

Visualization of Graphs

Lecture 1a: The Graph Visualization Problem

Part I: Organizational & Overview

Jonathan Klawitter

Organizational

- **Lectures:** Pre-recorded videos (as you see here)
 - Release date: Weekend before
 - Thursday 10:15 11:15: Questions/Discussion in Zoom
 - Questions/Tasks in the Videos
- **Tutorials:** One sheet per lecture
 - 20 Points per sheet
 - Scoring 50% overall \Rightarrow bonus
 - Submit solutions online
 - Recommend LaTeX (template provided)
 - Discussion and solutions ..

Books

[DG]

[PGD]

nand Kathans method Kagner (BA) Drawing Graphs kethods and Models

T. Nishizeki, Md. S. Rahman: Planar Graph Drawing World Scientific, 2004

[HGDV]

R. Tamassia: Handbook of Graph Drawing and Visualization CRC Press, 2013

http://cs.brown.edu/people/rtamassi/gdhandbook/

G. Di Battista, P. Eades, R. Tamassia, I. Tollis: Graph Drawing: Algorithms for the Visualization of Graphs Prentice Hall, 1998

M. Kaufmann, D. Wagner: Drawing Graphs: Methods and Models Springer, 2001

What is this course about?

Learning objectives

- Overview of graph visualization
- Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

Given a graph G, visualize it with a drawing Γ

Here:

Reducing the visualisation problem to its algorithmic core

graph class \Rightarrow layout style \Rightarrow algorithm \Rightarrow analysis

- modeling
- data structures
- divide & conquer, incremental
- combinatorial optimization (flows, ILPs)
- force-based algorithm

proofs

What is this course about?

Topics

- Drawing Trees and Series-Parallel Graphs
- Tutte Embedding and Force-Based Drawing Algorithms
- Straight-Line Drawings of Planar Graphs
- Orthogonal Grid Drawings
- Octilinear Drawings for Metro Maps
- Upwards Planar Drawings
- Hierarchical Layouts of Directed Graphs
- Contact Representations
- Visibility Representations
- The Crossing Lemma
- Beyond Planarity

Visualization of Graphs

Lecture 1a: The Graph Visualization Problem

5

Part II: The Layout Problem

Jonathan Klawitter

Graphs and their representations

What is a graph?

- graph G = (V, E)
- vertices $V = \{v_1, v_2, \ldots, v_n\}$
- edge $E = \{e_1, e_2, \dots, e_m\}$

Representation?

Set notation

$$\begin{split} V &= \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\} \\ E &= \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \\ \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \\ \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \\ \{v_9, v_{10}\}\} \end{split}$$

Adjacency list

v_1 :	v_2, v_8	v_{6} :	v_4, v_8, v_9
v_2 :	v_1, v_3	v_7 :	v_8, v_9
v_{3} :	v_2, v_5, v_9, v_{10}	v_{8} :	$v_1, v_5, v_6, v_7, v_9, v_{10}$
v_{4} :	v_5, v_6, v_9	v_{9} :	$v_3, v_4, v_6, v_7, v_8, v_{10}$
v_{5} :	v_3, v_4, v_8	v_{10} :	v_3, v_8, v_9

Why draw graphs?

_ . . .

Graphs are a mathematical representation of real physical and abstract networks.

Abstract networks

- Social networks
- Communication networks
- Phylogenetic networks
- Metabolic networks
- Class/Object Relation Digraphs (UML)

Physical networks

- Metro systems
- Road networks
- Power grids

. . .

- Telecommunication networks
- Integrated circuits

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

People think visually – complex graphs are hard to grasp without good visualisations!

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

- People think visually complex graphs are hard to grasp without good visualisations!
- Visualisations help with the communication and exploration of networks.
- Some graphs are too big to draw them by hand.

We need algorithms that draw graphs automatically to make networks more accessible to humans.

What are we interested in?

Jacques Bertin defined visualising variables (1967)

The layout problem?

 Here restricted to the standard representation, so-called node-link diagrams.

Graph Visualization Problem in: Graph G = (V, E) **out:** nice drawing Γ of G $\Box : V \to \mathbb{R}^2$, vertex $v \mapsto$ point $\Gamma(v)$ $\Box : E \to$ curves in \mathbb{R}^2 , edge $\{u, v\} \mapsto$ simple, open curve $\Gamma(\{u, v\})$ with endpoints $\Gamma(u)$ und $\Gamma(v)$

But what is a **nice** drawing?

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.
- crossing/bend minimization
- edge length uniformity

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)}\Gamma(v)$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.
- crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.
- crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)}\Gamma(v)$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.
- crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.
- crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area

- angular resolution
- symmetry/structure

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)}\Gamma(v)$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.
- crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution
- symmetry/structure
- 3. Local Constraints, e.g.
- restrictions on neighboring vertices (e.g., "upward").
- restrictions on groups of vertices/edges (e.g., "clustered").

 \rightarrow such criteria are often inversely related \rightarrow lead to NP-hard optimization problems

Graph visualisation problem

in: Graph
$$G = (V, E)$$

out: Drawing Γ of G such that

drawing conventions are met,

aesthetic criteria are optimised, and

some additional constraints are satisfied.