
1

Visualization of Graphs

Part I:
Planar Straight-Line Drawings

Jonathan Klawitter
+2+1

Lecture 3:
Straight-Line Drawings of Planar Graphs I:

Canonical Ordering and Shift Method

2 - 1

Planar Graphs
G

2 - 2

Planar Graphs
G

2 - 3

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

2 - 4

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

2 - 5

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

2 - 6

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

2 - 7

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

2 - 8

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

2 - 9

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

2 - 10

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

2 - 11

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

A planar graph can have many
planar embeddings.

2 - 12

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2 - 13

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

5 4

1

2 - 14

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

2 - 15

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

2 - 16

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

2 - 17

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

2 - 18

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

2 - 19

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

2 - 20

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

2 - 21

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof.

2 - 22

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:

2 - 23

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒

2 - 24

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n? ?

2 - 25

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

2 - 26

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 1− 0 + n = n+ 1

2 - 27

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 1− 0 + n = n+ 1 3

2 - 28

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 1− 0 + n = n+ 1 3

m > 1⇒

2 - 29

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 1− 0 + n = n+ 1 3

m > 1⇒ remove 1 edge e

2 - 30

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 1− 0 + n = n+ 1 3

m > 1⇒ remove 1 edge e ⇒ m− 1

2 - 31

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 1− 0 + n = n+ 1 3

m > 1⇒ remove 1 edge e ⇒ m− 1

e

2 - 32

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 1− 0 + n = n+ 1 3

m > 1⇒ remove 1 edge e ⇒ m− 1

e
⇒ c+ 1

2 - 33

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 1− 0 + n = n+ 1 3

m > 1⇒ remove 1 edge e ⇒ m− 1

e
⇒ c+ 1

e
⇒ f − 1

3 - 1

Properties of Planar Graphs

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

3 - 2

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

3 - 3

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

3 - 4

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

3 - 5

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces

3 - 6

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges

3 - 7

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m

3 - 8

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n

3 - 9

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n

3 - 10

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n

3 - 11

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m

3 - 12

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

3 - 13

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

3 - 14

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m

3 - 15

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m≤ 6n− 12

3 - 16

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m≤ 6n− 12 ⇒ f ≤ 2n− 4

3 - 17

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m≤ 6n− 12 ⇒ f ≤ 2n− 4

3 - 18

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m≤ 6n− 12

3.
∑

v∈V deg(v)

⇒ f ≤ 2n− 4

3 - 19

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m≤ 6n− 12

3.
∑

v∈V deg(v)

Handshaking-Lemma.∑
v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

3 - 20

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m≤ 6n− 12

3.
∑

v∈V deg(v)

Handshaking-Lemma.∑
v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

= 2m

3 - 21

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m≤ 6n− 12

3.
∑

v∈V deg(v)

Handshaking-Lemma.∑
v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

≤ 6n− 12= 2m

3 - 22

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m≤ 6n− 12

3.
∑

v∈V deg(v)

Handshaking-Lemma.∑
v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

≤ 6n− 12

⇒ minv∈V deg(v)

= 2m

3 - 23

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m≤ 6n− 12

3.
∑

v∈V deg(v)

Handshaking-Lemma.∑
v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

≤ 6n− 12

⇒ minv∈V deg(v) ≤ 1/n
∑

v∈V deg(v)

= 2m

3 - 24

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 ≤ 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m≤ 6n− 12

3.
∑

v∈V deg(v)

Handshaking-Lemma.∑
v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

≤ 6n− 12

⇒ minv∈V deg(v) ≤ 1/n
∑

v∈V deg(v) < 6

= 2m

4 - 1

Triangulations

1

2

3

4

5

A plane triangulation is a plane graph
where every face is a triangle.

4 - 2

Triangulations with planar embedding

1

2

3

4

5

A plane triangulation is a plane graph
where every face is a triangle.

4 - 3

Triangulations with planar embedding

1

2

3

4

5

A plane triangulation is a plane graph
where every face is a triangle.

4 - 4

Triangulations with planar embedding

1

2

3

4

5

A plane triangulation is a plane graph
where every face is a triangle.

4 - 5

Triangulations with planar embedding

1

2

3

4

5

A plane triangulation is a plane graph
where every face is a triangle.

4 - 6

Triangulations with planar embedding

1

2

3

4

5

A plane triangulation is a plane graph
where every face is a triangle.

4 - 7

Triangulations with planar embedding

1

2

3

4

5

A plane triangulation is a plane graph
where every face is a triangle.

4 - 8

Triangulations with planar embedding

1

2

3

4

5

A plane triangulation is a plane graph
where every face is a triangle.

4 - 9

Triangulations with planar embedding

1

2

3

4

5

A plane triangulation is a plane graph
where every face is a triangle.

4 - 10

Triangulations with planar embedding

1

2

3

4

5

A plane triangulation is a plane graph
where every face is a triangle.

4 - 11

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.

4 - 12

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

4 - 13

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

4 - 14

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

4 - 15

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

4 - 16

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

4 - 17

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique planar
embedding.

4 - 18

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique planar
embedding.

We focus on plane triangulations:

4 - 19

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique planar
embedding.

We focus on plane triangulations:

Lemma.
Every plane graph is subgraph of a plane
triangulation.

4 - 20

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique planar
embedding.

We focus on plane triangulations:

Lemma.
Every plane graph is subgraph of a plane
triangulation.

4 - 21

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique planar
embedding.

We focus on plane triangulations:

Lemma.
Every plane graph is subgraph of a plane
triangulation.

4 - 22

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique planar
embedding.

We focus on plane triangulations:

Lemma.
Every plane graph is subgraph of a plane
triangulation.

4 - 23

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique planar
embedding.

We focus on plane triangulations:

Lemma.
Every plane graph is subgraph of a plane
triangulation.

4 - 24

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique planar
embedding.

We focus on plane triangulations:

Lemma.
Every plane graph is subgraph of a plane
triangulation.

4 - 25

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique planar
embedding.

We focus on plane triangulations:

Lemma.
Every plane graph is subgraph of a plane
triangulation.

4 - 26

Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique planar
embedding.

We focus on plane triangulations:

Lemma.
Every plane graph is subgraph of a plane
triangulation.

5 - 1

Motivation

� Why planar and straight-line?

5 - 2

Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

� Why planar and straight-line?

5 - 3

Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

� Why planar and straight-line?

5 - 4

Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

� Why planar and straight-line?

5 - 5

Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

� Why planar and straight-line?

Drawing conventions

� No crossings ⇒ planar

� No bends ⇒ straight-line

5 - 6

Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

� Why planar and straight-line?

Drawing conventions

� No crossings ⇒ planar

� No bends ⇒ straight-line

Drawing aestethics

� Area

6 - 1

Towards Straight-Line Drawings

6 - 2

Towards Straight-Line Drawings

Characterization

6 - 3

Towards Straight-Line Drawings

Characterization

Recognition

6 - 4

Towards Straight-Line Drawings

Characterization

Recognition

Drawing

6 - 5

Towards Straight-Line Drawings

K5 K3,3

Theorem. [Kuratowski 1930]
G planar ⇔
neither K5 nor K3,3 minor of G

Characterization

Recognition

Drawing

6 - 6

Towards Straight-Line Drawings

K5 K3,3

Theorem. [Kuratowski 1930]
G planar ⇔
neither K5 nor K3,3 minor of G

Characterization

Recognition

Drawing

Let G be a graph with n vertices. There is an
O(n)-time algorithm to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]

6 - 7

Towards Straight-Line Drawings

K5 K3,3

Also computes a planar embedding in O(n).

Theorem. [Kuratowski 1930]
G planar ⇔
neither K5 nor K3,3 minor of G

Characterization

Recognition

Drawing

Let G be a graph with n vertices. There is an
O(n)-time algorithm to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]

6 - 8

Towards Straight-Line Drawings

K5 K3,3

Also computes a planar embedding in O(n).

Theorem. [Kuratowski 1930]
G planar ⇔
neither K5 nor K3,3 minor of G

Characterization

Recognition

DrawingEvery planar graph has an planar drawing
where the edges are straight-line segments.

Theorem. [Wagner 1936, Fáry 1948, Stein 1951]

Let G be a graph with n vertices. There is an
O(n)-time algorithm to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]

6 - 9

Towards Straight-Line Drawings

K5 K3,3

Also computes a planar embedding in O(n).

Theorem. [Kuratowski 1930]
G planar ⇔
neither K5 nor K3,3 minor of G

The algorithms implied by this theory produce drawings
with area not bounded by any polynomial on n.

Characterization

Recognition

DrawingEvery planar graph has an planar drawing
where the edges are straight-line segments.

Theorem. [Wagner 1936, Fáry 1948, Stein 1951]

Let G be a graph with n vertices. There is an
O(n)-time algorithm to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]

7 - 1

Planar straight-line drawings

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

7 - 2

Planar straight-line drawings

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

7 - 3

Planar straight-line drawings

Idea.

� Start with singe edge (v1, v2). Let this be G2.

� To obtain Gi+1, add vi+1 to Gi so that neighbours
of vi+1 are on the outer face of Gi.

� Neighbours of vi+1 in Gi have to form path of
length at least two.

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

7 - 4

Planar straight-line drawings

Idea.

� Start with singe edge (v1, v2). Let this be G2.

� To obtain Gi+1, add vi+1 to Gi so that neighbours
of vi+1 are on the outer face of Gi.

� Neighbours of vi+1 in Gi have to form path of
length at least two.

v1 v2

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

7 - 5

Planar straight-line drawings

Idea.

� Start with singe edge (v1, v2). Let this be G2.

� To obtain Gi+1, add vi+1 to Gi so that neighbours
of vi+1 are on the outer face of Gi.

� Neighbours of vi+1 in Gi have to form path of
length at least two.

v1 v2

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

7 - 6

Planar straight-line drawings

Idea.

� Start with singe edge (v1, v2). Let this be G2.

� To obtain Gi+1, add vi+1 to Gi so that neighbours
of vi+1 are on the outer face of Gi.

� Neighbours of vi+1 in Gi have to form path of
length at least two.

v1 v2

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

Gi

7 - 7

Planar straight-line drawings

Idea.

� Start with singe edge (v1, v2). Let this be G2.

� To obtain Gi+1, add vi+1 to Gi so that neighbours
of vi+1 are on the outer face of Gi.

� Neighbours of vi+1 in Gi have to form path of
length at least two.

vi+1

v1 v2

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

Gi

7 - 8

Planar straight-line drawings

Idea.

� Start with singe edge (v1, v2). Let this be G2.

� To obtain Gi+1, add vi+1 to Gi so that neighbours
of vi+1 are on the outer face of Gi.

� Neighbours of vi+1 in Gi have to form path of
length at least two.

vi+1

v1 v2

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

Gi

7 - 9

Planar straight-line drawings

Idea.

� Start with singe edge (v1, v2). Let this be G2.

� To obtain Gi+1, add vi+1 to Gi so that neighbours
of vi+1 are on the outer face of Gi.

� Neighbours of vi+1 in Gi have to form path of
length at least two.

vi+1

v1 v2

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

Gi

8

Visualization of Graphs

Part II:
Canonical Order

Lecture 3:
Straight-Line Drawings of Planar Graphs I:

Canonical Ordering and Shift Method

Jonathan Klawitter
+2+1

9 - 1

Canonical Order – Definition

Definition.
Let G = (V,E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:
(C1) Vertices {v1, . . . vk} induce a biconnected internally triangulated

graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk

consecutively.

9 - 2

Canonical Order – Definition

Definition.
Let G = (V,E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:
(C1) Vertices {v1, . . . vk} induce a biconnected internally triangulated

graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk

consecutively.

9 - 3

Canonical Order – Definition

v2

Gk

v1

Definition.
Let G = (V,E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:
(C1) Vertices {v1, . . . vk} induce a biconnected internally triangulated

graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk

consecutively.

9 - 4

Canonical Order – Definition

v2

Gk

v1

Definition.
Let G = (V,E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:
(C1) Vertices {v1, . . . vk} induce a biconnected internally triangulated

graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk

consecutively.

9 - 5

Canonical Order – Definition

vk+1

v2

Gk

v1

Definition.
Let G = (V,E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:
(C1) Vertices {v1, . . . vk} induce a biconnected internally triangulated

graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk

consecutively.

10 - 1

Canonical Order – Example

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 2

Canonical Order – Example

G16

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 3

Canonical Order – Example

G16

v1 v2

v16

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 4

Canonical Order – Example

G15

v1 v2

v16

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 5

Canonical Order – Example

v15

G15

v1 v2

v16

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 6

Canonical Order – Example

G14

v1 v2

v16

v15

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 7

Canonical Order – Example

v14

G14

v1 v2

v16

v15

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 8

Canonical Order – Example

G13

v1 v2

v16

v15

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 9

Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 10

Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 11

Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 12

Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 13

Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 14

Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 15

Canonical Order – Example

chord

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 16

Canonical Order – Example

chord

G13

v1 v2

v16

v15

v13

v14

edge joining two
nonadjacent
vertices in a cycle

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 17

Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 18

Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

10 - 19

Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

v12

10 - 20

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G11

v16

v15

v13

v14
v12

10 - 21

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G11

v16

v15

v13

v14

v11

v12

10 - 22

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G10

v16

v15

v13

v14

v11

v12

10 - 23

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G9

v16

v15

v13

v14

v11

v12

v10

10 - 24

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G8

v16

v15

v13

v14

v11

v12

v10

v9

10 - 25

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G7

v16

v15

v13

v14

v11

v12

v10

v9

v8

10 - 26

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G6

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

10 - 27

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G5

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6

10 - 28

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G4

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6
v5

10 - 29

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G3

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6
v5

v4

10 - 30

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6
v5

v4
v3

10 - 31

Canonical Order – Example

v3
v7

v8

v9

v12

v13
v10

v11

v5
v4

v6

v1 v2

v16

v15

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

11 - 1

Canonical Order – Existence (C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

Lemma.
Every triangulated plane graph has a canonical order.

11 - 2

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

Lemma.
Every triangulated plane graph has a canonical order.

11 - 3

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

Lemma.
Every triangulated plane graph has a canonical order.

11 - 4

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

3

Lemma.
Every triangulated plane graph has a canonical order.

11 - 5

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

3

3Lemma.
Every triangulated plane graph has a canonical order.

11 - 6

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

3

3

3

Lemma.
Every triangulated plane graph has a canonical order.

11 - 7

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

3

3

3

Lemma.
Every triangulated plane graph has a canonical order.

11 - 8

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

Lemma.
Every triangulated plane graph has a canonical order.

11 - 9

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

Lemma.
Every triangulated plane graph has a canonical order.

11 - 10

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

Lemma.
Every triangulated plane graph has a canonical order.

11 - 11

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

vk

Lemma.
Every triangulated plane graph has a canonical order.

11 - 12

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

vk

Lemma.
Every triangulated plane graph has a canonical order.

11 - 13

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

Lemma.
Every triangulated plane graph has a canonical order.

11 - 14

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

Lemma.
Every triangulated plane graph has a canonical order.

11 - 15

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

Lemma.
Every triangulated plane graph has a canonical order.

11 - 16

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertex

Lemma.
Every triangulated plane graph has a canonical order.

11 - 17

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
incident to a

chord

Lemma.
Every triangulated plane graph has a canonical order.

11 - 18

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Have to show:
1. vk not incident to

chord is sufficient
2. Such vk exists

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
incident to a

chord

Lemma.
Every triangulated plane graph has a canonical order.

11 - 19

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Have to show:
1. vk not incident to

chord is sufficient
2. Such vk exists

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
incident to a

chord

Lemma.
Every triangulated plane graph has a canonical order.

11 - 20

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Have to show:
1. vk not incident to

chord is sufficient
2. Such vk exists

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
incident to a

chord

Lemma.
Every triangulated plane graph has a canonical order.

12 - 1

Canonical Order – Existence

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

12 - 2

Canonical Order – Existence

vkGk

v1 v2

Gk−1

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

12 - 3

Canonical Order – Existence

v1 v2

Gk−1

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

12 - 4

Canonical Order – Existence

v1 v2

Gk−1

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

12 - 5

Canonical Order – Existence

v1 v2

Gk−1

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

12 - 6

Canonical Order – Existence

vkGk

v1 v2

Gk−1

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

12 - 7

Canonical Order – Existence

vkGk

v1 v2

contradiction to edges being
consecutive

Gk−1

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

12 - 8

Canonical Order – Existence

vkGk

v1 v2

contradiction to edges being
consecutive

Gk−1

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

12 - 9

Canonical Order – Existence

vkGk

v1 v2

contradiction to edges being
consecutive

Gk−1

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

12 - 10

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

12 - 11

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Gk not biconnected

12 - 12

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

12 - 13

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

12 - 14

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

12 - 15

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

12 - 16

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

12 - 17

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

12 - 18

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

12 - 19

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

12 - 20

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

12 - 21

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

12 - 22

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

vk Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

12 - 23

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges being
consecutive

Gk−1

vk

This completes proof of Lemma. �

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk not biconnected

13 - 1

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

13 - 2

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

outer face

13 - 3

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

outer face

13 - 4

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

outer face

13 - 5

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

13 - 6

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

13 - 7

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

13 - 8

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

13 - 9

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

13 - 10

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

13 - 11

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

13 - 12

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

13 - 13

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

13 - 14

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

v

13 - 15

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk

13 - 16

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk

13 - 17

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk

13 - 18

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk

13 - 19

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk

13 - 20

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk

13 - 21

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk

13 - 22

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk

Lemma.
Algorithm CanonicalOrder
computes a canonical order of
a plane graph in O(n) time.

13 - 23

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk

// keep list with candidates

Lemma.
Algorithm CanonicalOrder
computes a canonical order of
a plane graph in O(n) time.

13 - 24

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk

// keep list with candidates

// O(n) in total

Lemma.
Algorithm CanonicalOrder
computes a canonical order of
a plane graph in O(n) time.

13 - 25

Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk

// keep list with candidates

// O(n) in total

// O(m) = O(n) in total

Lemma.
Algorithm CanonicalOrder
computes a canonical order of
a plane graph in O(n) time.

14

Visualization of Graphs

Part III:
Shift Method

Jonathan Klawitter
+2+1

Lecture 3:
Straight-Line Drawings of Planar Graphs I:

Canonical Ordering and Shift Method

15 - 1

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

Gk−1

15 - 2

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k − 6, 0)

Gk−1

15 - 3

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k − 6, 0)

Gk−1

15 - 4

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k − 6, 0)

Gk−1

15 - 5

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

vk

(0, 0) (2k − 6, 0)

wp wqGk−1

15 - 6

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

vk

(0, 0) (2k − 6, 0)

wp wqGk−1

15 - 7

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!

vk

(0, 0) (2k − 6, 0)

wp wqGk−1

15 - 8

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!
What could be the solution?

vk

(0, 0) (2k − 6, 0)

wp wqGk−1

15 - 9

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What could be the solution?

vk

(0, 0) (2k − 6, 0)

wp wqGk−1

15 - 10

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What could be the solution?

vk

(0, 0) (2k − 6, 0)

wp wqGk−1

15 - 11

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

15 - 12

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

15 - 13

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?

15 - 14

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?

15 - 15

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

x

y

Gk−1

Does vk land on grid?

15 - 16

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

x

y

Gk−1

Does vk land on grid?

15 - 17

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?

x

y

15 - 18

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?

x

y

15 - 19

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

yes, beause wp and wq

have even Manhattan
distance

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?

x

y

15 - 20

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

L(vk)

vk

yes, beause wp and wq

have even Manhattan
distance

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?

x

y

16 - 1

Shift Method – Example

16 - 2

Shift Method – Example

16 - 3

Shift Method – Example

+1 +2

16 - 4

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 5

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 6

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 7

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 8

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 9

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 10

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 11

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 12

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 13

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 14

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 15

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 16

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 17

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 18

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 19

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 20

Shift Method – Example

L(10)

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 21

Shift Method – Example

L(11)

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 22

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 23

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

16 - 24

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(13)

16 - 25

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(14)

16 - 26

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(15)

16 - 27

Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(16)

16 - 28

Shift Method – Example

(0, 0) (2n− 4, 0)

(n− 2, n− 2)

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

17 - 1

Shift Method – Planarity

Gk−1

17 - 2

Shift Method – Planarity

Gk−1

vk

17 - 3

Shift Method – Planarity

w1 wt

Gk−1
w2

wp wq

wt−1

vk

17 - 4

Shift Method – Planarity

w1 wt

Gk−1

covered vertices
w2

wp wq

wt−1

vk

17 - 5

Shift Method – Planarity

w1 wt

Gk−1

covered vertices

Observations.

� Each internal vertex is covered exactly once.

� Covering relation defines a tree in G

� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

vk

17 - 6

Shift Method – Planarity

w1 wt

Gk−1

covered vertices

Observations.

� Each internal vertex is covered exactly once.

� Covering relation defines a tree in G

� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

vk

17 - 7

Shift Method – Planarity

w1 wt

Gk−1

covered vertices

Observations.

� Each internal vertex is covered exactly once.

� Covering relation defines a tree in G

� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

vk

17 - 8

Shift Method – Planarity

w1 wt

Gk−1

Observations.

� Each internal vertex is covered exactly once.

� Covering relation defines a tree in G

� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

vk

17 - 9

Shift Method – Planarity

w1 wt

Gk−1

Observations.

� Each internal vertex is covered exactly once.

� Covering relation defines a tree in G

� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

vk

17 - 10

Shift Method – Planarity

w1 wt

Gk−1

Observations.

� Each internal vertex is covered exactly once.

� Covering relation defines a tree in G

� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

vk

17 - 11

Shift Method – Planarity

w1 wt

Gk−1

Observations.

� Each internal vertex is covered exactly once.

� Covering relation defines a tree in G

� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

vk

Lemma.
Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈ N,
such that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the right,
then we get a planar straight-line
drawing.

17 - 12

Shift Method – Planarity

w1 wt

Gk−1

Observations.

� Each internal vertex is covered exactly once.

� Covering relation defines a tree in G

� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

vk

Lemma.
Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈ N,
such that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the right,
then we get a planar straight-line
drawing.

17 - 13

Shift Method – Planarity

w1 wt

Gk−1

Observations.

� Each internal vertex is covered exactly once.

� Covering relation defines a tree in G

� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

Proof by induction:
If Gk−1 is drawn planar and straight-line,
then so is Gk.

vk

Lemma.
Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈ N,
such that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the right,
then we get a planar straight-line
drawing.

18 - 1

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

18 - 2

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

18 - 3

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

18 - 4

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

w1 wt

Gk−1
w2

wp wq

wt−1

vk

18 - 5

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

w1 wt

Gk−1
w2

wp wq

wt−1

vk

18 - 6

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

w1 wt

Gk−1
w2

wp wq

wt−1

vk

18 - 7

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

+1

w1 wt

Gk−1
w2

wp wq

wt−1

vk

18 - 8

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

+1

w1 wt

Gk−1
w2

wp wq

wt−1

vk

18 - 9

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

+1 +2

w1 wt

Gk−1
w2

wp wq

wt−1

vk

18 - 10

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

+1 +2

w1 wt

Gk−1
w2

wp wq

wt−1

vk

18 - 11

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

+1 +2

w1 wt

Gk−1
w2

wp wq

wt−1

vk

18 - 12

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

+1 +2

w1 wt

Gk−1
w2

wp wq

wt−1

vk

Running Time?

18 - 13

Shift Method – Pseudocode

// O(n2) in total

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}

+1 +2
// O(n2) in total

w1 wt

Gk−1
w2

wp wq

wt−1

vk

Running Time?

19 - 1

Shift Method – Linear Time Implementation
vk

Gk−1
w2

wp wq

wt−1

w1 wt

19 - 2

Shift Method – Linear Time Implementation

Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

vk

Gk−1
w2

wp wq

wt−1

w1 wt

19 - 3

Shift Method – Linear Time Implementation

Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

w1 wt

19 - 4

Shift Method – Linear Time Implementation

Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

w1 wt

19 - 5

Shift Method – Linear Time Implementation

Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

Idea 2.
Instead of storing explicit x-coordinates,
we store x distances.

vk

Gk−1
w2

wp wq

wt−1

w1 wt

19 - 6

Shift Method – Linear Time Implementation

Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

Idea 2.
Instead of storing explicit x-coordinates,
we store x distances.

vk

Gk−1
w2

wp wq

wt−1

w1 wt

19 - 7

Shift Method – Linear Time Implementation

Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

Idea 2.
Instead of storing explicit x-coordinates,
we store x distances.

vk

Gk−1
w2

wp wq

wt−1

w1 wtAfter x distance for vn computed, use preorder
traversal to compute all x-coordinates.

19 - 8

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

w1 wt

� y-coordinate y(v)

19 - 9

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root
w1 wt

� y-coordinate y(v)

19 - 10

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root
w1 wt

� y-coordinate y(v)

19 - 11

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root
w1 wt

� y-coordinate y(v)

19 - 12

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root
w1 wt

� y-coordinate y(v)

19 - 13

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root
w1 wt

� y-coordinate y(v) wp+1

19 - 14

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root

Calculations.

� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . .+ ∆x(wq)

� ∆x(vk) by (3)

� ∆x(wq) = ∆x(wp, wq)−∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)−∆x(vk)

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1

19 - 15

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root

Calculations.

� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . .+ ∆x(wq)

� ∆x(vk) by (3)

� ∆x(wq) = ∆x(wp, wq)−∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)−∆x(vk)

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1

19 - 16

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root

Calculations.

� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . .+ ∆x(wq)

� ∆x(vk) by (3)

� ∆x(wq) = ∆x(wp, wq)−∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)−∆x(vk)

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1

19 - 17

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root

Calculations.

� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . .+ ∆x(wq)

� ∆x(vk) by (3)

� ∆x(wq) = ∆x(wp, wq)−∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)−∆x(vk)

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1

19 - 18

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root

Calculations.

� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . .+ ∆x(wq)

� ∆x(vk) by (3)

� ∆x(wq) = ∆x(wp, wq)−∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)−∆x(vk)

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1

19 - 19

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root

Calculations.

� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . .+ ∆x(wq)

� ∆x(vk) by (3)

� ∆x(wq) = ∆x(wp, wq)−∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)−∆x(vk)

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1

19 - 20

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root

Calculations.

� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . .+ ∆x(wq)

� ∆x(vk) by (3)

� ∆x(wq) = ∆x(wp, wq)−∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)−∆x(vk)

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1

O(n) in total

20

Literature

� [PGD Ch. 4.2] for detailed explanation of shift method

� [de Fraysseix, Pach, Pollack 1990] “How to draw a planar graph on a grid”
– original paper on shift method

	Planar Straight-Line Drawings
	Planar Graphs
	Properties of Planar Graphs
	Triangulations
	Motivation
	Towards Straight-Line Drawings
	Planar straight-line drawings

	Canonical Order
	Definition
	Example
	Existence
	Implementation

	Shift Method
	Idea
	Example
	Planarity
	Pseudocode
	Linear Time Implementation

	Literature

