Visualization of Graphs

Lecture 1a:
The Graph Visualization Problem

Jonathan Klawitter

Organizational

Lectures: ■ Pre-recorded videos (as you see here)

- Release date: Weekend before

■ Thursday 10:15-11:15: Questions/Discussion in Zoom
■ Questions/Tasks in the Videos

Tutorials: ■ One sheet per lecture

- 20 Points per sheet
- Scoring 50\% overall \Rightarrow bonus

■ Submit solutions online

- Recommend LaTeX (template provided)

■ Discussion and solutions

Books

| [GD] | G. Di Battista, P. Eades, R. Tamassia, I. Tollis:
 Graph Drawing: Algorithms for the Visualization of Graphs
 Prentice Hall, 1998 |
| :--- | :--- | :--- |
| [DG] | M. Kaufmann, D. Wagner:
 Drawing Graphs: Methods and Models
 Springer, 2001 |
| [PGD] | T. Nishizeki, Md. S. Rahman: |
| Planar Graph Drawing | |

What is this course about?

Learning objectives

■ Overview of graph visualization
■ Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

■ Given a graph G, visualize it with a drawing Γ

Here:

- Reducing the visualisation problem to its algorithmic core

$$
\text { graph class } \Rightarrow \text { layout style } \Rightarrow \text { algorithm } \Rightarrow \text { analysis }
$$

■ modeling

- divide \& conquer, incremental
- proofs
- data structures
- combinatorial optimization (flows, ILPs)
- force-based algorithm

What is this course about?

Topics

- Drawing Trees and Series-Parallel Graphs

■ Tutte Embedding and Force-Based Drawing Algorithms
■ Straight-Line Drawings of Planar Graphs
■ Orthogonal Grid Drawings

- Octilinear Drawings for Metro Maps
- Upwards Planar Drawings

■ Hierarchical Layouts of Directed Graphs

- Contact Representations

■ Visibility Representations

- The Crossing Lemma
- Beyond Planarity

Visualization of Graphs

Lecture 1a:
The Graph Visualization Problem
Part II:
The Layout Problem

Jonathan Klawitter

Graphs and their representations

What is a graph?

■ graph $G=(V, E)$
■ vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
■ edge $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$

Representation?

- Adjacency matrix
$\left(\begin{array}{llllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0\end{array}\right)$
- Set notation

```
V={\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\mp@subsup{v}{3}{},\mp@subsup{v}{4}{},\mp@subsup{v}{5}{},\mp@subsup{v}{6}{},\mp@subsup{v}{7}{},\mp@subsup{v}{8}{},\mp@subsup{v}{9}{},\mp@subsup{v}{10}{}}
E={{\mp@subsup{v}{1}{},\mp@subsup{v}{2}{}},{\mp@subsup{v}{1}{},\mp@subsup{v}{8}{}},{\mp@subsup{v}{2}{},\mp@subsup{v}{3}{}},{\mp@subsup{v}{3}{},\mp@subsup{v}{5}{}},{\mp@subsup{v}{3}{},\mp@subsup{v}{9}{}},
    {\mp@subsup{v}{3}{},\mp@subsup{v}{10}{}},{\mp@subsup{v}{4}{},\mp@subsup{v}{5}{}},{\mp@subsup{v}{4}{},\mp@subsup{v}{6}{}},{\mp@subsup{v}{4}{},\mp@subsup{v}{9}{}},{\mp@subsup{v}{5}{},\mp@subsup{v}{8}{}},
    {\mp@subsup{v}{6}{},\mp@subsup{v}{8}{}},{\mp@subsup{v}{6}{},\mp@subsup{v}{9}{}},{\mp@subsup{v}{7}{},\mp@subsup{v}{8}{}},{\mp@subsup{v}{7}{},\mp@subsup{v}{9}{}},{\mp@subsup{v}{8}{},\mp@subsup{v}{10}{}},
    {v9, v10}}
```

Adjacency list

$v_{1}:$	v_{2}, v_{8}	$v_{6}:$	v_{4}, v_{8}, v_{9}
$v_{2}:$	v_{1}, v_{3}	$v_{7}:$	v_{8}, v_{9}
$v_{3}:$	$v_{2}, v_{5}, v_{9}, v_{10}$	$v_{8}:$	$v_{1}, v_{5}, v_{6}, v_{7}, v_{9}, v_{10}$
$v_{4}:$	v_{5}, v_{6}, v_{9}	$v_{9}:$	$v_{3}, v_{4}, v_{6}, v_{7}, v_{8}, v_{10}$
$v_{5}:$	v_{3}, v_{4}, v_{8}	$v_{10}:$	v_{3}, v_{8}, v_{9}

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

Abstract networks

■ Social networks
■ Communication networks

- Phylogenetic networks
- Metabolic networks

■ Class/Object Relation Digraphs (UML)

Physical networks

- Metro systems
- Road networks
- Power grids

■ Telecommunication networks
■ Integrated circuits
■...

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

■ People think visually - complex graphs are hard to grasp without good visualisations!

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

■ People think visually - complex graphs are hard to grasp without good visualisations!

- Visualisations help with the communication and exploration of networks.

■ Some graphs are too big to draw them by hand.

We need algorithms that draw graphs automatically to make networks more accessible to humans.

What are we interested in?

- Jacques Bertin defined visualising variables (1967)

The layout problem?

■ Here restricted to the standard representation, so-called node-link diagrams.


```
Graph Visualization Problem
in: Graph G= (V,E)
out: nice drawing \Gamma of G
    \Gamma:V->\mp@subsup{\mathbb{R}}{}{2},\mathrm{ vertex }v\mapsto\mathrm{ point }\Gamma(v)
    \Gamma:E->\mathrm{ curves in }\mp@subsup{\mathbb{R}}{}{2}\mathrm{ , edge {u,v}}\mapsto\mathrm{ simple, open}
        curve }\Gamma({u,v})\mathrm{ with endpoints }\Gamma(u)\mathrm{ und }\Gamma(v
```


Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$

- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$

- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$

- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization

■ edge length uniformity

$$
0
$$

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
■ orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization

■ edge length uniformity

- minimizing total edge length/drawing area

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
■ orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization

- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
■ orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
■ orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization

■ edge length uniformity

- minimizing total edge length/drawing area
- angular resolution
- symmetry/structure

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
■ orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution
- symmetry/structure

\rightarrow such criteria are often
inversely related
\rightarrow lead to NP-hard
optimization problems

3. Local Constraints, e.g.

- restrictions on neighboring vertices (e.g., "upward").

■ restrictions on groups of vertices/edges (e.g., "clustered").

The layout problem

```
Graph visualisation problem
in: Graph G = (V,E)
out: Drawing \Gamma of G such that
    | drawing conventions are met,
    \square aesthetic criteria are optimised, and
    |}\mathrm{ some additional constraints are satisfied.
```

