Advanced Algorithms

Succinct Data Structures
 Indexable Dictionaries and Trees

Jonathan Klawitter • WS20

Data structures

A data structure is a concept to
■ store,

- organize, and

■ manage data.
As such, it is a collection of
■ data values,

- their relations, and

■ the operations that can applied to the data.

- What do we represent?
- How much space is required?
$\Rightarrow \quad \square$ Dynamic or static?
■ Which operations are defined?
■ How fast are they?

Remarks.

■ We look at data structures as a designer/implementer (and not necessarily as a user).
■ To define a data structure and to implement it are two different tasks.

Succinct data structures

Goal.

■ Use space "close" to information-theoretical minimum,

- but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects.
Then a data structure, which still supports time-efficient operations, is called

■ implicit, if it takes $L+O(1)$ bits of space;
$■$ succinct, if it takes $L+o(L)$ bits of space;
■ compact, if it takes $O(L)$ bits of space.

Succinct data structures

Goal.

■ Use space "close" to information-theoretical minimum,

- but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects.
Then a data structure, which still supports time-efficient operations, is called

■ implicit, if it takes $L+O(1)$ bits of space;
■ succinct, if it takes $L+o(L)$ bits of space;
■ compact, if it takes $O(L)$ bits of space.

Examples for implicit data structures

■ arrays to represent lists
■ but why not linked lists?

- 1-dim arrays to represent multi-dimensional arrays

■ sorted arrays to represent sorted lists
■ but why not binary search trees?
■ arrays to represent complete binary trees and heaps

$$
\begin{aligned}
& \operatorname{leftChild}(i)=2 i \\
& \operatorname{rightChild}(i)=2 i+1
\end{aligned}
$$

And unbalanced trees?

Succinct indexable dictionary

Represent a subset $S \subset[n]$ and support $O(1)$-time operations:
\square member (i) returns if $i \in S$

- $\operatorname{rank}(i)=\#$ 1's at or before position i
- select $(j)=$ position of j th 1 bit
- predecessor and successor can be answered using rank and select

How many different subsets of $[n]$ are there? 2^{n}

How many bits of space do we need to distinguish them?

$$
\log 2^{n}=n \text { bits }
$$

Succinct indexable dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space structures to answer in $O(1)$ time
■ $\operatorname{rank}(i)=\# 1$'s at or before position i
$\square \operatorname{select}(j)=$ position of j th 1 bit

$$
\begin{aligned}
& S=\{3,4,6,8,9,14\} \text { where } n=15
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{select}(5)=9 \\
& \operatorname{rank}(9)=5
\end{aligned}
$$

Succinct indexable dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space structures to answer in $O(1)$ time
■ $\operatorname{rank}(i)=\# 1$'s at or before position i
$\square \operatorname{select}(j)=$ position of j th 1 bit
Exercise: Use them to answer predecessor and successor.

$$
\begin{aligned}
& S=\{3,4,6,8,9,14\} \text { where } n=15
\end{aligned}
$$

Rank in $o(n)$ bits

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each $\log n$ bits

$$
\Rightarrow O(\underbrace{\frac{n}{\log ^{2} n}}_{\# \text { chunks }} \underbrace{\log n}_{\text {rank }})=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

Rank in $o(n)$ bits $\frac{1}{2} \log n \quad \log ^{2} n$

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each $\log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: $2 \log \log n$ bits

$$
\Rightarrow O(\underbrace{\frac{n}{\log n}}_{\# \text { subch. }} \underbrace{\log \log n}_{\text {rel. rank }} \subseteq o(n) \text { bits }
$$

Rank in $o(n)$ bits $\frac{1}{2} \log n \quad \log ^{2} n$

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each $\log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: $2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right)$

$$
\Rightarrow O(\underbrace{\sqrt{n}}_{\text {bitstring }} \underbrace{\log n}_{\text {query } i} \underbrace{\log \log n)}_{\text {answer }} \subseteq o(n) \text { bits }
$$

Rank in $o(n)$ bits
$\frac{1}{2} \log n \quad \log ^{2} n$

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each $\log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: $2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right)$

$$
\Rightarrow O(\sqrt{n} \log n \log \log n) \subseteq o(n) \text { bits }
$$

4. $r a n k=$ rank of chunk

+ relative rank of subchunk within chunk
+ relative rank of element within subchunk

Rank in $o(n)$ bits $+O(1)$ time

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each $\log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: $2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right)$

$$
\Rightarrow O(\sqrt{n} \log n \log \log n) \subseteq o(n) \text { bits }
$$

4. $r a n k=$ rank of chunk

+ relative rank of subchunk within chunk
$\Rightarrow O(1)$ time
+ relative rank of element within subchunk

Select in $o(n)$ bits

$\log n \log \log n 1$'s

1. Store indices of every $(\log n \log \log n)$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text { bits }
$$

Select in $o(n)$ bits

1. Store indices of every $(\log n \log \log n)$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text { bits }
$$

2. Within group of $(\log n \log \log n) 1$ bits of length r bits:
if $r \geq(\log n \log \log n)^{2}$
then store indices of 1 bits in group in array

$$
\Rightarrow \underset{\# \text { groups }}{\Rightarrow\left(\frac{n}{(\log n \log \log n)^{2}}\right.}\left(\underset{\# 1 \text { bits }}{(\log n \log \log n) \log n) \subseteq O\left(\frac{n}{\text { index }}\right.}\right)
$$

Select in $o(n)$ bits

1. Store indices of every $(\log n \log \log n)$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text { bits }
$$

2. Within group of $(\log n \log \log n) 1$ bits of length r bits:
if $r \geq(\log n \log \log n)^{2}$
then store indices of 1 bits in group in array

$$
\Rightarrow O\left(\frac{n}{(\log n \log \log n)^{2}}(\log n \log \log n) \log n\right) \subseteq O\left(\frac{n}{\log \log n}\right)
$$

else problem is reduced to bitstrings of length $r<(\log n \log \log n)^{2}$
3. Repeat 1. and 2. on reduced bitstrings

Select in $o(n)$ bits
$\log n \log \log n 1$'s $(\log \log n)^{2} 1$'s

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:

1' Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

\# subgroups rel. index

Select in $o(n)$ bits
b

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:

1' Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2' Within group of $(\log \log n)^{2}$ th 1 bits of length r^{\prime} bits:

if $r^{\prime} \geq(\log \log n)^{4}$

then store relative indices of 1 bits in subgroup in array

$$
\begin{gathered}
\Rightarrow O\left(\frac{n}{(\log \log n)^{4}}(\log \log n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits } \\
\# \text { subgroups } \quad \# 1 \text { bits } \quad \text { rel. index }
\end{gathered}
$$

Select in $o(n)$ bits $+O(1)$ time

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2}$ th 1 bits of length r^{\prime} bits:

if $r^{\prime} \geq(\log \log n)^{4}$

then store relative indices of 1 bits in subgroup in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{4}}(\log \log n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

else problem is reduced to bitstrings of length $r^{\prime}<(\log \log n)^{4}$
4. Use lookup table for bitstrings of length $r^{\prime} \leq(\log \log n)^{4} \leq \frac{1}{2} \log n$
$\Rightarrow O(\sqrt{n} \log n \log \log n)=o(n)$ bits

Succinct representation of binary trees

Number of binary trees on n vertices: $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$

$$
\log C_{n}=2 n+o(n) \text { (by Stirling's approximation) }
$$

\Rightarrow We can use $2 n+o(n)$ bits to represent binary trees.
Difficulty is when binary tree is not full.

Succinct representation of binary trees

Size.

- $2 \mathrm{n}+1$ bits for b
- $o(n)$ for rank and select

Idea.

- Add external nodes
- Read internal nodes as 1

■ Read external nodes as 0
■ Use rank and select

Operations.

- parent $(i)=\operatorname{select}\left(\left\lfloor\frac{i}{2}\right\rfloor\right)$
- leftChild $(i)=2 \operatorname{rank}(i)$

■ $\operatorname{rightChild}(i)=2 \operatorname{rank}(i)+1$
$\square \operatorname{rank}(i)$ is index for array storing actual values

Succinct representation of trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree
■ gives LOUDS sequence

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

Size.

- each vertex (except root) is represented twice, namely with a 1 and with a 0

$$
\Rightarrow 2 n+o(n) \text { bits }
$$

$\square o(n)$ bits for rank and select

Succinct representation of trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

Operations.

- Let i be index of 1 in louds sequence.
- rank (i) is index for array storing vertex objects/values.

Succinct representation of trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

- unary decoding of outdegree
- gives LOUDS sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0
1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0

■ firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
$\operatorname{firstChild}(8)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1=14+1=15$
$\square \operatorname{parent}(i)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(i)\right)$ $\operatorname{parent}(8)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(8)\right)$ $=\operatorname{select}_{1}(2)=3$

■ nextSibling $(i)=i+1$
Exercise: child (i, j) with validity check

Discussion

- Succinct data structures are
- space efficient
- support fast operations but
■ are mostly static (dynamic at extra cost),
- number of operations are limited,
- complex \rightarrow harder to implement

■ Rank and select form basis for many succinct representations

Literature

Main reference:
■ Lecture 17 of Advanced Data Structures (MIT, Fall'17) by Erik Demaine

■ [Jac '89] "Space efficient Static Trees and Graphs"
Recommendations:

- Lecture 18 of Demaine's course on compact \& succinct arrays \& trees

