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Visualization of Graphs

Part I:
Planar Straight-Line Drawings

Jonathan Klawitter
+2+1

Lecture 3:
Straight-Line Drawings of Planar Graphs I:

Canonical Ordering and Shift Method



2 - 1

Planar Graphs
G



2 - 2

Planar Graphs
G



2 - 3

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.



2 - 4

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.



2 - 5

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5



2 - 6

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)



2 - 7

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)



2 - 8

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)



2 - 9

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)



2 - 10

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)



2 - 11

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

A planar graph can have many
planar embeddings.



2 - 12

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)
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G is planar:
it can be drawn in such a way that
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Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
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2 - 23

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒



2 - 24

Planar Graphs
G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
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G is planar:
it can be drawn in such a way that
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it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
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it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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3→ (4, 1, 2)
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A planar graph can have many
planar embeddings.

2
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planar drawings!
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1
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G

G is planar:
it can be drawn in such a way that
no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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3→ (4, 2, 1)
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planar embeddings.

2
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planar drawings!

faces: Connected region of the plane
bounded by edges
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1

outer face
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Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 1− 0 + n = n+ 1 3

m > 1⇒ remove 1 edge e ⇒ m− 1

e
⇒ c+ 1

e
⇒ f − 1
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Properties of Planar Graphs

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five
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#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five
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Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

� Why planar and straight-line?

Drawing conventions

� No crossings ⇒ planar

� No bends ⇒ straight-line

Drawing aestethics

� Area
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Let G be a graph with n vertices. There is an
O(n)-time algorithm to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]



6 - 9

Towards Straight-Line Drawings

K5 K3,3

Also computes a planar embedding in O(n).

Theorem. [Kuratowski 1930]
G planar ⇔
neither K5 nor K3,3 minor of G

The algorithms implied by this theory produce drawings
with area not bounded by any polynomial on n.

Characterization

Recognition

DrawingEvery planar graph has an planar drawing
where the edges are straight-line segments.

Theorem. [Wagner 1936, Fáry 1948, Stein 1951]

Let G be a graph with n vertices. There is an
O(n)-time algorithm to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]
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� To obtain Gi+1, add vi+1 to Gi so that neighbours
of vi+1 are on the outer face of Gi.

� Neighbours of vi+1 in Gi have to form path of
length at least two.

vi+1

v1 v2

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

Gi
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� Start with singe edge (v1, v2). Let this be G2.

� To obtain Gi+1, add vi+1 to Gi so that neighbours
of vi+1 are on the outer face of Gi.

� Neighbours of vi+1 in Gi have to form path of
length at least two.

vi+1

v1 v2

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

Gi
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Planar straight-line drawings

Idea.

� Start with singe edge (v1, v2). Let this be G2.

� To obtain Gi+1, add vi+1 to Gi so that neighbours
of vi+1 are on the outer face of Gi.

� Neighbours of vi+1 in Gi have to form path of
length at least two.

vi+1

v1 v2

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]
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Visualization of Graphs

Part II:
Canonical Order

Lecture 3:
Straight-Line Drawings of Planar Graphs I:

Canonical Ordering and Shift Method

Jonathan Klawitter
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Canonical Order – Definition

Definition.
Let G = (V,E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:
(C1) Vertices {v1, . . . vk} induce a biconnected internally triangulated

graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk

consecutively.
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Canonical Order – Definition

Definition.
Let G = (V,E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:
(C1) Vertices {v1, . . . vk} induce a biconnected internally triangulated

graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk

consecutively.
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Canonical Order – Definition

v2

Gk

v1

Definition.
Let G = (V,E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:
(C1) Vertices {v1, . . . vk} induce a biconnected internally triangulated

graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk

consecutively.
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Canonical Order – Definition

v2

Gk

v1

Definition.
Let G = (V,E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:
(C1) Vertices {v1, . . . vk} induce a biconnected internally triangulated

graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk

consecutively.
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Canonical Order – Definition

vk+1

v2

Gk

v1

Definition.
Let G = (V,E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:
(C1) Vertices {v1, . . . vk} induce a biconnected internally triangulated

graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk

consecutively.
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Canonical Order – Example

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G16

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G16

v1 v2

v16

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G15

v1 v2

v16

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

v15

G15

v1 v2

v16

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G14

v1 v2

v16

v15

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

v14

G14

v1 v2

v16

v15

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G13

v1 v2

v16

v15

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

chord

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

chord

G13

v1 v2

v16

v15

v13

v14

edge joining two
nonadjacent
vertices in a cycle

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

v12
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G11

v16

v15

v13

v14
v12
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G11

v16

v15

v13

v14

v11

v12
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G10

v16

v15

v13

v14

v11

v12
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G9

v16

v15

v13

v14

v11

v12

v10
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G8

v16

v15

v13

v14

v11

v12

v10

v9
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G7

v16

v15

v13

v14

v11

v12

v10

v9

v8
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G6

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G5

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G4

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6
v5
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

G3

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6
v5

v4
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6
v5

v4
v3
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Canonical Order – Example

v3
v7

v8

v9

v12

v13
v10

v11

v5
v4

v6

v1 v2

v16

v15

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the
boundary of Gk consecutively.
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Canonical Order – Existence (C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

3

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

3

3Lemma.
Every triangulated plane graph has a canonical order.
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

3

3

3

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

3

3

3

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that
conditions (C1) – (C3) hold for k + 1 ≤ i ≤ n.

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of
Gk, neighbors of vk+1 in Gk

consecutive on boundary

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the
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CanonicalOrder(G = (V,E), (v1, v2, vn))
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for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours
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# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

v
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk

Lemma.
Algorithm CanonicalOrder
computes a canonical order of
a plane graph in O(n) time.
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk

// keep list with candidates

Lemma.
Algorithm CanonicalOrder
computes a canonical order of
a plane graph in O(n) time.
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk

// keep list with candidates

// O(n) in total

Lemma.
Algorithm CanonicalOrder
computes a canonical order of
a plane graph in O(n) time.
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

mark(v1), mark(v2), out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0
vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the
unmarked neighbors of vk

out(wi) ← true for all p < i < q
update number of chords for wi

and its neighbours

� chord(v):
# chords adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk

// keep list with candidates

// O(n) in total

// O(m) = O(n) in total

Lemma.
Algorithm CanonicalOrder
computes a canonical order of
a plane graph in O(n) time.
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Visualization of Graphs

Part III:
Shift Method

Jonathan Klawitter
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Lecture 3:
Straight-Line Drawings of Planar Graphs I:

Canonical Ordering and Shift Method
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

Gk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k − 6, 0)

Gk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k − 6, 0)

Gk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k − 6, 0)

Gk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

vk

(0, 0) (2k − 6, 0)

wp wqGk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

vk

(0, 0) (2k − 6, 0)

wp wqGk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!

vk

(0, 0) (2k − 6, 0)

wp wqGk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!
What could be the solution?

vk

(0, 0) (2k − 6, 0)

wp wqGk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What could be the solution?

vk

(0, 0) (2k − 6, 0)

wp wqGk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What could be the solution?

vk

(0, 0) (2k − 6, 0)

wp wqGk−1



15 - 11

Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

x

y

Gk−1

Does vk land on grid?
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

x

y

Gk−1

Does vk land on grid?
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?

x

y
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?

x

y
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

vk

yes, beause wp and wq

have even Manhattan
distance

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?

x

y
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is on (0, 0), v2 is on (2k − 6, 0),

� boundary of Gk−1 (minus edge (v1, v2)) is drawn
x-monotone,

� each edge of the boundary of Gk−1
(minus edge (v1, v2)) is drawn with slopes ±1.

L(vk)

vk

yes, beause wp and wq

have even Manhattan
distance

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Does vk land on grid?

x

y
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Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do
L(vi)← {vi}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1

and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P (vi)← intersection of +1/−1 diagonals
through P (wp) and P (wq)

L(vi)← ∪q−1
j=p+1L(wj) ∪ {vi}
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Literature

� [PGD Ch. 4.2] for detailed explanation of shift method

� [de Fraysseix, Pach, Pollack 1990] “How to draw a planar graph on a grid”
– original paper on shift method
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