Visualization of Graphs

Lecture 3:
Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Part I:

Planar Straight-Line Drawings

Planar Graphs

Planar Graphs

Planar Graphs

G is planar: it can be drawn in such a way that no edges cross each other.

Planar Graphs

G is planar: it can be drawn in such a way that no edges cross each other.
planar embedding:
Clockwise orientation of adjacent vertices around each vertex.

Planar Graphs

G is planar: it can be drawn in such a way that no edges cross each other.
planar embedding:
Clockwise orientation of adjacent vertices around each vertex.

Planar Graphs

G is planar: it can be drawn in such a way that no edges cross each other.
planar embedding:
Clockwise orientation of adjacent vertices around each vertex.

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.
planar embedding:
Clockwise orientation of adjacent vertices around each vertex.

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.
planar embedding:
Clockwise orientation of adjacent vertices around each vertex.

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.
planar embedding:
Clockwise orientation of adjacent vertices around each vertex.

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.
planar embedding:
Clockwise orientation of adjacent vertices around each vertex.

Planar Graphs

G is planar: it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

Planar Graphs

G is planar: it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
faces: Connected region of the plane bounded by edges

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!家
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
f+n=
\end{gathered}
$$

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
+n+n=
\end{gathered}
$$

Proof.

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces - \#edges }+ \text { \#vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
+\quad n+1
\end{gathered}
$$

Proof. By induction on m :

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces - \#edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
+n+n=
\end{gathered}
$$

Proof. By induction on m :

$$
m=0 \Rightarrow
$$

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces - \#edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
+n+n=
\end{gathered}
$$

Proof. By induction on m :

$$
m=0 \Rightarrow f=? \text { and } c=?
$$

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces - \#edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
+n+n=
\end{gathered}
$$

Proof. By induction on m :

$$
m=0 \Rightarrow f=1 \text { and } c=n
$$

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
f+n=
\end{gathered}
$$

Proof. By induction on m :

$$
\begin{aligned}
m=0 & \Rightarrow f=1 \text { and } c=n \\
& \Rightarrow 1-0+n=n+1
\end{aligned}
$$

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
f+n=
\end{gathered}
$$

Proof. By induction on m :

$$
\begin{aligned}
m=0 & \Rightarrow f=1 \text { and } c=n \\
& \Rightarrow 1-0+n=n+1
\end{aligned}
$$

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
f+n=
\end{gathered}
$$

Proof. By induction on m :

$$
\begin{aligned}
m=0 & \Rightarrow f=1 \text { and } c=n \\
& \Rightarrow 1-0+n=n+1 \\
m>1 & \Rightarrow
\end{aligned}
$$

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces - \#edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
+n+n=
\end{gathered}
$$

Proof. By induction on m :

$$
\begin{aligned}
m=0 & \Rightarrow f=1 \text { and } c=n \\
& \Rightarrow 1-0+n=n+1 \\
m>1 & \Rightarrow \text { remove } 1 \text { edge } e
\end{aligned}
$$

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces - \#edges }+ \text { \#vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
+\quad n+1
\end{gathered}
$$

Proof. By induction on m :

$$
\begin{aligned}
m=0 & \Rightarrow f=1 \text { and } c=n \\
& \Rightarrow 1-0+n=n+1 \checkmark \\
m>1 & \Rightarrow \text { remove } 1 \text { edge } e \Rightarrow m-1
\end{aligned}
$$

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
$1 \rightarrow(2,3,5)$
$2 \rightarrow(3,1,4)$
$3 \rightarrow(4,1,2)$
$4 \rightarrow(5,3,2)$
$5 \rightarrow(1,4)$

faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
\end{gathered}
$$

Proof. By induction on m :

$$
\begin{aligned}
& m=0 \Rightarrow f=1 \text { and } c=n \\
& \Rightarrow 1-0+n=n+1 \\
& m>1 \Rightarrow \text { remove } 1 \text { edge } e \Rightarrow m-1 \\
& \text { So }<\infty
\end{aligned}
$$

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
$1 \rightarrow(2,3,5)$
$2 \rightarrow(3,1,4)$
$3 \rightarrow(4,1,2)$
$4 \rightarrow(5,3,2)$
$5 \rightarrow(1,4)$

faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
\end{gathered}
$$

Proof. By induction on m :

$$
\begin{aligned}
m=0 & \Rightarrow f=1 \text { and } c=n \\
& \Rightarrow 1-0+n=n+1 \\
m>1 & \Rightarrow \text { remove } 1 \text { edge } e \Rightarrow m-1 \\
S o=e & \Rightarrow c+1
\end{aligned}
$$

Planar Graphs

G is planar:
it can be drawn in such a way that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!
$1 \rightarrow(2,3,5)$
$2 \rightarrow(3,1,4)$
$3 \rightarrow(4,1,2)$
$4 \rightarrow(5,3,2)$
$5 \rightarrow(1,4)$

faces: Connected region of the plane bounded by edges

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices } \\
= \\
f-m \text { conn.comp. }+1 \\
f+n=
\end{gathered}
$$

Proof. By induction on m :

$$
\begin{aligned}
m=0 & \Rightarrow f=1 \text { and } c=n \\
& \Rightarrow 1-0+n=n+1 \\
m>1 & \Rightarrow \text { remove } 1 \text { edge } e \Rightarrow m-1 \\
& \Rightarrow c+1 \quad
\end{aligned}
$$

Properties of Planar Graphs

Euler's polyhedra formula.

$\#$ faces - \#edges $+\#$ vertices $=\#$ conn.comp. +1 $f-m+n=c+1$

Properties of Planar Graphs

```
Euler's polyhedra formula.
    #faces - #edges + #vertices = #conn.comp. + 1
    f - m + n = c +1
```

Theorem. G simple planar graph with $n \geq 3$.

Properties of Planar Graphs

Euler's polyhedra formula.

$\#$ faces - \#edges $+\#$ vertices $=\#$ conn.comp. +1 $f-m+n=c+1$

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$

Properties of Planar Graphs

```
Euler's polyhedra formula.
    #faces - #edges + #vertices = #conn.comp. + 1
        f - m n n c +1
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$

Proof. 1.

Properties of Planar Graphs

```
Euler's polyhedra formula.
    \#faces - \#edges + \#vertices \(=\#\) conn.comp. +1
        \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$

Proof. 1. Every edge incident to ≤ 2 faces

Properties of Planar Graphs

```
Euler's polyhedra formula.
    \#faces - \#edges + \#vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

Properties of Planar Graphs

```
Euler's polyhedra formula.
    \(\#\) faces \(-\#\) edges \(+\#\) vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

Properties of Planar Graphs

```
Euler's polyhedra formula.
    \#faces - \#edges + \#vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n
$$

Properties of Planar Graphs

```
Euler's polyhedra formula.
    \#faces - \#edges + \#vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n
$$

Properties of Planar Graphs

```
Euler's polyhedra formula.
    \#faces - \#edges + \#vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n
$$

Properties of Planar Graphs

```
Euler's polyhedra formula.
    \#faces - \#edges + \#vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

Properties of Planar Graphs

Euler's polyhedra formula.

```
\#faces - \#edges + \#vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

Properties of Planar Graphs

Euler's polyhedra formula.

```
\#faces - \#edges + \#vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6 \quad$ 2. $f \leq 2 n-4$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

Properties of Planar Graphs

Euler's polyhedra formula.

```
\#faces - \#edges + \#vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6 \quad$ 2. $f \leq 2 n-4$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

2. $3 f \leq 2 m$

Properties of Planar Graphs

Euler's polyhedra formula.

```
\#faces - \#edges + \#vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$
2. $f \leq 2 n-4$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

2. $3 f \leq 2 m \leq 6 n-12$

Properties of Planar Graphs

Euler's polyhedra formula.

```
\#faces - \#edges + \#vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$
2. $f \leq 2 n-4$

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

2. $3 f \leq 2 m \leq 6 n-12 \Rightarrow f \leq 2 n-4$

Properties of Planar Graphs

Euler's polyhedra formula.

```
\(\#\) faces \(-\#\) edges \(+\#\) vertices \(=\#\) conn.comp. +1
    \(f-m+n=c+1\)
```

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$
2. $f \leq 2 n-4$
3. There is a vertex of degree at most five

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

2. $3 f \leq 2 m \leq 6 n-12 \Rightarrow f \leq 2 n-4$

Properties of Planar Graphs

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices }
\end{gathered}=\text { \#conn.comp. }+1
$$

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$
2. $f \leq 2 n-4$
3. There is a vertex of degree at most five

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

2. $3 f \leq 2 m \leq 6 n-12 \Rightarrow f \leq 2 n-4$
3. $\sum_{v \in V} \operatorname{deg}(v)$

Properties of Planar Graphs

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices }
\end{gathered}=\text { \#conn.comp. }+1
$$

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$
2. $f \leq 2 n-4$
3. There is a vertex of degree at most five

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

2. $3 f \leq 2 m \leq 6 n-12 \Rightarrow f \leq 2 n-4$

Handshaking-Lemma.
$\sum_{v \in V} \operatorname{deg}(v)=2|E|$
3. $\sum_{v \in V} \operatorname{deg}(v)$

Properties of Planar Graphs

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices }
\end{gathered}=\text { \#conn.comp. }+1
$$

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$
2. $f \leq 2 n-4$
3. There is a vertex of degree at most five

Proof. 1. Every edge incident to ≤ 2 faces

$$
\text { Every face incident to } \geq 3 \text { edges }
$$

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

2. $3 f \leq 2 m \leq 6 n-12 \Rightarrow f \leq 2 n-4 \quad \sum_{v \in V} \operatorname{deg}(v)=2|E|$
3. $\sum_{v \in V} \operatorname{deg}(v)=2 m$

Properties of Planar Graphs

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices }
\end{gathered}=\text { \#conn.comp. }+1
$$

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$
2. $f \leq 2 n-4$
3. There is a vertex of degree at most five

Proof. 1. Every edge incident to ≤ 2 faces

$$
\text { Every face incident to } \geq 3 \text { edges }
$$

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

2. $3 f \leq 2 m \leq 6 n-12 \Rightarrow f \leq 2 n-4 \quad \sum_{v \in V} \operatorname{deg}(v)=2|E|$
3. $\sum_{v \in V} \operatorname{deg}(v)=2 m \leq 6 n-12$

Properties of Planar Graphs

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices }
\end{gathered}=\# \text { conn.comp. }+1
$$

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$
2. $f \leq 2 n-4$
3. There is a vertex of degree at most five

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

2. $3 f \leq 2 m \leq 6 n-12 \Rightarrow f \leq 2 n-4 \quad \sum_{v \in V} \operatorname{deg}(v)=2|E|$
3. $\sum_{v \in V} \operatorname{deg}(v)=2 m \leq 6 n-12$
$\Rightarrow \min _{v \in V} \operatorname{deg}(v)$

Properties of Planar Graphs

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices }
\end{gathered}=\# \text { conn.comp. }+1
$$

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$
2. $f \leq 2 n-4$
3. There is a vertex of degree at most five

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

2. $3 f \leq 2 m \leq 6 n-12 \Rightarrow f \leq 2 n-4 \quad \sum_{v \in V} \operatorname{deg}(v)=2|E|$
3. $\sum_{v \in V} \operatorname{deg}(v)=2 m \leq 6 n-12$
$\Rightarrow \min _{v \in V} \operatorname{deg}(v) \leq 1 / n \sum_{v \in V} \operatorname{deg}(v)$

Properties of Planar Graphs

Euler's polyhedra formula.

$$
\begin{gathered}
\# \text { faces }-\# \text { edges }+\# \text { vertices }
\end{gathered}=\# \text { conn.comp. }+1
$$

Theorem. G simple planar graph with $n \geq 3$.

1. $m \leq 3 n-6$
2. $f \leq 2 n-4$
3. There is a vertex of degree at most five

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges

$$
\Rightarrow 3 f \leq 2 m
$$

$$
\Rightarrow 6 \leq 3 c+3 \leq 3 f-3 m+3 n \leq 2 m-3 m+3 n=3 n-m
$$

$$
\Rightarrow m \leq 3 n-6
$$

2. $3 f \leq 2 m \leq 6 n-12 \Rightarrow f \leq 2 n-4 \quad \sum_{v \in V} \operatorname{deg}(v)=2|E|$
3. $\sum_{v \in V} \operatorname{deg}(v)=2 m \leq 6 n-12$
$\Rightarrow \min _{v \in V} \operatorname{deg}(v) \leq 1 / n \sum_{v \in V} \operatorname{deg}(v)<6$

Triangulations

A plane triangulation is a plane graph where every face is a triangle.

Triangulations

A plane triangulation is a plane graph where every face is a triangle.

Triangulations

A plane triangulation is a plane graph where every face is a triangle.

Triangulations

A plane triangulation is a plane graph where every face is a triangle.

Triangulations

A plane triangulation is a plane graph where every face is a triangle.

Triangulations

A plane triangulation is a plane graph where every face is a triangle.

Triangulations

A plane triangulation is a plane graph where every face is a triangle.

Triangulations

A plane triangulation is a plane graph where every face is a triangle.

Triangulations

A plane triangulation is a plane graph where every face is a triangle.

Triangulations

A plane triangulation is a plane graph where every face is a triangle.

Triangulations

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

Triangulations

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Triangulations

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Triangulations

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Triangulations

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Triangulations

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Triangulations

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

Triangulations

with planar embedding

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

Triangulations

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

Triangulations

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.

Triangulations

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.

Triangulations

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.

Triangulations

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.

Triangulations

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.

Triangulations

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.

Triangulations

A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
A maximal planar graph is a planar graph where adding any edge would destroy planarity.

Observation.

A maximal plane graph is a plane triangulation.

Lemma.

A plane triangulation is at least 3-connected and thus has a unique planar embedding.

We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane triangulation.
O

Motivation

■ Why planar and straight-line?

Motivation

- Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98,Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Motivation

\square Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98,Har98, DH96, Pur02, TR05,TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Motivation

\square Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98,Har98, DH96, Pur02, TR05,TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Motivation

\square Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98,Har98,DH96,Pur02,TR05,TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02,TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Drawing conventions

■ No crossings \Rightarrow planar
■ No bends \Rightarrow straight-line

Motivation

- Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98,Har98,DH96,Pur02,TR05,TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Drawing conventions

■ No crossings \Rightarrow planar
■ No bends \Rightarrow straight-line

Drawing aestethics

- Area

Towards Straight-Line Drawings

Towards Straight-Line Drawings

Characterization

Towards Straight-Line Drawings

Characterization

Recognition

Towards Straight-Line Drawings

Characterization

Recognition

Drawing

Towards Straight-Line Drawings

```
Theorem. [Kuratowski 1930]
G planar }
neither }\mp@subsup{K}{5}{}\mathrm{ nor }\mp@subsup{K}{3,3}{}\mathrm{ minor of }
```


Characterization

Recognition

Drawing

Towards Straight-Line Drawings

```
Theorem. [Kuratowski 1930]
G planar }
neither }\mp@subsup{K}{5}{}\mathrm{ nor }\mp@subsup{K}{3,3}{}\mathrm{ minor of }
```


Characterization

Recognition

Drawing

Towards Straight-Line Drawings

```
Theorem. [Kuratowski 1930]
G planar }
neither }\mp@subsup{K}{5}{}\mathrm{ nor }\mp@subsup{K}{3,3}{}\mathrm{ minor of }
```


Characterization

Also computes a planar embedding in $\mathcal{O}(n)$.

Towards Straight-Line Drawings

```
Theorem. [Kuratowski 1930]
G planar }
neither }\mp@subsup{K}{5}{}\mathrm{ nor }\mp@subsup{K}{3,3}{}\mathrm{ minor of }
```


[Hopcroft \& Tarjan 1974]
Let G be a graph with n vertices. There is an $\mathcal{O}(n)$-time algorithm to test whether G is planar.

Also computes a planar embedding in $\mathcal{O}(n)$.

Theorem. [Wagner 1936, Fáry 1948, Stein 1951]

Every planar graph has an planar drawing where the edges are straight-line segments.

Characterization

Recognition

Drawing

Towards Straight-Line Drawings

```
Theorem. [Kuratowski 1930]
G planar }
neither }\mp@subsup{K}{5}{}\mathrm{ nor }\mp@subsup{K}{3,3}{}\mathrm{ minor of }
```


[Hopcroft \& Tarjan 1974]
Let G be a graph with n vertices. There is an $\mathcal{O}(n)$-time algorithm to test whether G is planar.

Also computes a planar embedding in $\mathcal{O}(n)$.

Theorem. [Wagner 1936, Fáry 1948, Stein 1951]

Every planar graph has an planar drawing where the edges are straight-line segments.

The algorithms implied by this theory produce drawings with area not bounded by any polynomial on n.

Characterization

Recognition

Drawing

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Theorem.
[Schnyder '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Theorem. [Schnyder '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Planar straight-line drawings

> Theorem.
> [De Fraysseix, Pach, Pollack '90]
> Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Idea.

Theorem. [Schnyder '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
 Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Idea.

\square Start with singe edge $\left(v_{1}, v_{2}\right)$. Let this be G_{2}.

Theorem.
Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Idea.

■ Start with singe edge (v_{1}, v_{2}). Let this be G_{2}.

- To obtain G_{i+1}, add v_{i+1} to G_{i} so that neighbours of v_{i+1} are on the outer face of G_{i}.

Theorem. [Schnyder '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Planar straight-line drawings

Theorem.

[De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Idea.

■ Start with singe edge $\left(v_{1}, v_{2}\right)$. Let this be G_{2}.

- To obtain G_{i+1}, add v_{i+1} to G_{i} so that neighbours of v_{i+1} are on the outer face of G_{i}.

Theorem. [Schnyder '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Planar straight-line drawings

Theorem.

[De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Idea.

■ Start with singe edge $\left(v_{1}, v_{2}\right)$. Let this be G_{2}.

- To obtain G_{i+1}, add v_{i+1} to G_{i} so that neighbours of v_{i+1} are on the outer face of G_{i}.

Theorem.

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Planar straight-line drawings

Theorem.

[De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Idea.

\square Start with singe edge $\left(v_{1}, v_{2}\right)$. Let this be G_{2}.

- To obtain G_{i+1}, add v_{i+1} to G_{i} so that neighbours of v_{i+1} are on the outer face of G_{i}.
- Neighbours of v_{i+1} in G_{i} have to form path of length at least two.

Theorem.

[Schnyder '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Planar straight-line drawings

Theorem.

[De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Idea.

\square Start with singe edge $\left(v_{1}, v_{2}\right)$. Let this be G_{2}.

- To obtain G_{i+1}, add v_{i+1} to G_{i} so that neighbours of v_{i+1} are on the outer face of G_{i}.
- Neighbours of v_{i+1} in G_{i} have to form path of length at least two.

Theorem.

[Schnyder '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Visualization of Graphs

Lecture 3:
Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Part II:

Canonical Order
Jonathan Klawitter

Canonical Order - Definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices.

Canonical Order - Definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:

Canonical Order - Definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.
(C2) Edge (v_{1}, v_{2}) belongs to the outer face of G_{k}.

Canonical Order - Definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.
(C2) Edge (v_{1}, v_{2}) belongs to the outer face of G_{k}.
(C3) If $k<n$ then vertex v_{k+1} lies in the outer face of G_{k}, and all
 neighbors of v_{k+1} in G_{k} appear on the boundary of G_{k} consecutively.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

(C2) Edge (v_{1}, v_{2}) belongs to the outer face of G_{k}.
(C3) If $k<n$ then vertex v_{k+1} lies in the outer face of G_{k}, and all neighbors of v_{k+1} in G_{k} appear on the boundary of G_{k} consecutively.
edge joining two
nonadjacent
vertices in a cycle

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Example

(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Induction hypothesis:

Induction step:

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}.
Induction hypothesis:

Induction step:
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}.
Induction hypothesis:

Induction step:
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}.
Induction hypothesis:

Induction step:
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}.
Induction hypothesis:

Induction step:
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold. Induction hypothesis:
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Induction step:

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step:
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}.
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}. We search for v_{k}.

(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}. We search for v_{k}.

(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}. We search for v_{k}.

(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}. We search for v_{k}.
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}. We search for v_{k}.
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}. We search for v_{k}.
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}. We search for v_{k}.

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}. We search for v_{k}.
(C1) G_{k} biconnected and internally triangulated
(C2) (v_{1}, v_{2}) on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}. We search for v_{k}.
(C1) G_{k} biconnected and internally triangulated
(C2) (v_{1}, v_{2}) on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Have to show:

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.
Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}. We search for v_{k}.
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Have to show:

1. v_{k} not incident to chord is sufficient

Canonical Order - Existence

Lemma.

Every triangulated plane graph has a canonical order.

Base Case:

Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions (C1) - (C3) hold.

Induction hypothesis:

Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1) - (C3) hold for $k+1 \leq i \leq n$.

Induction step: Consider G_{k}. We search for v_{k}.
(C1) G_{k} biconnected and internally triangulated
(C2) $\left(v_{1}, v_{2}\right)$ on outer face of G_{k}
(C3) $k<n \Rightarrow v_{k+1}$ in outer face of G_{k}, neighbors of v_{k+1} in G_{k} consecutive on boundary

Have to show:

1. v_{k} not incident to chord is sufficient
2. Such v_{k} exists

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Existence

Claim 1.

If v_{k} is not incident to a chord, then G_{k-1} is biconnected.

Claim 2.

There exists a vertex in G_{k} that is not incident to a chord as choice for v_{k}.

Canonical Order - Implementation

CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$

forall $v \in V$ do

Canonical Order - Implementation

```
outer face
CanonicalOrder(G=(V,E),(v, (v, v, vn})
forall v\inV do
    Lhords(v) \leftarrow0;
```


Canonical Order - Implementation

■ chord (v) :
outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$;

Canonical Order - Implementation

■ chord (v) :
outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
$L \operatorname{chords}(v) \leftarrow 0$; out $(v) \leftarrow$ false;

Canonical Order - Implementation

■ $\operatorname{chord}(v)$:
outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
$L \operatorname{chords}(v) \leftarrow 0$; out $(v) \leftarrow$ false; \# chords adjacent to v
$\square \operatorname{out}(v)=$ true iff v is currently outer vertex

Canonical Order - Implementation

■ $\operatorname{chord}(v)$:
outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
\# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex

Canonical Order - Implementation

■ chord(v):
outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
$L \operatorname{chords}(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
\# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

■ $\operatorname{chord}(v)$:
outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false $\operatorname{mark}\left(v_{1}\right)$, $\operatorname{mark}\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
\# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

■ $\operatorname{chord}(v)$:
outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right)$, mark $\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
\# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right), \operatorname{mark}\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$

■ $\operatorname{chord}(v)$: \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right)$, mark $\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$

■ $\operatorname{chord}(v)$: \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex

- mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right)$, mark $\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$

■ $\operatorname{chord}(v)$: \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex

- mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right)$, mark $\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$
$v_{k} \leftarrow v ; \operatorname{mark}(v) \leftarrow$ true

■ chord(v): \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex

- mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right)$, mark $\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$
$v_{k} \leftarrow v$; mark $(v) \leftarrow$ true
$/ /$ Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{k-1}

■ chord(v): \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right)$, mark $\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$
$v_{k} \leftarrow v$; mark $(v) \leftarrow$ true
$/ /$ Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{k-1}

■ chord(v): \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right), \operatorname{mark}\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$
$v_{k} \leftarrow v$; mark $(v) \leftarrow$ true
// Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{k-1} and let w_{p}, \ldots, w_{q} be the unmarked neighbors of v_{k}

- $\operatorname{chord}(v)$: \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right), \operatorname{mark}\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$
$v_{k} \leftarrow v$; mark $(v) \leftarrow$ true
// Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{k-1} and let w_{p}, \ldots, w_{q} be the unmarked neighbors of v_{k}

- $\operatorname{chord}(v)$: \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right), \operatorname{mark}\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$
$v_{k} \leftarrow v$; mark $(v) \leftarrow$ true
// Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{k-1} and let w_{p}, \ldots, w_{q} be the unmarked neighbors of v_{k} out $\left(w_{i}\right) \leftarrow$ true for all $p<i<q$

■ chord(v): \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
$L \operatorname{chords}(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right), \operatorname{mark}\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$
$v_{k} \leftarrow v ; \operatorname{mark}(v) \leftarrow$ true
$/ /$ Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{k-1} and let w_{p}, \ldots, w_{q} be the unmarked neighbors of v_{k} out $\left(w_{i}\right) \leftarrow$ true for all $p<i<q$ update number of chords for w_{i} and its neighbours

■ $\operatorname{chord}(v)$: \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
$L \operatorname{chords}(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right), \operatorname{mark}\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$
$v_{k} \leftarrow v ; \operatorname{mark}(v) \leftarrow$ true
$/ /$ Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{k-1} and let w_{p}, \ldots, w_{q} be the unmarked neighbors of v_{k}
out $\left(w_{i}\right) \leftarrow$ true for all $p<i<q$ update number of chords for w_{i} and its neighbours

■ $\operatorname{chord}(v)$: \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Lemma.

Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right), \operatorname{mark}\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0 \quad / /$ keep list with candidates
$v_{k} \leftarrow v$; mark $(v) \leftarrow$ true
// Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{k-1} and let w_{p}, \ldots, w_{q} be the unmarked neighbors of v_{k}
out $\left(w_{i}\right) \leftarrow$ true for all $p<i<q$ update number of chords for w_{i} and its neighbours

■ chord (v) : \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex

- mark $(v)=$ true iff v has received its number

Lemma.

Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right)$, mark $\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0 \quad / /$ keep list with candidates
$v_{k} \leftarrow v$; mark $(v) \leftarrow$ true
$/ /$ Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the
boundary of G_{k-1} and let w_{p}, \ldots, w_{q} be the
unmarked neighbors of v_{k}
out $\left(w_{i}\right) \leftarrow$ true for all $p<i<q$
// $O(n)$ in total update number of chords for w_{i} and its neighbours

■ $\operatorname{chord}(v)$: \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Lemma.

Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

Canonical Order - Implementation

outer face
CanonicalOrder $\left(G=(V, E),\left(v_{1}, v_{2}, v_{n}\right)\right)$
forall $v \in V$ do
L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false
$\operatorname{mark}\left(v_{1}\right)$, mark $\left(v_{2}\right)$, out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose v such that mark $(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0 \quad / /$ keep list with candidates
$v_{k} \leftarrow v$; mark $(v) \leftarrow$ true
$/ /$ Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the
boundary of G_{k-1} and let w_{p}, \ldots, w_{q} be the
unmarked neighbors of v_{k}
out $\left(w_{i}\right) \leftarrow$ true for all $p<i<q \quad / / O(n)$ in total update number of chords for w_{i} and its neighbours

$$
/ / O(m)=O(n) \text { in total }
$$

■ $\operatorname{chord}(v)$: \# chords adjacent to v
■ out $(v)=$ true iff v is currently outer vertex
■ mark $(v)=$ true iff v has received its number

Lemma.

Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

Visualization of Graphs

Lecture 3:
Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Jonathan Klawitter

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that

$$
G_{k-1}
$$

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

$$
G_{k-1}
$$

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-6,0)$,
- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-6,0)$,
- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-6,0)$,
- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:

G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:

G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:

G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:
Does v_{k} land on grid?
G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that
■ v_{1} is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Does v_{k} land on grid?

Shift Method - Idea

Drawing invariants:
G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-6,0)$,

- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Does v_{k} land on grid?

Shift Method - Idea

Drawing invariants:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-6,0)$,
- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Does v_{k} land on grid?

yes, beause w_{p} and w_{q} have even Manhattan distance

Shift Method - Idea

Drawing invariants:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-6,0)$,
- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Does v_{k} land on grid?

yes, beause w_{p} and w_{q} have even Manhattan distance

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Example

Shift Method - Planarity

Shift Method - Planarity

Observations.

■ Each internal vertex is covered exactly once.

Shift Method - Planarity

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G

Shift Method - Planarity

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G

■ and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift Method - Planarity

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
\square and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift Method - Planarity

Observations.

■ Each internal vertex is covered exactly once.

- Covering relation defines a tree in G
\square and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift Method - Planarity

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
\square and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift Method - Planarity

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
\square and a forest in $G_{i}, 1 \leq i \leq n-1$.

Lemma.

Let $0<\delta_{1} \leq \delta_{2} \leq \cdots \leq \delta_{t} \in \mathbb{N}$, such that $\delta_{q}-\delta_{p} \geq 2$ and even.

Shift Method - Planarity

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
\square and a forest in $G_{i}, 1 \leq i \leq n-1$.

$$
\begin{aligned}
& \text { Lemma. } \\
& \text { Let } 0<\delta_{1} \leq \delta_{2} \leq \cdots \leq \delta_{t} \in \mathbb{N} \text {, } \\
& \text { such that } \delta_{q}-\delta_{p} \geq 2 \text { and even. } \\
& \text { If we shift } L\left(w_{i}\right) \text { by } \delta_{i} \text { to the right, } \\
& \text { then we get a planar straight-line } \\
& \text { drawing. }
\end{aligned}
$$

Shift Method - Planarity

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
\square and a forest in $G_{i}, 1 \leq i \leq n-1$.

> Lemma.
> Let $0<\delta_{1} \leq \delta_{2} \leq \cdots \leq \delta_{t} \in \mathbb{N}$, such that $\delta_{q}-\delta_{p} \geq 2$ and even. If we shift $L\left(w_{i}\right)$ by δ_{i} to the right, then we get a planar straight-line drawing.

Proof by induction:
If G_{k-1} is drawn planar and straight-line, then so is G_{k}.

Shift Method - Pseudocode

Shift Method - Pseudocode

Let v_{1}, \ldots, v_{n} be a canonical order of G
for $i=1$ to 3 do
$L L\left(v_{i}\right) \leftarrow\left\{v_{i}\right\}$
for $i=4$ to n do

Shift Method - Pseudocode

```
Let }\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of G
for i=1 to 3 do
L(vi)\leftarrow{vi}
P(v1)\leftarrow(0,0);P(v2)\leftarrow(2,0),P(\mp@subsup{v}{3}{})\leftarrow(1,1) \Omega
for }i=4\mathrm{ to }n\mathrm{ do
```


Shift Method - Pseudocode

```
Let }\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of G
for i=1 to 3 do
LL(\mp@subsup{v}{i}{})\leftarrow{\mp@subsup{v}{i}{}}
P(v. )}\leftarrow(0,0);P(\mp@subsup{v}{2}{})\leftarrow(2,0),P(\mp@subsup{v}{3}{})\leftarrow(1,1)\quad\mp@subsup{\Omega}{0}{
for }i=4\mathrm{ to }n\mathrm{ do
    Let }\mp@subsup{w}{1}{}=\mp@subsup{v}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{t-1}{},\mp@subsup{w}{t}{}=\mp@subsup{v}{2}{
    denote the boundary of G}\mp@subsup{G}{i-1}{
    and let w
```


Shift Method - Pseudocode

```
Let }\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of G
for i=1 to 3 do
LL(\mp@subsup{v}{i}{})\leftarrow{\mp@subsup{v}{i}{}}
P(v. )}\leftarrow(0,0);P(\mp@subsup{v}{2}{})\leftarrow(2,0),P(\mp@subsup{v}{3}{})\leftarrow(1,1) \Omega
for }i=4\mathrm{ to }n\mathrm{ do
    Let }\mp@subsup{w}{1}{}=\mp@subsup{v}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{t-1}{},\mp@subsup{w}{t}{}=\mp@subsup{v}{2}{
    denote the boundary of G}\mp@subsup{G}{i-1}{
    and let w
```


Shift Method - Pseudocode

```
Let }\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of }
for i=1 to 3 do
    LL(vi)}\leftarrow{\mp@subsup{v}{i}{}
P(v. )}\leftarrow(0,0);P(\mp@subsup{v}{2}{})\leftarrow(2,0),P(\mp@subsup{v}{3}{})\leftarrow(1,1)\quad\mp@subsup{\Omega}{0}{
for }i=4\mathrm{ to }n\mathrm{ do
    Let }\mp@subsup{w}{1}{}=\mp@subsup{v}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{t-1}{},\mp@subsup{w}{t}{}=\mp@subsup{v}{2}{
    denote the boundary of G}\mp@subsup{G}{i-1}{
        and let }\mp@subsup{w}{p}{},\ldots,\mp@subsup{w}{q}{}\mathrm{ be the neighbours of }\mp@subsup{v}{i}{
        for }\forallv\in\mp@subsup{\cup}{j=p+1}{q-1}L(\mp@subsup{w}{j}{})\mathrm{ do
```


Shift Method - Pseudocode

for $\forall v \in \cup_{j=p+1}^{q-1} L\left(w_{j}\right)$ do
$L x(v) \leftarrow x(v)+1$

for $i=4$ to n do
Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{i-1}
and let w_{p}, \ldots, w_{q} be the neighbours of v_{i}

```
Let }\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of }
```

Let }\mp@subsup{v}{1}{},···,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of }
for i=1 to 3 do
for i=1 to 3 do
L(vi)}\leftarrow{\mp@subsup{v}{i}{}
L(vi)}\leftarrow{\mp@subsup{v}{i}{}
P(v1)\leftarrow(0,0);P(v2)\leftarrow(2,0),P(v3)\leftarrow(1,1) \Omega
P(v1)\leftarrow(0,0);P(v2)\leftarrow(2,0),P(v3)\leftarrow(1,1) \Omega
for }i=4\mathrm{ to }n\mathrm{ do
for }i=4\mathrm{ to }n\mathrm{ do
Let w
Let w
denote the boundary of G}\mp@subsup{G}{i-1}{
denote the boundary of G}\mp@subsup{G}{i-1}{
and let }\mp@subsup{w}{p}{},···,\mp@subsup{w}{q}{}\mathrm{ be the neighbours of }\mp@subsup{v}{i}{
and let }\mp@subsup{w}{p}{},···,\mp@subsup{w}{q}{}\mathrm{ be the neighbours of }\mp@subsup{v}{i}{
for }\forallv\in\mp@subsup{\cup}{j=p+1}{q-1}L(\mp@subsup{w}{j}{})\mathrm{ do
for }\forallv\in\mp@subsup{\cup}{j=p+1}{q-1}L(\mp@subsup{w}{j}{})\mathrm{ do
x(v)\leftarrowx(v)+1
x(v)\leftarrowx(v)+1
*

```
*
```

-

Shift Method - Pseudocode

```
Let }\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of }
for i=1 to 3 do
LL(vi)}\leftarrow{\mp@subsup{v}{i}{}
P(v. )}\leftarrow(0,0);P(\mp@subsup{v}{2}{})\leftarrow(2,0),P(\mp@subsup{v}{3}{})\leftarrow(1,1)\quad\mp@subsup{\Omega}{0}{
for }i=4\mathrm{ to }n\mathrm{ do
    Let }\mp@subsup{w}{1}{}=\mp@subsup{v}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{t-1}{},\mp@subsup{w}{t}{}=\mp@subsup{v}{2}{
    denote the boundary of }\mp@subsup{G}{i-1}{
    and let }\mp@subsup{w}{p}{},\ldots,\mp@subsup{w}{q}{}\mathrm{ be the neighbours of }\mp@subsup{v}{i}{
    for }\forallv\in\mp@subsup{\cup}{j=p+1}{q-1}L(\mp@subsup{w}{j}{})\mathrm{ do
        x(v)\leftarrowx(v)+1
    for }\forallv\in\mp@subsup{\cup}{j=q}{t}L(\mp@subsup{w}{j}{})\mathrm{ do
```


Shift Method - Pseudocode

```
Let }\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of }
for i=1 to 3 do
LL(vi)}\leftarrow{\mp@subsup{v}{i}{}
P(v. )}\leftarrow(0,0);P(\mp@subsup{v}{2}{})\leftarrow(2,0),P(\mp@subsup{v}{3}{})\leftarrow(1,1)\quad\mp@subsup{\Omega}{0}{
for }i=4\mathrm{ to }n\mathrm{ do
    Let }\mp@subsup{w}{1}{}=\mp@subsup{v}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{t-1}{},\mp@subsup{w}{t}{}=\mp@subsup{v}{2}{
    denote the boundary of }\mp@subsup{G}{i-1}{
    and let }\mp@subsup{w}{p}{},\ldots,\mp@subsup{w}{q}{}\mathrm{ be the neighbours of }\mp@subsup{v}{i}{
    for }\forallv\in\mp@subsup{\cup}{j=p+1}{q-1}L(\mp@subsup{w}{j}{})\mathrm{ do
        x(v)}\leftarrowx(v)+
    for }\forallv\in\mp@subsup{\cup}{j=q}{t}L(\mp@subsup{w}{j}{})\mathrm{ do
    Lx(v)\leftarrowx(v)+2
```


Shift Method - Pseudocode

$$
\begin{aligned}
& \text { Let } v_{1}, \ldots, v_{n} \text { be a canonical order of } G \\
& \text { for } i=1 \text { to } 3 \text { do } \\
& L L\left(v_{i}\right) \leftarrow\left\{v_{i}\right\} \\
& P\left(v_{1}\right) \leftarrow(0,0) ; P\left(v_{2}\right) \leftarrow(2,0), P\left(v_{3}\right) \leftarrow(1,1) \\
& \text { for } i=4 \text { to } n \text { do } \\
& \begin{array}{l}
\text { Let } w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2} \\
\text { denote the boundary of } G_{i-1} \\
\text { and let } w_{p}, \ldots, w_{q} \text { be the neighbours of } v_{i} \\
\text { for } \forall v \in \cup_{j=p+1}^{q-1} L\left(w_{j}\right) \text { do } \\
\quad x(v) \leftarrow x(v)+1
\end{array} \\
& \text { for } \forall v \in \cup_{j=q}^{t} L\left(w_{j}\right) \text { do } \\
& \quad x(v) \leftarrow x(v)+2 \\
& P\left(v_{i}\right) \leftarrow \text { intersection of }+1 /-1 \text { diagonals } \\
& \text { through } P\left(w_{p}\right) \text { and } P\left(w_{q}\right)
\end{aligned}
$$

Shift Method - Pseudocode

$$
\left.\begin{array}{l}
\text { Let } v_{1}, \ldots, v_{n} \text { be a canonical order of } G \\
\text { for } i=1 \text { to } 3 \text { do } \\
L L\left(v_{i} \leftarrow\left\{v_{i}\right\}\right. \\
P\left(v_{1}\right) \leftarrow(0,0) ; P\left(v_{2}\right) \leftarrow(2,0), P\left(v_{3}\right) \leftarrow(1,1) \\
\text { for } i=4 \text { to } n \text { do } \\
\begin{array}{l}
\text { Let } w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2} \\
\text { denote the boundary of } G_{i-1} \\
\text { and let } w_{p}, \ldots, w_{q} \text { be the neighbours of } v_{i} \\
\text { for } \forall v \in \cup_{j=p+1}^{q-1} L\left(w_{j}\right) \text { do } \\
\lfloor x(v) \leftarrow x(v)+1
\end{array} \\
\text { for } \forall v \in \cup_{j=q}^{t} L\left(w_{j}\right) \text { do } \\
\quad x(v) \leftarrow x(v)+2 \\
P\left(v_{i}\right) \leftarrow \text { intersection of }+1 /-1 \text { diagonals } \\
\quad \text { through } P\left(w_{p}\right) \text { and } P\left(w_{q}\right)
\end{array}\right\}
$$

Shift Method - Pseudocode

$$
\begin{aligned}
& \text { Let } v_{1}, \ldots, v_{n} \text { be a canonical order of } G \\
& \text { for } i=1 \text { to } 3 \text { do } \\
& \begin{array}{l}
L\left(v_{i}\right) \leftarrow\left\{v_{i}\right\}
\end{array} \\
& P\left(v_{1}\right) \leftarrow(0,0) ; P\left(v_{2}\right) \leftarrow(2,0), P\left(v_{3}\right) \leftarrow(1,1) \\
& \text { for } i=4 \text { to } n \text { do } \\
& \begin{array}{l}
\text { Let } w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2} \\
\text { denote the boundary of } G_{i-1} \\
\text { and let } w_{p}, \ldots, w_{q} \text { be the neighbours of } v_{i} \\
\text { for } \forall v \in \cup_{j=p+1}^{q-1} L\left(w_{j}\right) \text { do } \\
\lfloor x(v) \leftarrow x(v)+1
\end{array} \\
& \text { for } \forall v \in \cup_{j=q}^{t} L\left(w_{j}\right) \text { do } \\
& \quad x(v) \leftarrow x(v)+2 \\
& P\left(v_{i}\right) \leftarrow \text { intersection of }+1 /-1 \text { diagonals } \\
& \quad \text { through } P\left(w_{p}\right) \text { and } P\left(w_{q}\right)
\end{aligned}
$$

Running Time?

Shift Method - Pseudocode

Running Time?

Shift Method - Linear Time Implementation

Shift Method - Linear Time Implementation

Idea 1.

To compute $x\left(v_{k}\right) \& y\left(v_{k}\right)$,
we only need $y\left(w_{p}\right)$ and $y\left(w_{q}\right)$ and $x\left(w_{q}\right)-x\left(w_{p}\right)$

Shift Method - Linear Time Implementation

Idea 1.

To compute $x\left(v_{k}\right) \& y\left(v_{k}\right)$,
we only need $y\left(w_{p}\right)$ and $y\left(w_{q}\right)$ and $x\left(w_{q}\right)-x\left(w_{p}\right)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Idea 1.

To compute $x\left(v_{k}\right) \& y\left(v_{k}\right)$,
we only need $y\left(w_{p}\right)$ and $y\left(w_{q}\right)$ and $x\left(w_{q}\right)-x\left(w_{p}\right)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Idea 1.

To compute $x\left(v_{k}\right) \& y\left(v_{k}\right)$,
we only need $y\left(w_{p}\right)$ and $y\left(w_{q}\right)$ and $x\left(w_{q}\right)-x\left(w_{p}\right)$
Idea 2.
Instead of storing explicit x-coordinates, we store \times distances.

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Idea 1.

To compute $x\left(v_{k}\right) \& y\left(v_{k}\right)$,
we only need $y\left(w_{p}\right)$ and $y\left(w_{q}\right)$ and $x\left(w_{q}\right)-x\left(w_{p}\right)$
Idea 2.
Instead of storing explicit x-coordinates, we store \times distances.

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Idea 1.

To compute $x\left(v_{k}\right) \& y\left(v_{k}\right)$,
we only need $y\left(w_{p}\right)$ and $y\left(w_{q}\right)$ and $x\left(w_{q}\right)-x\left(w_{p}\right)$
Idea 2.
Instead of storing explicit x-coordinates, we store \times distances.
After \times distance for v_{n} computed, use preorder
 traversal to compute all x-coordinates.
(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store
\square x-offset $\Delta_{x}(v)$ from parent \quad y-coordinate $y(v)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store
\square x-offset $\Delta_{x}(v)$ from parent \quad y-coordinate $y(v)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store
\square x-offset $\Delta_{x}(v)$ from parent \quad y-coordinate $y(v)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store
\square x-offset $\Delta_{x}(v)$ from parent \quad y-coordinate $y(v)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store
\square x-offset $\Delta_{x}(v)$ from parent \quad y-coordinate $y(v)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.

For each vertex v store
$\square \mathrm{x}$-offset $\Delta_{x}(v)$ from parent $\quad \mathrm{y}$-coordinate $y(v)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store
\square x-offset $\Delta_{x}(v)$ from parent

- y-coordinate $y(v)$

Calculations.

- $\Delta_{x}\left(w_{p+1}\right)++, \Delta_{x}\left(w_{q}\right)+\boldsymbol{+}$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store

- x-offset $\Delta_{x}(v)$ from parent
- y-coordinate $y(v)$

Calculations.

- $\Delta_{x}\left(w_{p+1}\right)++, \Delta_{x}\left(w_{q}\right)++$

■ $\Delta_{x}\left(w_{p}, w_{q}\right)=\Delta_{x}\left(w_{p+1}\right)+\ldots+\Delta_{x}\left(w_{q}\right)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store
\square x-offset $\Delta_{x}(v)$ from parent

- y-coordinate $y(v)$

Calculations.

- $\Delta_{x}\left(w_{p+1}\right)++, \Delta_{x}\left(w_{q}\right)++$

■ $\Delta_{x}\left(w_{p}, w_{q}\right)=\Delta_{x}\left(w_{p+1}\right)+\ldots+\Delta_{x}\left(w_{q}\right)$

- $\Delta_{x}\left(v_{k}\right)$ by (3)

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store
\square x-offset $\Delta_{x}(v)$ from parent
■ y-coordinate $y(v)$
Calculations.

- $\Delta_{x}\left(w_{p+1}\right)++, \Delta_{x}\left(w_{q}\right)++$

■ $\Delta_{x}\left(w_{p}, w_{q}\right)=\Delta_{x}\left(w_{p+1}\right)+\ldots+\Delta_{x}\left(w_{q}\right)$
$\square \Delta_{x}\left(v_{k}\right)$ by (3) ■ $y\left(v_{k}\right)$ by (2)

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store
\square x-offset $\Delta_{x}(v)$ from parent

- y-coordinate $y(v)$

Calculations.

- $\Delta_{x}\left(w_{p+1}\right)++, \Delta_{x}\left(w_{q}\right)++$

■ $\Delta_{x}\left(w_{p}, w_{q}\right)=\Delta_{x}\left(w_{p+1}\right)+\ldots+\Delta_{x}\left(w_{q}\right)$
$\square \Delta_{x}\left(v_{k}\right)$ by (3) $\quad y\left(v_{k}\right)$ by (2)

- $\Delta_{x}\left(w_{q}\right)=\Delta_{x}\left(w_{p}, w_{q}\right)-\Delta_{x}\left(v_{k}\right)$
(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store
\square x-offset $\Delta_{x}(v)$ from parent
■ y-coordinate $y(v)$
Calculations.

- $\Delta_{x}\left(w_{p+1}\right)+\boldsymbol{+}, \Delta_{x}\left(w_{q}\right)++$

■ $\Delta_{x}\left(w_{p}, w_{q}\right)=\Delta_{x}\left(w_{p+1}\right)+\ldots+\Delta_{x}\left(w_{q}\right)$
$\square \Delta_{x}\left(v_{k}\right)$ by (3) ■ $y\left(v_{k}\right)$ by (2)

- $\Delta_{x}\left(w_{q}\right)=\Delta_{x}\left(w_{p}, w_{q}\right)-\Delta_{x}\left(v_{k}\right)$

■ $\Delta_{x}\left(w_{p+1}\right)=\Delta_{x}\left(w_{p+1}\right)-\Delta_{x}\left(v_{k}\right)$
(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift Method - Linear Time Implementation

Relative x distance tree.
For each vertex v store
\square x-offset $\Delta_{x}(v)$ from parent
■ y-coordinate $y(v)$
Calculations.

- $\Delta_{x}\left(w_{p+1}\right)+\boldsymbol{+}, \Delta_{x}\left(w_{q}\right)++$

■ $\Delta_{x}\left(w_{p}, w_{q}\right)=\Delta_{x}\left(w_{p+1}\right)+\ldots+\Delta_{x}\left(w_{q}\right)$,
$\square \Delta_{x}\left(v_{k}\right)$ by (3) $\square y\left(v_{k}\right)$ by (2)

- $\Delta_{x}\left(w_{q}\right)=\Delta_{x}\left(w_{p}, w_{q}\right)-\Delta_{x}\left(v_{k}\right)$

$\square \Delta_{x}\left(w_{p+1}\right)=\Delta_{x}\left(w_{p+1}\right)-\Delta_{x}\left(v_{k}\right)$
(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Literature

■ [PGD Ch. 4.2] for detailed explanation of shift method
■ [de Fraysseix, Pach, Pollack 1990] "How to draw a planar graph on a grid" - original paper on shift method

