

Visualization of Graphs

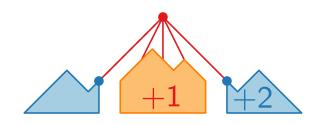
Lecture 3:

Straight-Line Drawings of Planar Graphs I:

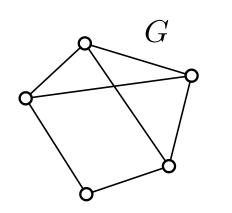
Canonical Ordering and Shift Method

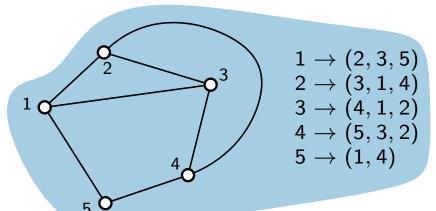
Planar Straight-Line Drawings

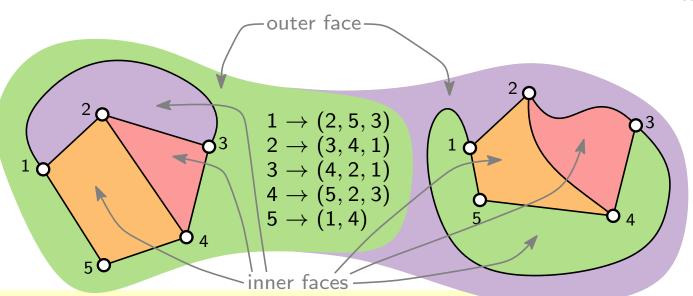
Jonathan Klawitter



Planar Graphs







G is planar:

it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$\# \text{faces - } \# \text{edges} + \# \text{vertices} = \# \text{conn.comp.} + 1$$

$$f - m + n = c + 1$$

Proof. By induction on m:

$$m = 0 \Rightarrow f = 1 \text{ and } c = n$$

 $\Rightarrow 1 - 0 + n = n + 1$

 $m>1\Rightarrow {\sf remove}\ 1\ {\sf edge}\ e\ \Rightarrow m-1$

Properties of Planar Graphs

Euler's polyhedra formula.

$$\# \text{faces - } \# \text{edges} + \# \text{vertices} = \# \text{conn.comp.} + 1$$

$$f - m + n = c + 1$$

Theorem. G simple planar graph with $n \geq 3$.

- 1. $m \le 3n 6$ 2. $f \le 2n 4$
- 3. There is a vertex of degree at most five
- **Proof.** 1. Every edge incident to ≤ 2 faces Every face incident to > 3 edges

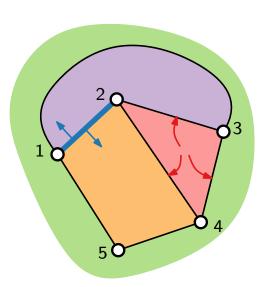
$$\Rightarrow$$
 3 $f \leq 2m$

$$\Rightarrow 6 \le 3c + 3 \le 3f - 3m + 3n \le 2m - 3m + 3n = 3n - m$$

$$\Rightarrow m \leq 3n - 6$$

2.
$$3f \le 2m \le 6n - 12 \implies f \le 2n - 4$$
 $\sum_{v \in V} \deg(v) = 2|E|$

3.
$$\sum_{v \in V} \deg(v) = 2m \le 6n - 12$$
$$\Rightarrow \min_{v \in V} \deg(v) \le 1/n \sum_{v \in V} \deg(v) < 6$$



$$-3m + 3n = 3n - m$$

Handshaking-Lemma.

$$\sum_{v \in V} \deg(v) = 2|E|$$

Triangulations

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

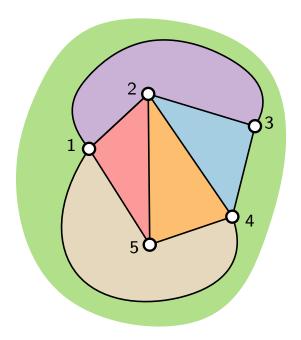
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.



We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.

Triangulations

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

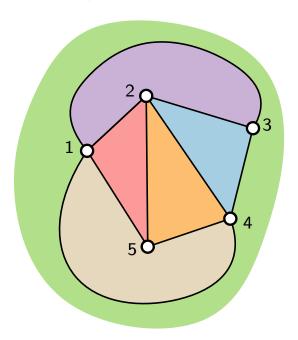
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

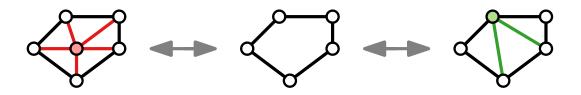
A plane triangulation is at least 3-connected and thus has a unique planar embedding.



We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.



Motivation

Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Drawing conventions

- \blacksquare No crossings \Rightarrow planar
- \blacksquare No bends \Rightarrow straight-line

Drawing aestethics

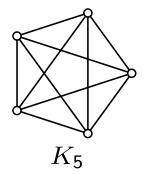
Area

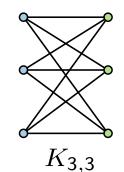
Towards Straight-Line Drawings

Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G





Characterization

Theorem.

[Hopcroft & Tarjan 1974]

Let G be a graph with n vertices. There is an $\mathcal{O}(n)$ -time algorithm to test whether G is planar.

Also computes a planar embedding in $\mathcal{O}(n)$.

Theorem.

[Wagner 1936, Fáry 1948, Stein 1951]

Every planar graph has an planar drawing where the edges are straight-line segments.

Recognition

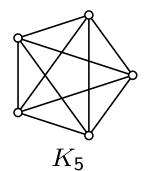
Drawing

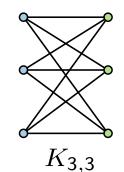
Towards Straight-Line Drawings

Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G





Characterization

Theorem.

[Hopcroft & Tarjan 1974]

Let G be a graph with n vertices. There is an $\mathcal{O}(n)$ -time algorithm to test whether G is planar.

Also computes a planar embedding in $\mathcal{O}(n)$.

Theorem.

[Wagner 1936, Fáry 1948, Stein 1951]

Every planar graph has an planar drawing where the edges are straight-line segments.

The algorithms implied by this theory produce drawings with area **not** bounded by any polynomial on n.

Recognition

Drawing

Planar straight-line drawings

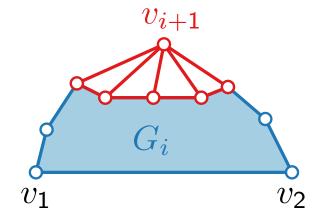
Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Idea.

- Start with singe edge (v_1, v_2) . Let this be G_2 .
- To obtain G_{i+1} , add v_{i+1} to G_i so that neighbours of v_{i+1} are on the outer face of G_i .
- Neighbours of v_{i+1} in G_i have to form path of length at least two.



Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Visualization of Graphs

Lecture 3:

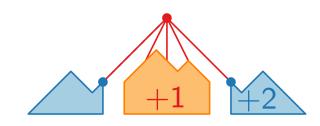
Straight-Line Drawings of Planar Graphs I:

Canonical Ordering and Shift Method

Part II:

Canonical Order

Jonathan Klawitter

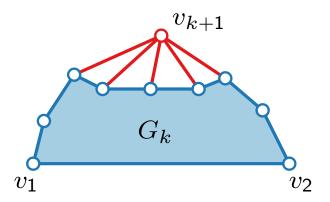


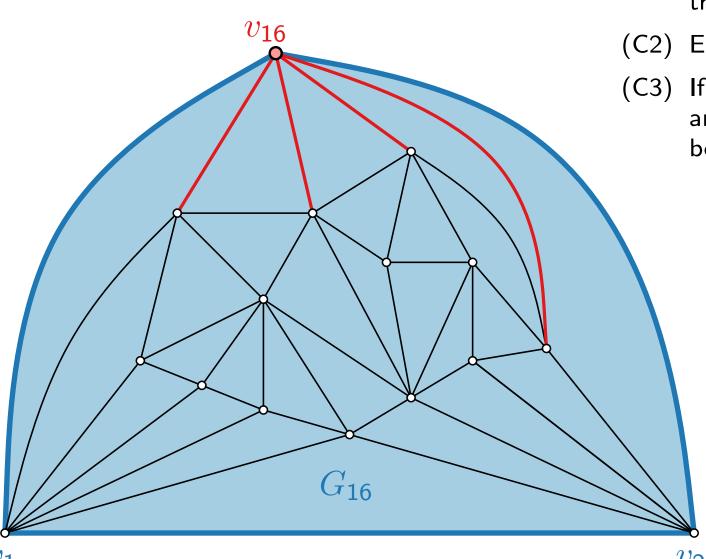
Canonical Order – Definition

Definition.

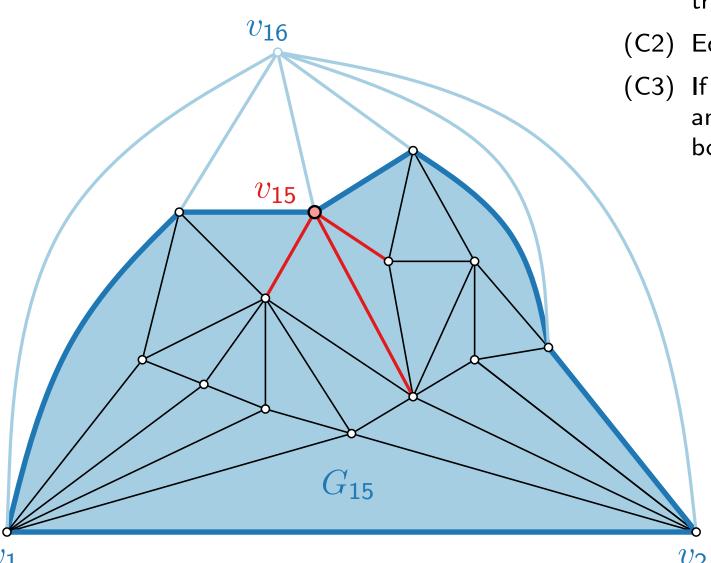
Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

- (C1) Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.

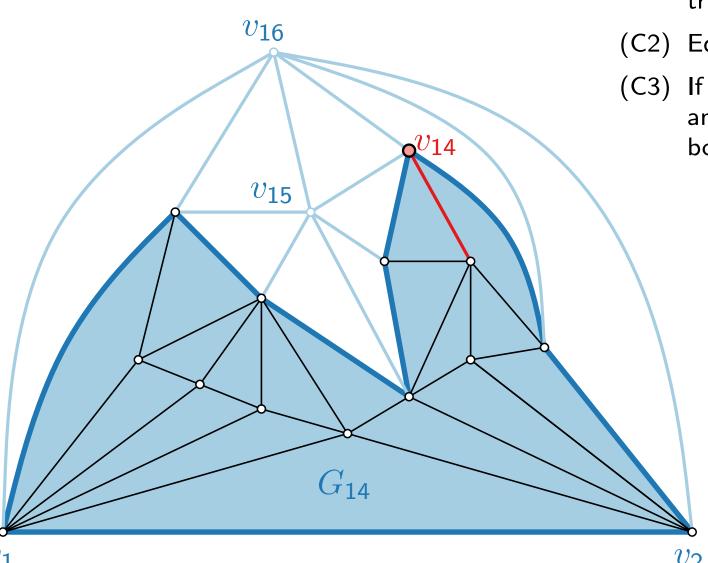




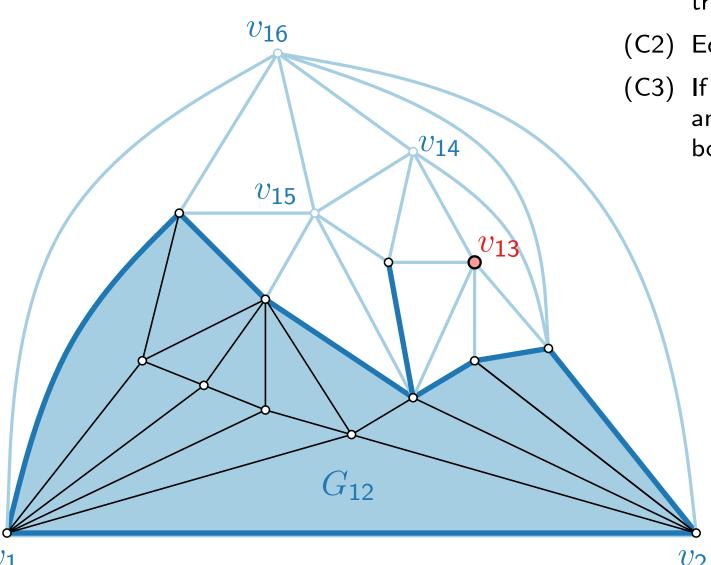
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.



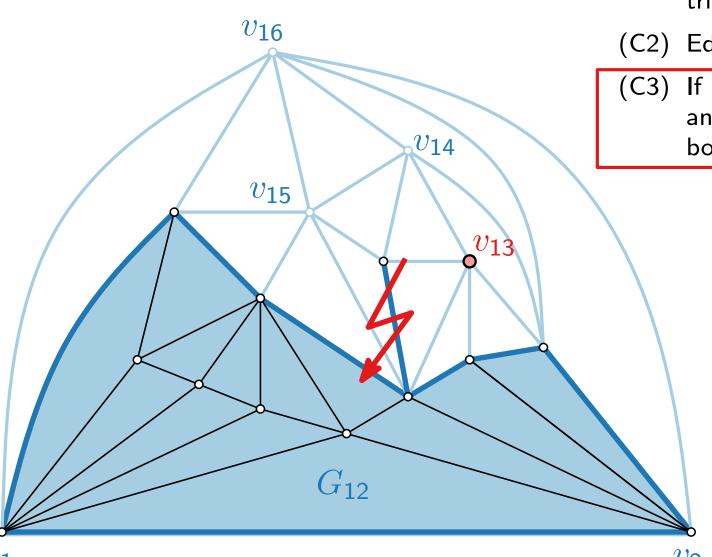
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.



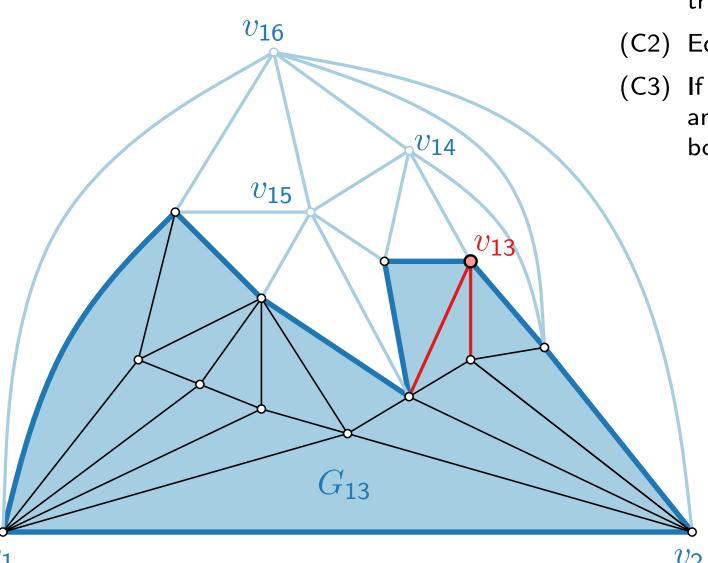
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.



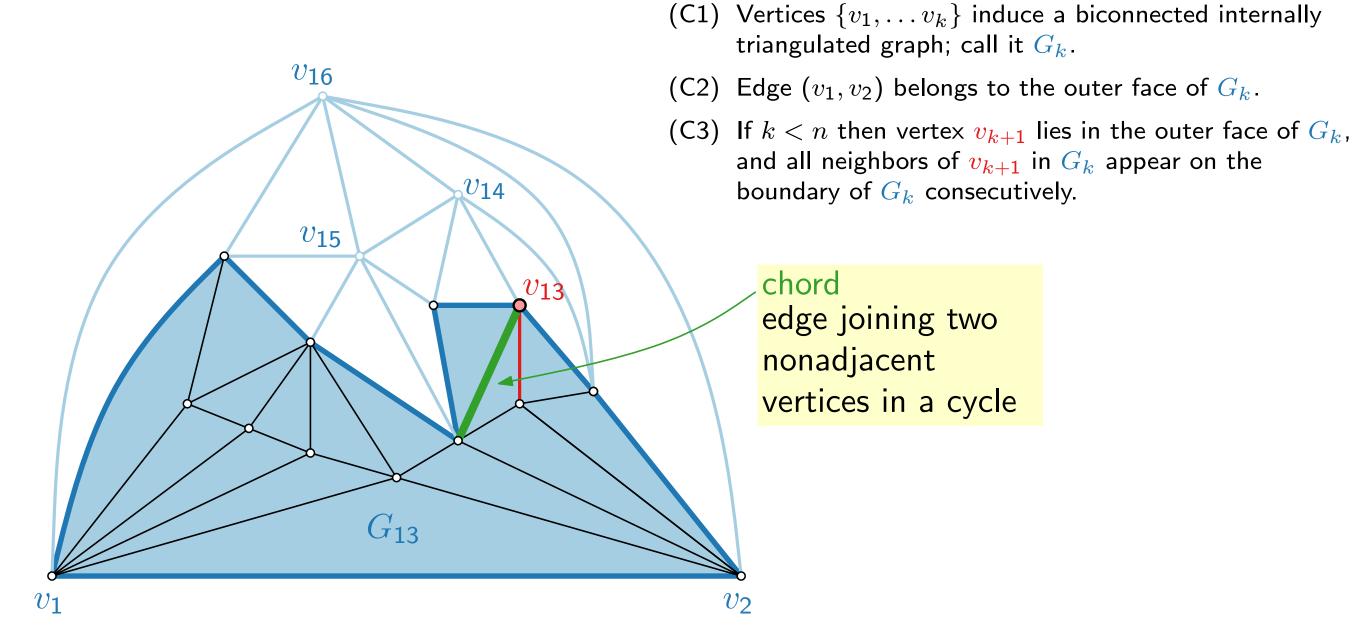
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.

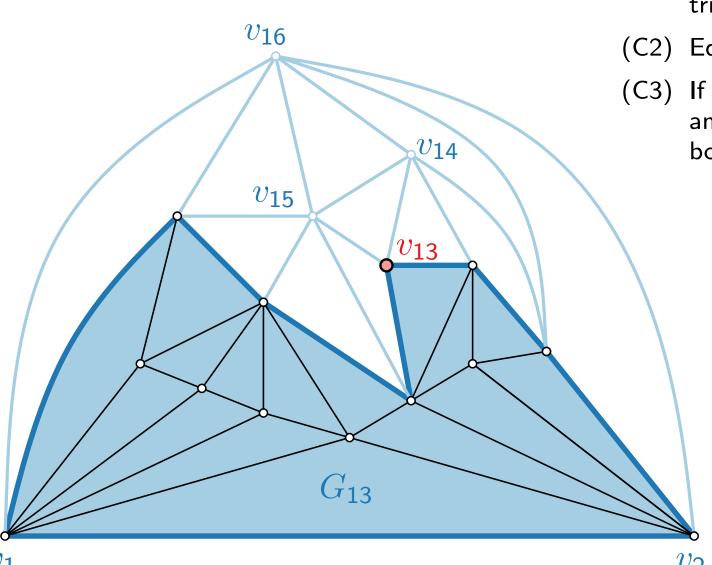


- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.

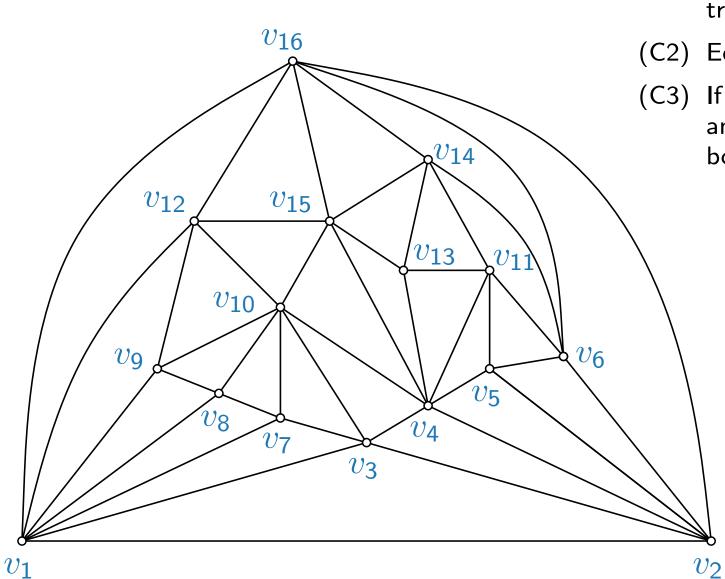


- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.





- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.



- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.

Canonical Order – Existence

Lemma.

Every triangulated plane graph has a canonical order.

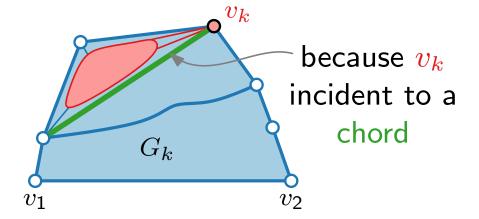
Base Case:

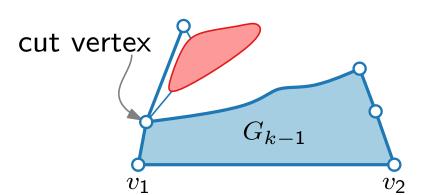
Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions (C1) – (C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) – (C3) hold for $k+1 \le i \le n$.

Induction step: Consider G_k . We search for v_k .





- (C1) G_k biconnected and internally triangulated
- (C2) (v_1, v_2) on outer face of G_k
- (C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k , neighbors of v_{k+1} in G_k consecutive on boundary

Have to show:

- 1. v_k not incident to chord is sufficient
- 2. Such v_k exists

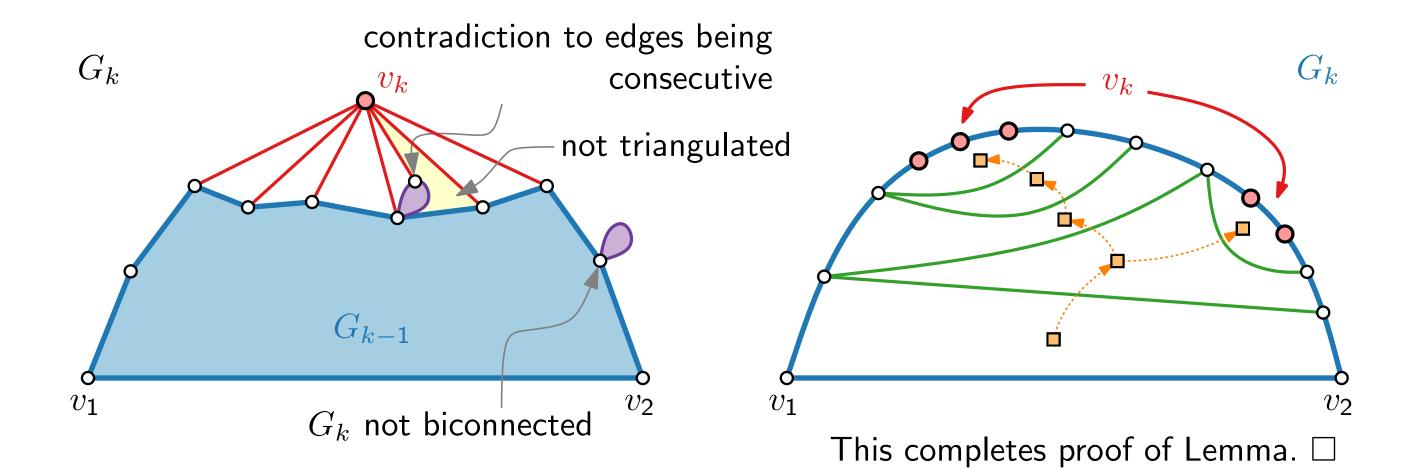
Canonical Order – Existence

Claim 1.

If v_k is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_k that is not incident to a chord as choice for v_k .



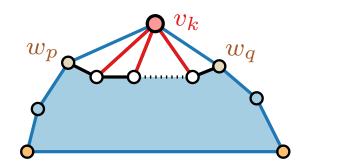
Canonical Order – Implementation

```
CanonicalOrder(G = (V, E), (v_1, v_2, v_n))
forall v \in V do
 chords(v) \leftarrow 0; out(v) \leftarrow false; mark(v) \leftarrow false
\mathsf{mark}(v_1), \mathsf{mark}(v_2), \mathsf{out}(v_1), \mathsf{out}(v_2), \mathsf{out}(v_n) \leftarrow \mathsf{true}
for k = n to 3 do
    choose v such that mark(v) = false, out(v) = true,
      and chords(v) = 0 // keep list with candidates
    v_k \leftarrow v; mark(v) \leftarrow true
    // Let w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2 denote the
      boundary of G_{k-1} and let w_p, \ldots, w_q be the
      unmarked neighbors of v_k
    \operatorname{out}(w_i) \leftarrow \text{true for all } p < i < q // O(n) \text{ in total}
     update number of chords for w_i
    and its neighbours //O(m) = O(n) in total
```

outer face

- chord(v):

 # chords adjacent to v
- $\mathbf{out}(v) = \text{true iff } v \text{ is}$ currently outer vertex
- = mark(v) = true iff v has received its number



Lemma.

Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

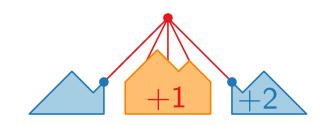
Visualization of Graphs

Lecture 3:

Straight-Line Drawings of Planar Graphs I:

Canonical Ordering and Shift Method

Jonathan Klawitter

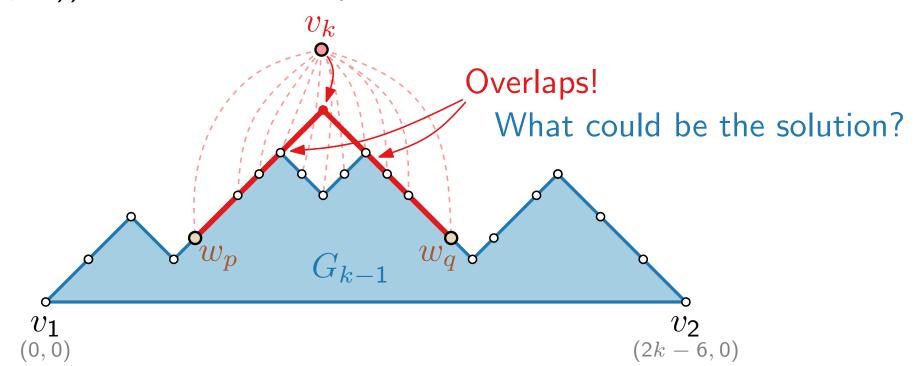


Shift Method – Idea

Drawing invariants:

 G_{k-1} is drawn such that

- v_1 is on (0,0), v_2 is on (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .



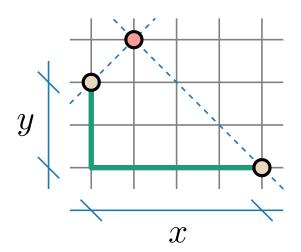
Shift Method – Idea

Drawing invariants:

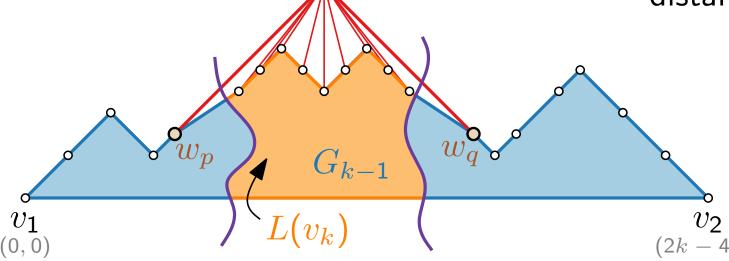
 G_{k-1} is drawn such that

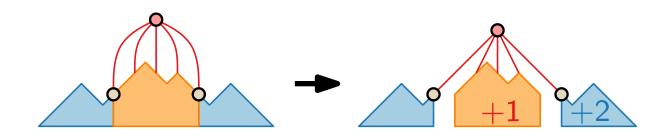
- v_1 is on (0,0), v_2 is on (2k-6,0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

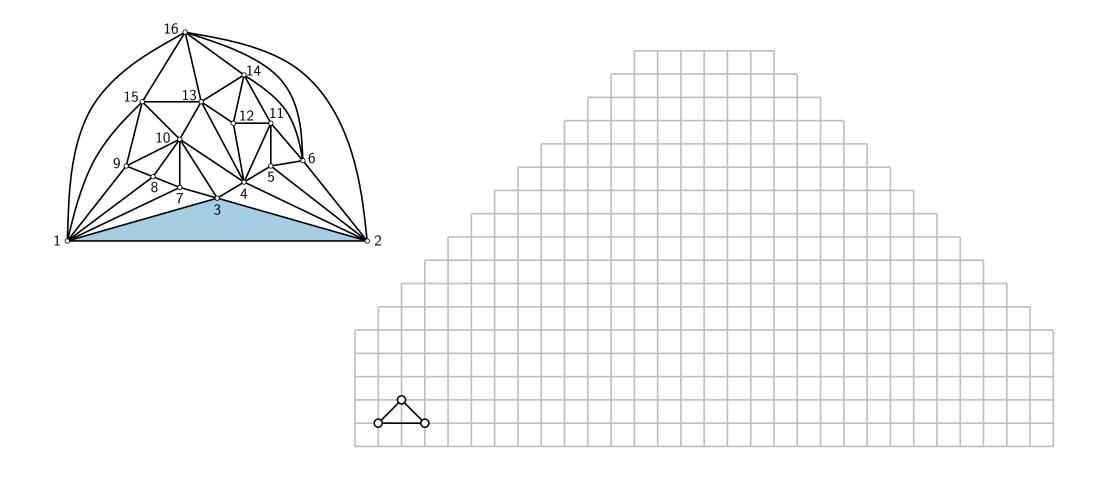
Does v_k land on grid?

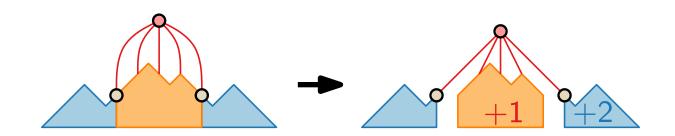


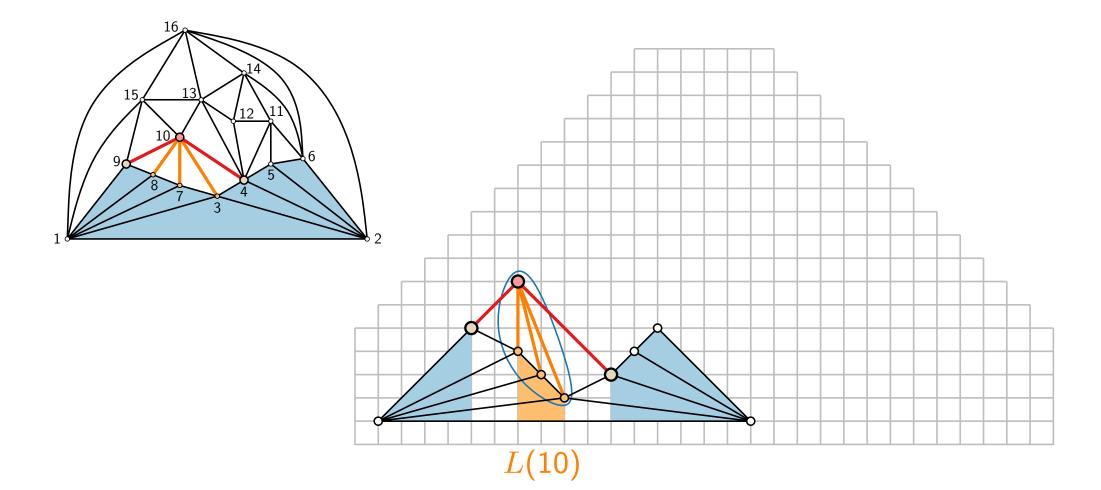
yes, beause w_p and w_q have even Manhattan distance

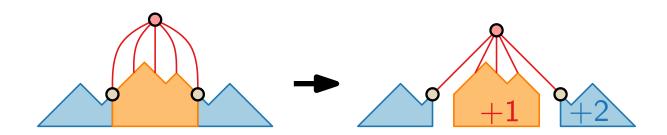


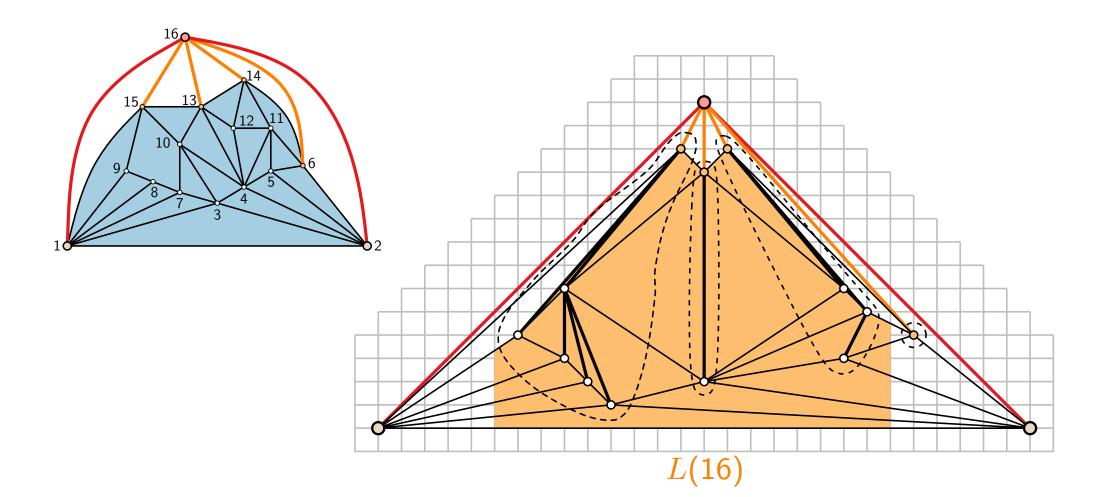


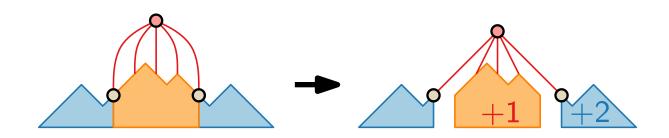










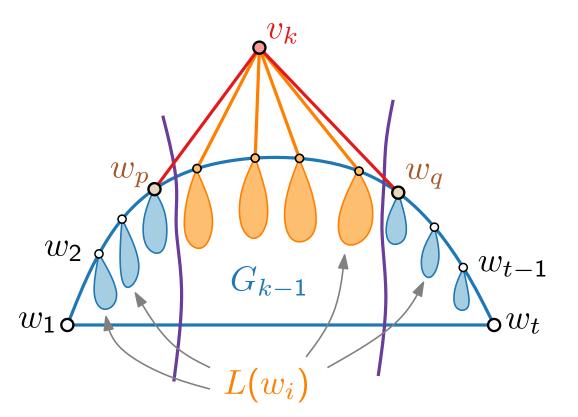




Shift Method – Planarity

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- \blacksquare and a forest in G_i , $1 \le i \le n-1$.



Lemma.

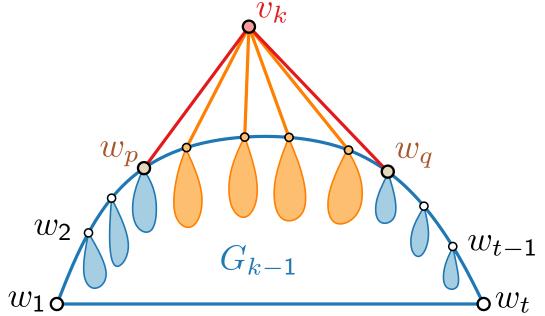
Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$, such that $\delta_q - \delta_p \ge 2$ and even. If we shift $L(w_i)$ by δ_i to the right, then we get a planar straight-line drawing.

Proof by induction:

If G_{k-1} is drawn planar and straight-line, then so is G_k .

Shift Method – Pseudocode

```
Let v_1, \ldots, v_n be a canonical order of G
for i = 1 to 3 do
 L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2
    denote the boundary of G_{i-1}
    and let w_p, \ldots, w_q be the neighbours of v_i
   for \forall v \in \cup_{j=p+1}^{q-1} L(w_j) do
                                       //\mathcal{O}(n^2) in total
    x(v) \leftarrow x(v) + 1
   for \forall v \in \cup_{j=q}^t L(w_j) do
                                                   //\mathcal{O}(n^2) in total
     x(v) \leftarrow x(v) + 2
   P(v_i) \leftarrow \text{intersection of } +1/-1 \text{ diagonals}
                through P(w_p) and P(w_q)
  L(v_i) \leftarrow \cup_{i=n+1}^{q-1} L(w_j) \cup \{v_i\}
```





Running Time?

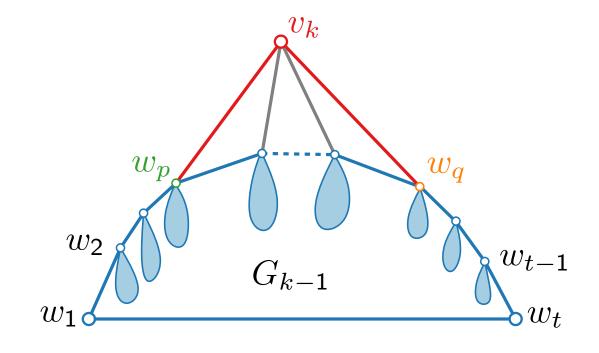
Shift Method – Linear Time Implementation

Idea 1.

To compute $x(v_k)$ & $y(v_k)$, we only need $y(w_p)$ and $y(w_q)$ and $x(w_q) - x(w_p)$

Idea 2.

Instead of storing explicit x-coordinates, we store x distances.



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

Shift Method – Linear Time Implementation

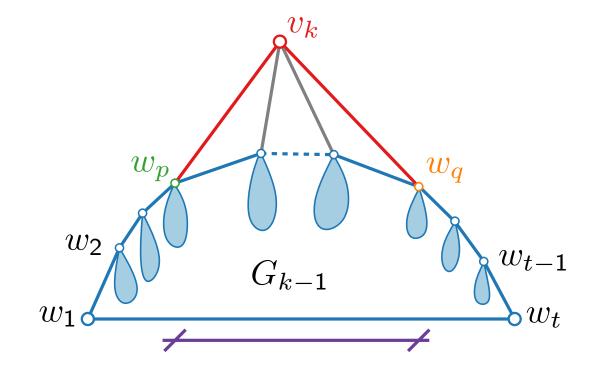
Idea 1.

To compute $x(v_k)$ & $y(v_k)$, we only need $y(w_p)$ and $y(w_q)$ and $x(w_q) - x(w_p)$

Idea 2.

Instead of storing explicit x-coordinates, we store x distances.

After x distance for v_n computed, use preorder traversal to compute all x-coordinates.



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2)
$$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$$

(3)
$$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$$

Shift Method – Linear Time Implementation

Relative x distance tree.

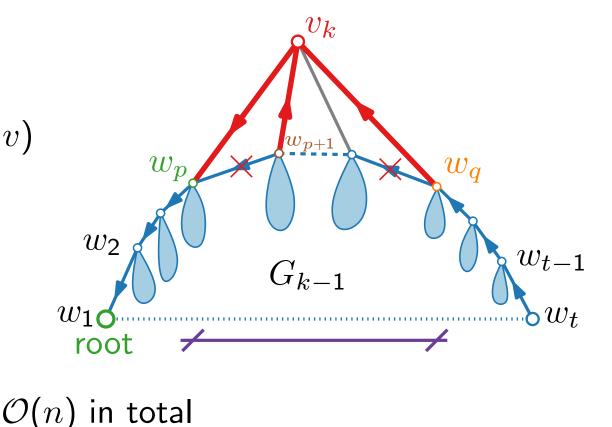
For each vertex v store

 \blacksquare x-offset $\Delta_x(v)$ from parent \blacksquare y-coordinate y(v)

Calculations.

- $\Delta_x(w_{p+1})++, \Delta_x(w_q)++$

- $\Delta_x(w_{p+1}) = \Delta_x(w_{p+1}) \Delta_x(v_k)$
- (1) $x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) y(w_p))$
- (2) $y(v_k) = \frac{1}{2}(x(w_q) x(w_p) + y(w_q) + y(w_p))$
- (3) $x(v_k) x(w_p) = \frac{1}{2}(x(w_q) x(w_p) + y(w_q) y(w_p))$



Literature

- [PGD Ch. 4.2] for detailed explanation of shift method
- [de Fraysseix, Pach, Pollack 1990] "How to draw a planar graph on a grid"
 - original paper on shift method