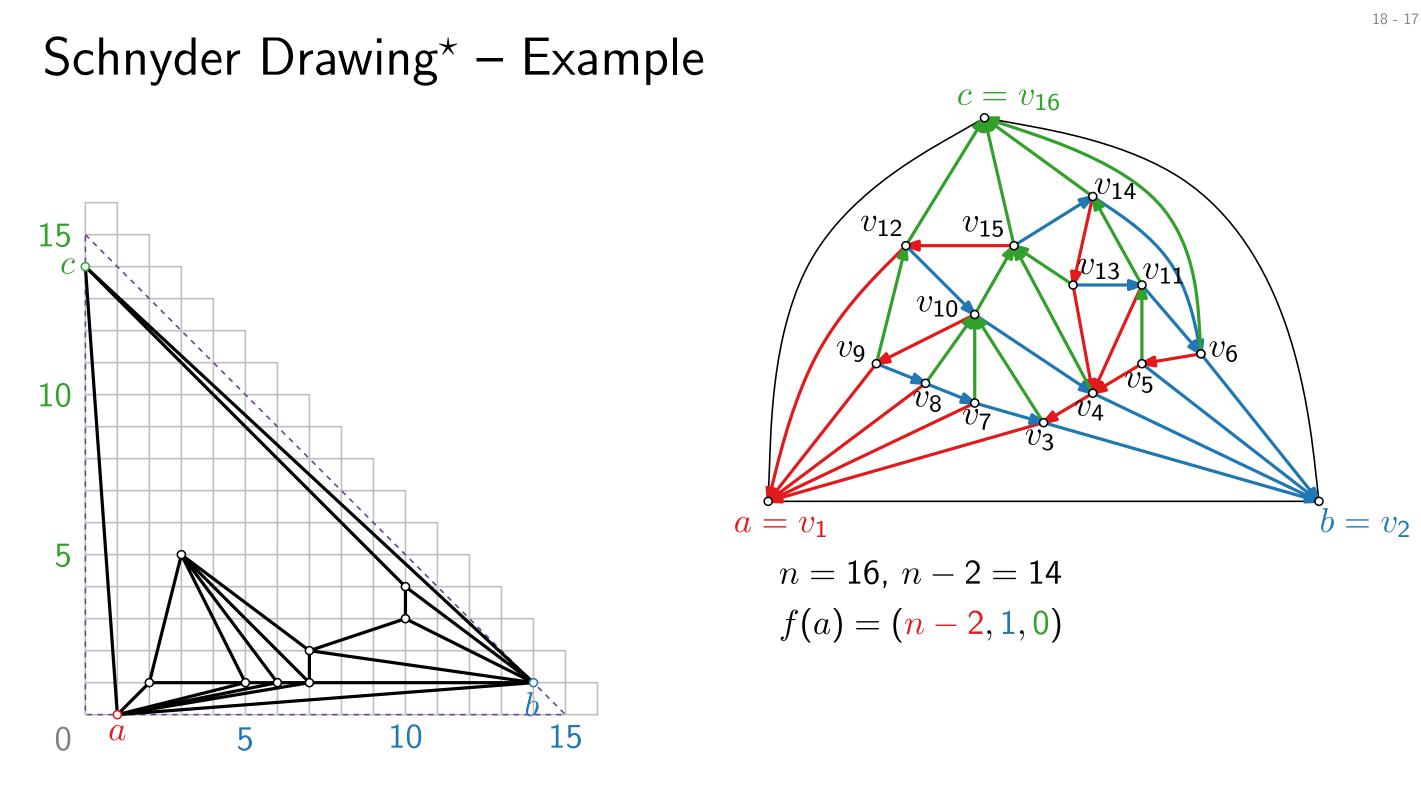


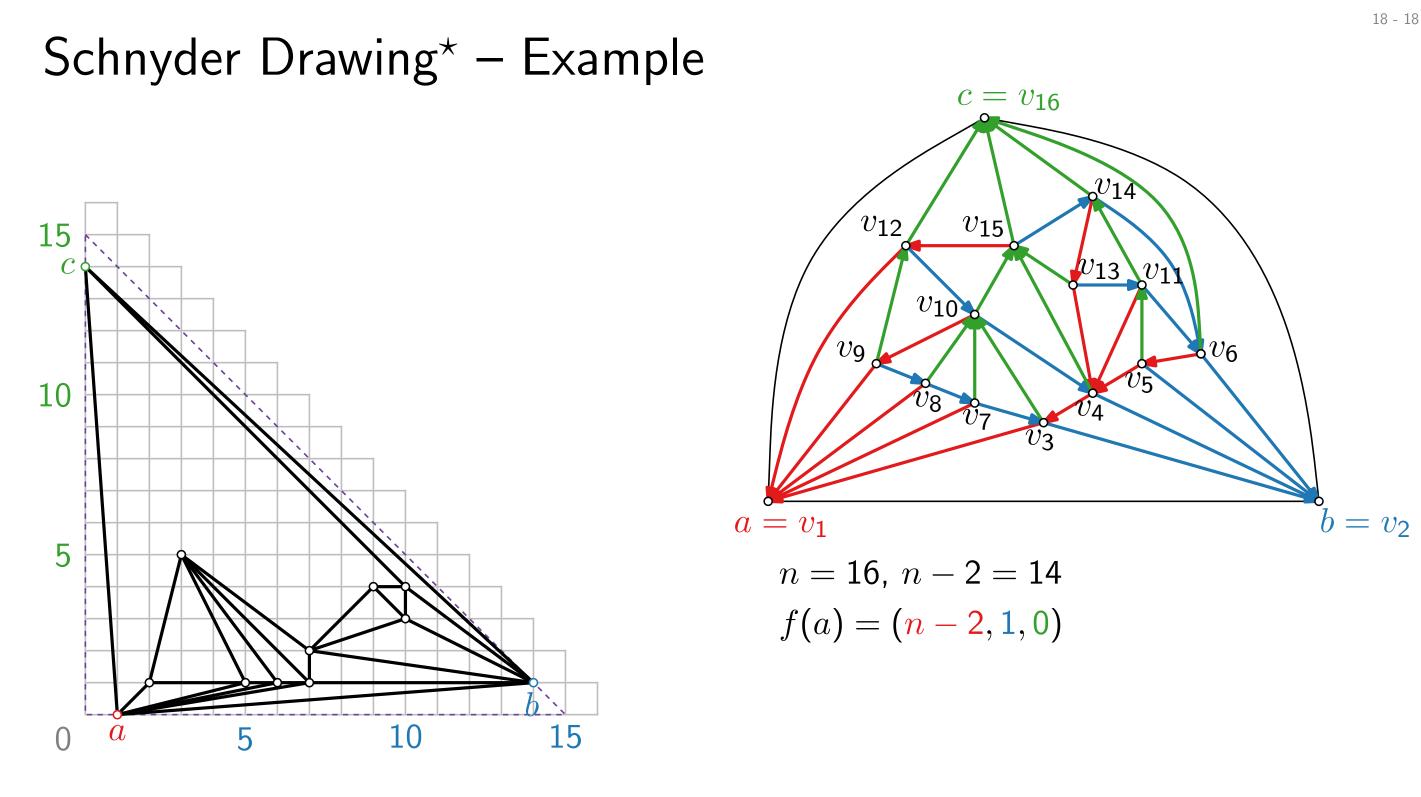


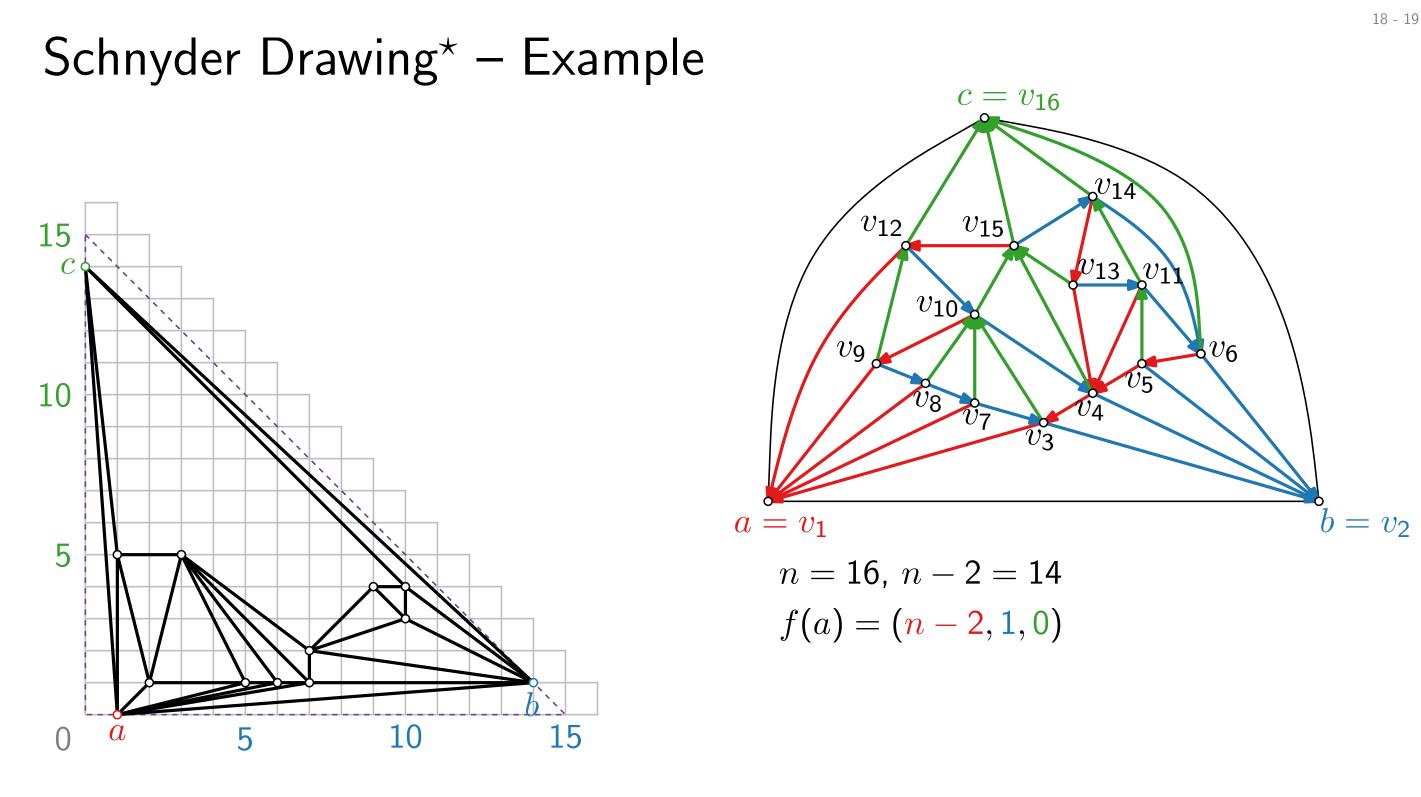


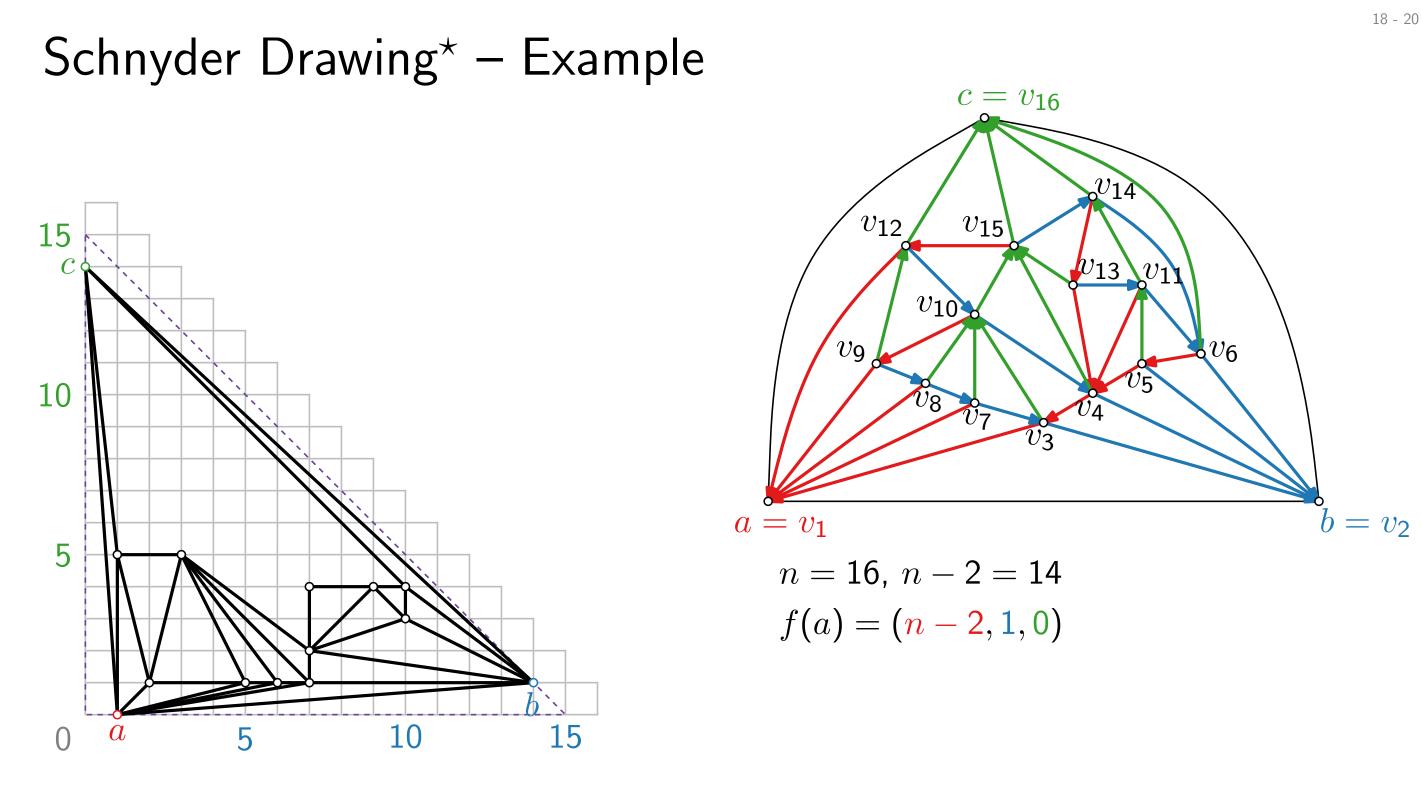


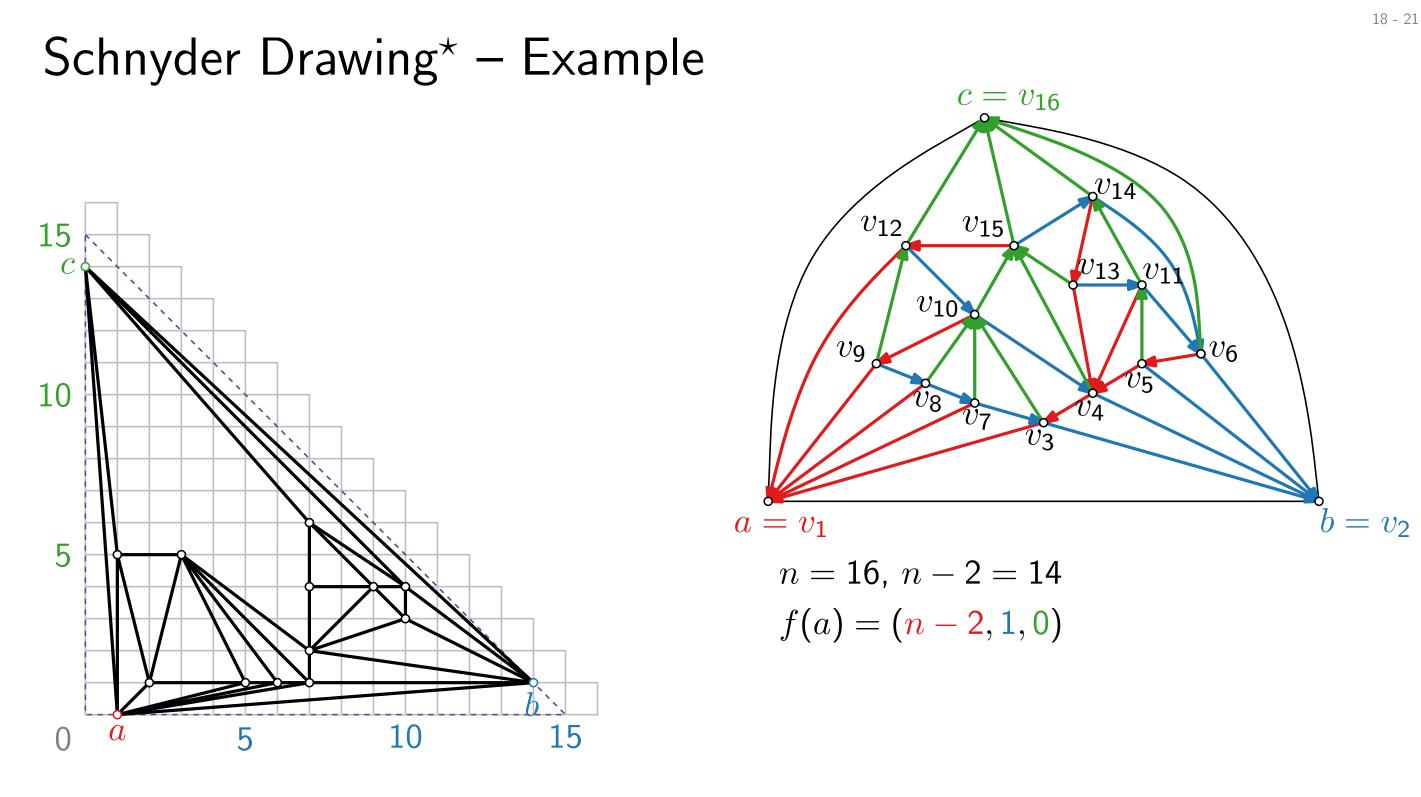


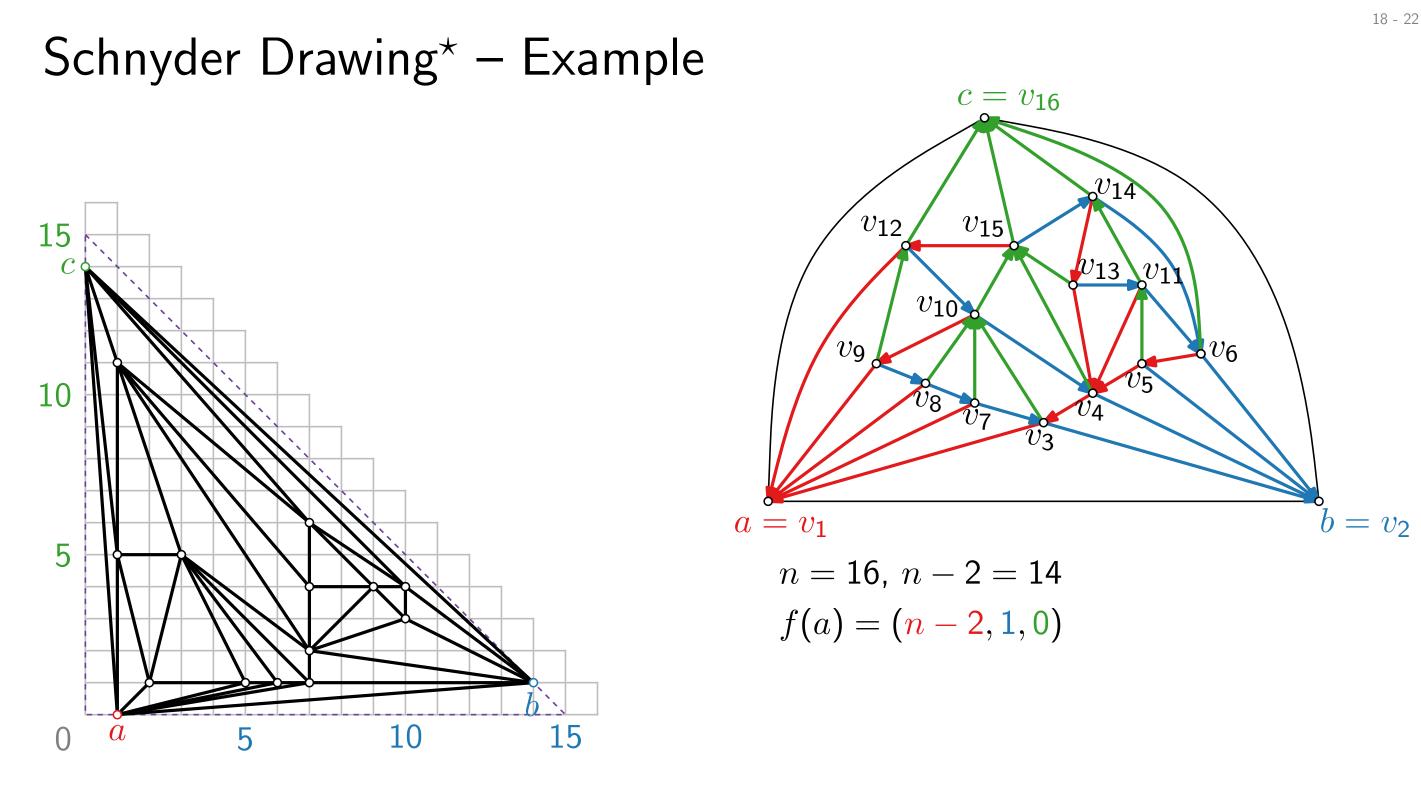












Schnyder Drawing^{*} – Example $c = v_{16}$ v_{14} v_{15} v_{12} $C \circ$ v_{10} v_6 v_{9} v_5 \widetilde{v}_8 v V4 117 v_3 $b = v_2$ $a = v_1$ n = 16, n - 2 = 14f(a) = (n - 2, 1, 0)b \boldsymbol{a}

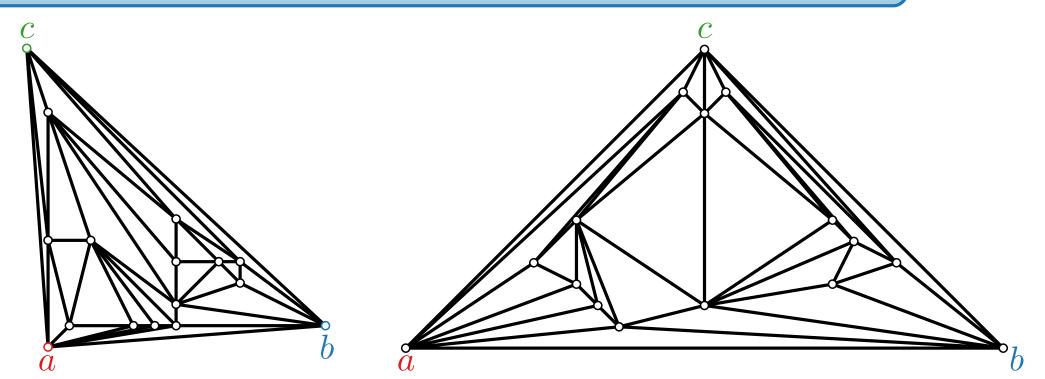
18 - 23

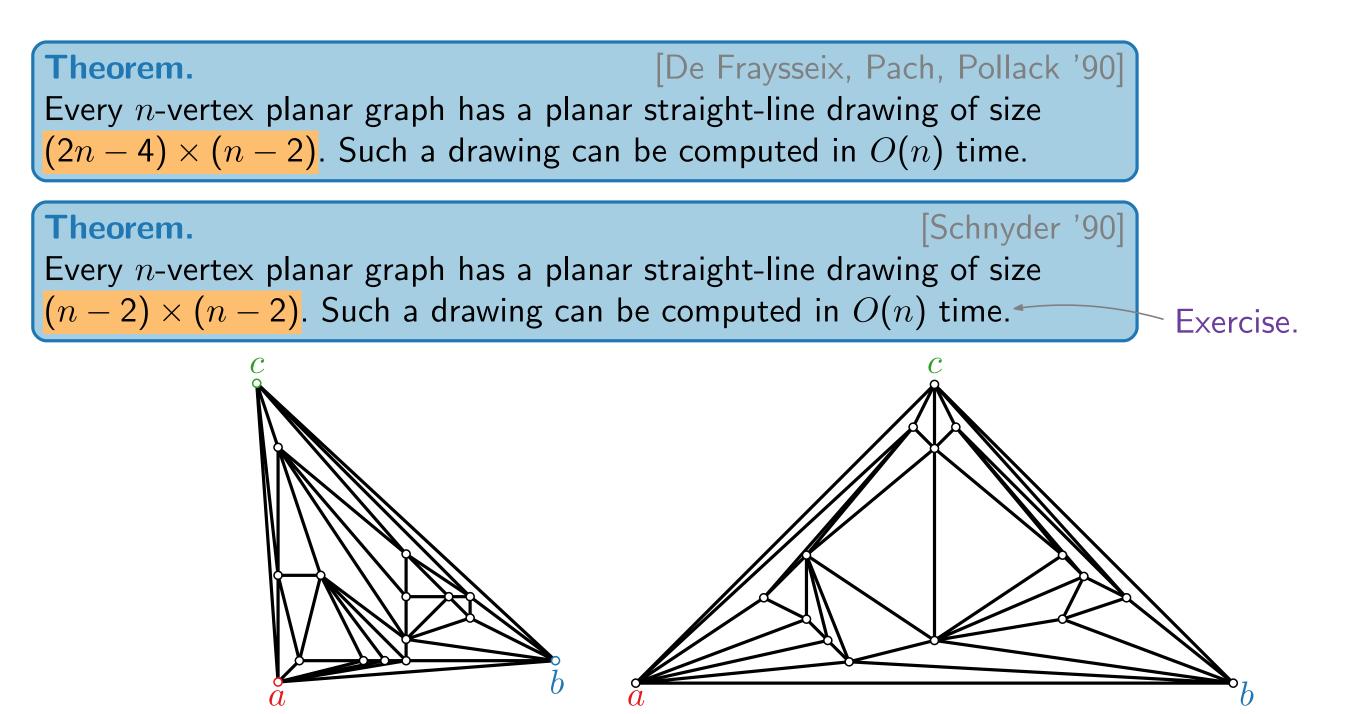
Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$. Such a drawing can be computed in O(n) time.

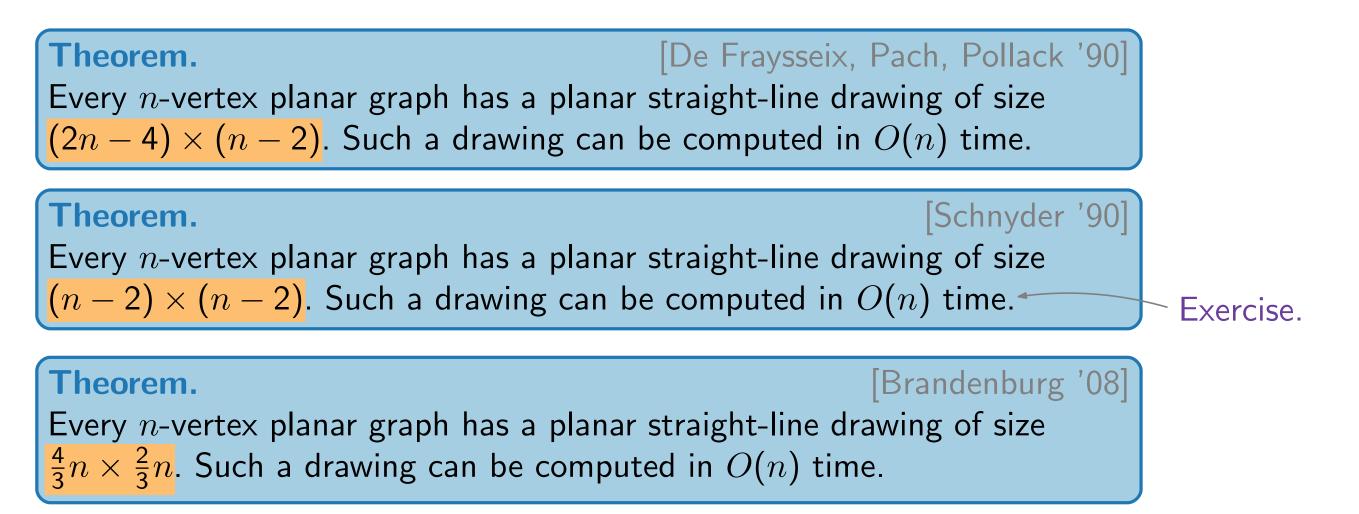
Theorem.

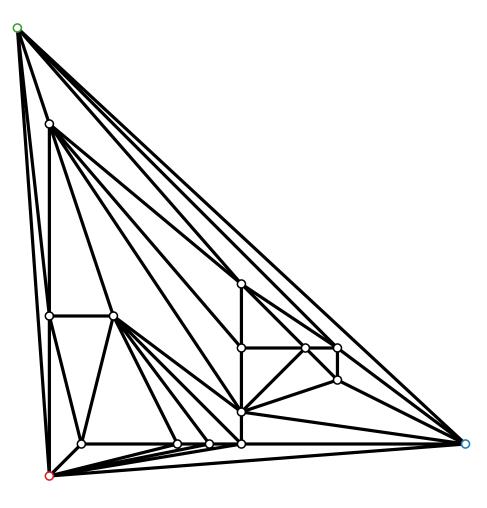
[Schnyder '90]

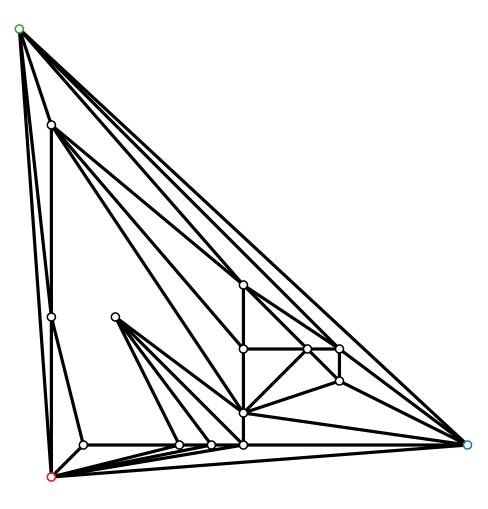
Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$. Such a drawing can be computed in O(n) time.

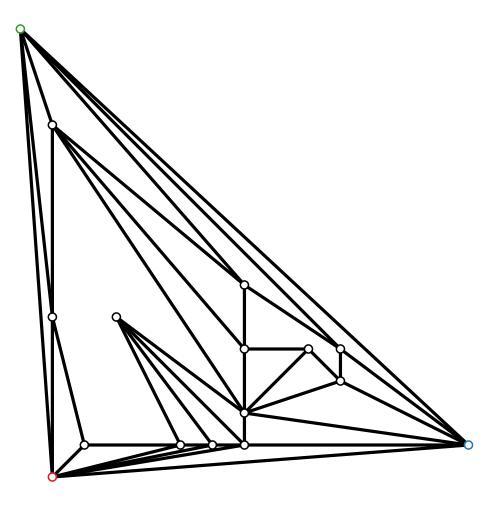


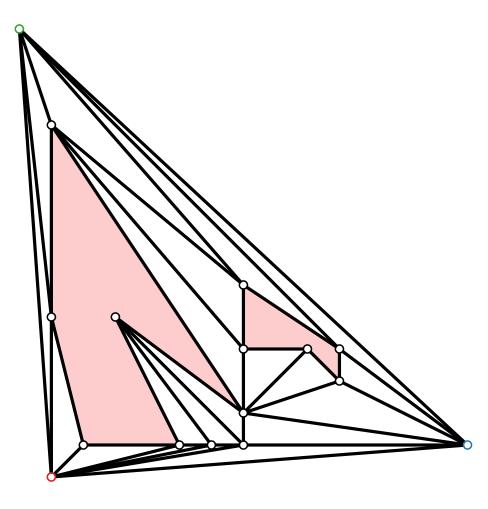


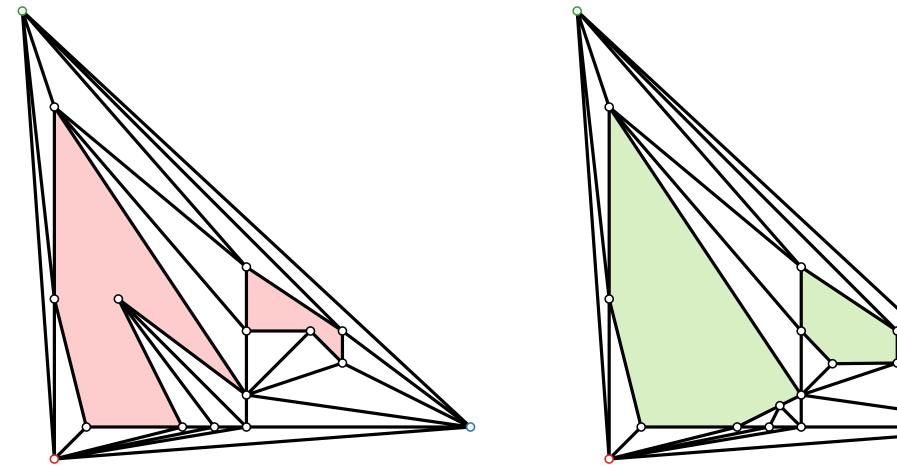


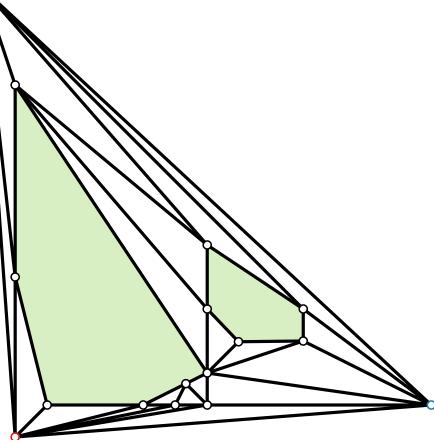












Theorem.

[Kant '96]

Every *n*-vertex 3-connected planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[Chrobak & Kant '97]

Every *n*-vertex 3-connected planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time. Theorem.

[Chrobak & Kant '97]

Every *n*-vertex 3-connected planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem. [Felsner '01] Every 3-connected planar graph with f faces has a planar straight-line drawing of size $(f-1) \times (f-1)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Literature

- [PGD Ch. 4.3] for detailed explanation of shift method
- [Sch90] Schnyder "Embedding planar graphs on the grid" 1990 original paper on Schnyder realiser method