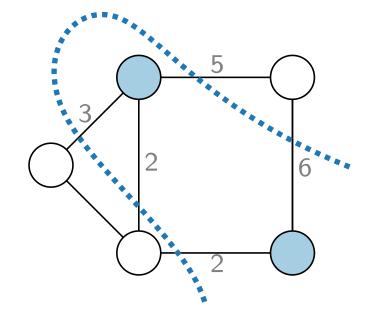


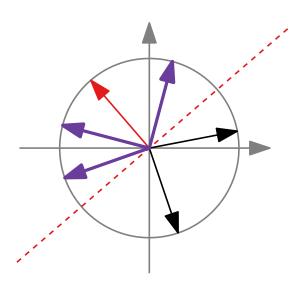
Advanced Algorithms

QP-Relaxation

for Max Cut

Jonathan Klawitter · WS20





Cut

- Let G = (V, E) be a graph with edge weights $c: E \to \mathbb{N}$.
- lacksquare A cut of G is a partition $(S, V \setminus S)$ of V.
- The weight of a cut $(S, V \setminus S)$ is

$$c(S, V \setminus S) = \sum_{\substack{uv \in E, \\ u \in S, v \in V \setminus S}} c(uv)$$

$$c(S, V \setminus S) = \sum_{\substack{uv \in E, \\ u \in S, v \in V \setminus S}} c(uv)$$

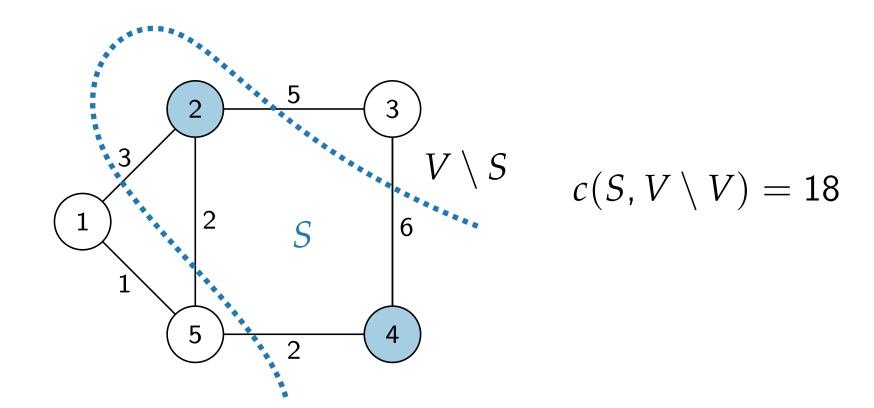
$$c(\{1, 2, 5\}, \{3, 4\}) = 7$$

The MaxCut Problem

Input. Graph G = (V, E), edge weights $c: E \to \mathbb{N}$.

Output. Cut $(S, V \setminus S)$ of G with maximum weight.

MaxCut is NP-hard.



Randomized 0.5-approximation for (unweighted) MaxCut

Theorem 1.

CoinFlipMaxCut is a randomized 0.5-approximation algorithm for MaxCut.

Proof.

- Runs in O(n+m).
- Compute expected weight of cut:

$$\begin{split} \mathsf{E}[c(\mathrm{CoinFlipMaxCut}(G))] &= \mathsf{E}\big[|E(S,V\setminus S)|\big] \\ &= \sum_{e\in E}\mathsf{P}[e\in E(S,V\setminus S)] \\ &= \sum_{e\in E}\frac{1}{2} = \frac{1}{2}|E| \geq \frac{1}{2}\mathsf{OPT}(G) \end{split}$$

Can be "derandomized". Exercise.

 $\begin{array}{c} \text{CoinFlipMaxCut}(G,c\colon E\to 1) \\ S \leftarrow \varnothing \\ \textbf{foreach} \ v \in V \ \textbf{do} \\ & | \ \textbf{if} \ \text{coin flip shows Heads} \ \textbf{then} \\ & | \ S \leftarrow S \cup \{v\} \end{array}$

return $c(S, V \setminus S), S$

LP-Relaxation

Integer Linear Program

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$ $x \geq 0$ $x \in \mathbb{Z}$

$$C \cdot \chi$$

$$x \geq 0$$

$$x \in \mathbb{Z}$$

LP-Relaxation

Linear Program

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$ $x \geq 0$

$$C \mid X$$

Solution, or bound

approximation,

Solve in polynomial time

Assignment for ILP

e.g. rounding

Solution for LP

1-dimensional quadratic program

relax to k dimensions for $k \leq n$

quadratic program QP^k

solve

real-valued solution for QP^k

randomised rounding

$$G = (V, E), c$$

approximation for MaxCut on G

integer
1-dimensional
solution

1-dimensional quadratic program

relax to k dimensions for $k \le n$

quadratic program QP^k

solve

real-valued solution for QP^k

randomised rounding

$$G = (V, E), c$$

approximation for MaxCut on G

integer
1-dimensional
solution

QP(G, c)

Idea.

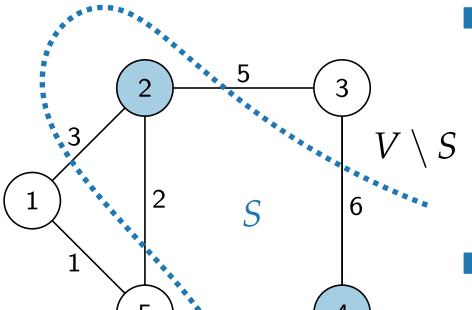
- Indicator variables $x_i \in \{1, -1\}$

$$\mathbf{QP}(G,c)$$

maximize
$$\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} (1 - x_i x_j)$$
 subject to
$$x_i^2 = 1$$

subject to

$$x_i^2 = 1$$



lacksquare Weight matrix c_{ij}

	1	2	3	4	5
1		3			1
2	3		5		2
1 2 3 4 5		5		6	
4			6		2
5	1	2		2	

Solution

$$x_2 = x_4 = 1$$
 $x_1 = x_3 = x_5 = -1$

Note.

- \blacksquare Solving QP(G) is NP-hard.
- Otherwise MaxCut wouldn't be NP-hard.

1-dimensional quadratic program relax to k dimensions for k < n

G = (V, E), c

- Here explained for k=2,
- but unknown if QP² can be solved optimally in poly. time.

 QP^k solve

quadratic program

approximation for MaxCut on G

 \blacksquare QPⁿ can be solved in poly. time.

real-valued solution for QP^k

transform back

integer 1-dimensional solution

randomised rounding

Relaxation of QP(G, c)

$$\mathbf{QP}^2(G,c)$$

maximize

$$\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} (1 - x^i \cdot x^j)$$

subject to

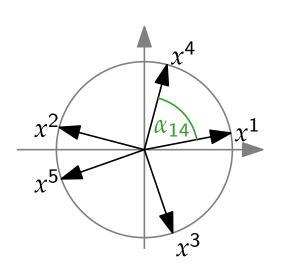
$$\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} (1 - x^{i} \cdot x^{j})$$

$$x^{i} \cdot x^{i} = 1$$

$$x^{i} = (x_{1}^{i}, x_{2}^{i}) \in \mathbb{R}^{2}$$

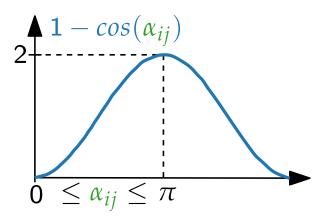
 \mathbf{x}^i lies on unit circle.

$$x^{i}x^{j} = x_{1}^{i}x_{1}^{j} + x_{2}^{i}x_{2}^{j} = \cos(\alpha_{ij})$$
 with $0 \le \alpha_{ij} \le \pi$.



- We maximize angles α_{ij} :
- \blacksquare since larger α_{ij} , increases contribution of c_{ij} .

$$\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} (1 - \cos(\alpha_{ij}))$$



1-dimensional quadratic program

relax to k dimensions for $k \leq n$

quadratic program QP^k

solve

real-valued solution for QP^k

randomised rounding

• Here again just for k=2.

G = (V, E), c

approximation for MaxCut on G

integer
1-dimensional
solution

Algorithm RANDOMIZEDMAXCUT

RANDOMIZEDMaxCut(G, c)

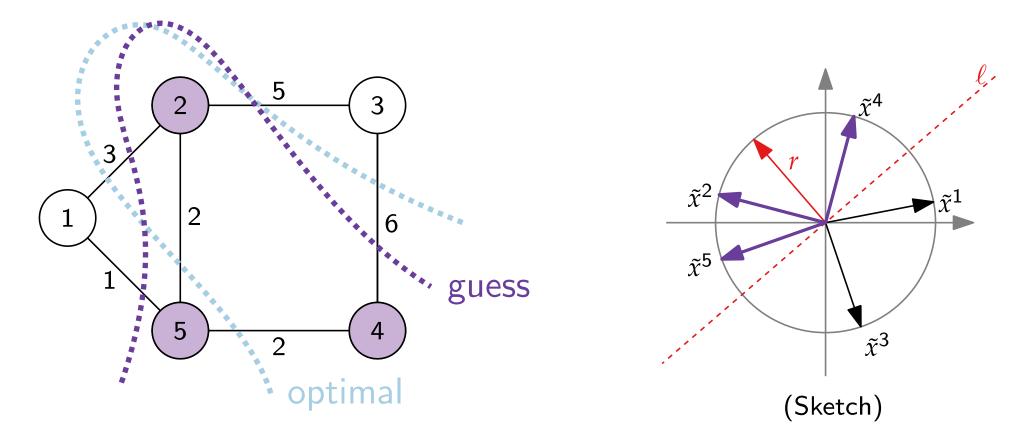
Compute optimal solution $(\tilde{x}^1, \dots, \tilde{x}^n)$ for $QP^2(G, c)$

Pick random vector $\mathbf{r} \in \mathbb{R}^2$

$$S \leftarrow \{i \in V : \tilde{x}^i \cdot r \ge 0\}$$

return $c(S, V \setminus S)$

 \tilde{x}^i lies above line ℓ orthogonal to r



RandomMaxCut – expected value

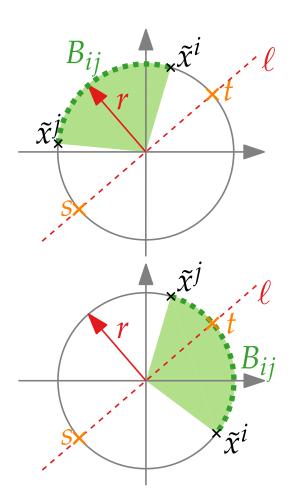
Lemma 2.

Let X be the solution of RANDOMIZEDMAXCUT(G, c). If r is picked uniformally at random, then

$$\mathsf{E}[X] = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \frac{\alpha_{ij}}{\pi}.$$

Proof.

- B_{ij} has length $\alpha_{ij} = \arccos(\tilde{x}^i \cdot \tilde{x}^j)$.



RANDOMMAXCUT – quality

Theorem 3.

Let X be the solution of RANDOMIZEDMAXCUT(G, c).

Then

$$\frac{\mathsf{E}[X]}{\mathsf{OPT}(G,c)} \ge 0.8785.$$

Proof.

■ Lemma 2:
$$E[X] = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \frac{\alpha_{ij}}{\pi}$$

 \blacksquare Optimal solution for QP^2 :

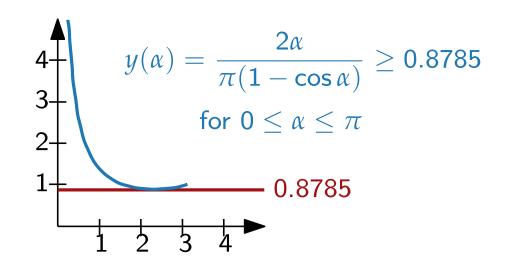
$$QP^{2}(G,c) = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \frac{1 - \cos(\alpha_{ij})}{2}$$

 $\mathbb{Q}\mathsf{P}^2(G,c)$ is relaxation of $\mathbb{Q}\mathsf{P}(G,c)$:

$$QP^2(G,c) \ge OPT(G,c)$$

$$\blacksquare \frac{\mathsf{E}[X]}{\mathsf{OPT}(G,c)} \ge \frac{\mathsf{E}[X]}{\mathsf{QP}^2(G,c)}$$

$$\frac{\alpha_{ij}}{\pi} \geq \frac{1 - \cos(\alpha_{ij})}{2} \cdot 0.8785$$



Example

1. Step: Build QP

maximize
$$\frac{1}{2}\sum_{j=1}^{6}\sum_{i=1}^{j-1}c_{ij}(1-x_ix_j)$$
 subject to
$$x_i^2=1$$

2. Step: Relax QP to QP²

maximize
$$\frac{1}{2}\sum_{j=1}^{6}\sum_{i=1}^{j-1}c_{ij}(1-x^i\cdot x^j)$$
 subject to
$$x^i\cdot x^i = 1$$

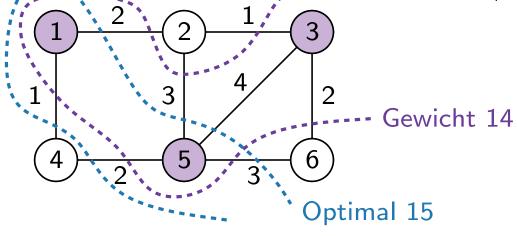
$$x^i = (x_1^i, x_2^i) \in \mathbb{R}^2$$

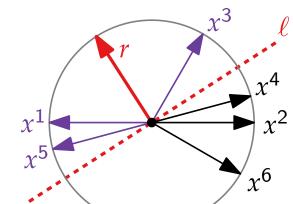
Weight matrix c_{ij}

					J	
	1	2	3	4	5	6
1		2		1		
2	2		1		3	
1 2 3 4 5 6		1			4	2
4	1				2	
5		3	4	2		3
6			2		3	

3. Step: Solve QP²

Variable	x^1	x^2	x^3	x^4	x^5	χ^6
Angle	0	180	120	165	345	210
	•				_	





4. Step: Guess r

5. Step: Derive *S*

transform

relax to k dimensions for $k \le n$

$$G = (V, E), c$$

 \blacksquare So far, k=2.

quadratic program QP^k

lacksquare QPⁿ can be solved in polynomial time.

solve

real-valued solution for QP^k

approximation for MaxCut on *G*

integer
1-dimensional
solution

randomised rounding

$$QP^n(G, c)$$

$$\begin{array}{lll} \mathbf{QP^2}(G,c) & \mathbf{QP^n}(G,c) \\ \mathbf{maximize} & \frac{1}{2} \sum\limits_{j=1}^n \sum\limits_{i=1}^{j-1} c_{ij} (1-x^i \cdot x^j) & \mathbf{maximize} & \frac{1}{2} \sum\limits_{j=1}^n \sum\limits_{i=1}^{j-1} c_{ij} (1-x^i \cdot x^j) \\ \mathbf{subject to} & x^i \cdot x^i & = 1 \\ & x^i = (x_1^i, x_2^i) & \in \mathbb{R}^2 & x^i \cdot x^i & = 1 \\ \end{array}$$

- A matrix M is called **positive semidefinite** if, for any vector $v \in \mathbb{R}^n$: $v^\intercal \cdot M \cdot v > 0$
- $M = (m_{ij}) = (x^i \cdot x^j)$ is positive semidefinite.
- $ightharpoonup \operatorname{QP}^n(G,c)$ becomes problem $\operatorname{SemiDefiniteCut}(G,c)$.
 - Can be approximated in time poly. in (G, c) and $1/\varepsilon$ with additive guarantee ε .
 - For $\varepsilon = 10^{-5}$, approximation guarantee for RANDOM-MAXCUT is achieved.

Discussion

- Semidefinite programming is a powerful tool to develop approximation algorithms
- Whole book on this topic:
 - [Gärtner, Matoušek] "Approximation Algorithms and Semidefinite Progamming"
- Using randomness is another tool to design approximation algorithms.
- See future lectures.

Literature

Original paper:

■ [GW '95] "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming"

Source:

- [Vazirani Ch26] "Approximation Algorithms" Whole book on this topic:
- [Gärtner, Matoušek] "Approximation Algorithms and Semidefinite Progamming"

