
1

Advanced Algorithms

Coloring and scheduling problems
Approximation algorithms

Jonathan Klawitter · WS20

1

6
3 2

4
5

2 - 2

Dealing with NP-hard problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal Solutions
� Exact exponential-time algorithms
� Fine-grained analysis – parameterized algorithms

� Sacrifice optimality for speed
� Heuristics
� Approximation Algorithms

What should we do?

this lecture

3 - 3

Approximation algorithms

Problem.
� For NP-hard optimisation problems, we cannot compute the

optimal solution of each instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.

Goal.
� Design approximation algorithms that

� run in polynomial time and
� compute solutions of guaranteed quality.

� Study techniques for the design and analysis of
approximation algorithms.

Overview.
� Approximation algorithms that compute solutions with/that are

� additive guarantee, � relative guarantee, � “arbitraility good”.

4 - 2

Approximation with additive guarantee

� Most problems do not admit an approximation
algorithm with additive guarantee.

Definition.
Let Π be an optimisation problem and let A be a
polynomial-time algorithm that computes the value
A(I) for an instance I of Π.
A is called an approximation algorithm with
additive guarantee δ if

|OPT(I)−A(I)| ≤ δ(I)

for every instance I of Π.

5 - 11

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A vertex coloring, that is, an assignment of colors to the
vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

Output.

� Min Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

. . .

1

6
3 2

4
5

Theorem 1.
The algorithm GreedyVertexColoring computes a vertex
coloring with at most ∆ + 1 colors in O(n + m) time.
Hence, it has an additive approximation gurantee of ∆− 1.

6 - 6

Minimum edge coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

An edge coloring, that is, an assignment of colors to the
edges of G such that now two incident edges get the same
color, with minimum number of colors.

Output.

� Min Edge Coloring is NP-hard.

� Even Edge 3-Coloring is NP-complete.

� The minimum number of colors needed for an edge co-
loring of G is called the chromatic index χ′(G).

� χ′(G) is lower bounded by ∆.

� We show that χ′(G) ≤ ∆ + 1.

7 - 6

Minimum edge coloring – upper bound

Proof by induction on m = |E|.
� Base case m = 1 is trivial.

Let G be a graph on m edges and e an edge of G.
� By induction, G− e has a ∆(G− e) + 1 edge coloring.

� If ∆(G) > ∆(G− e), color e with color ∆(G) + 1.

� If ∆(G) = ∆(G− e), change coloring such that u and v
(of e = {u, v}) miss the same color α.

� Then color e with with α.

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆
holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

e

u v u v
Lemma 2

e

8 - 15

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

α2

¬α2
v2

¬α3v3

¬α4

αh+1vh

α3α4

¬αh+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 25

Minimum edge coloring – recoloring

,¬αj

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

ne
ed

co
lo

r
fo

r
{u

, v
j}

¬β,¬α1

?vj+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 34

Minimum edge coloring – recoloring

β
¬β

β

β
¬β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj

� u, vj, vh have degree 1 in G′

⇒ they are not all in same component
� If vj and u are not in the same component:

� Recolor component ending at vj
� vj now misses β
� Color {u, vj} in β

β

� What if vj and u are in the same component?

¬αj ¬β

vj+1

,¬β

9 - 2

Minimum edge coloring - algorithm

VizingEdgeColoring(G = (V, E))
if E = ∅ then

return 0
else
{u, v} ← random edge of G
G′ ← G− e
VizingEdgeColoring(G′)
if ∆(G′) < ∆(G) then

Color {u, v} with lowest free color

else
Recolor E with Lemma 2
Color {u, v} with color now missing at u and v

Theorem 4.
VizingEdgeColoring A is an
approximation algorithm with
additive approximation guarantee
A(G)−OPT(G) ≤ 1.

10 - 3

Approximation with relative factor

Definition.
Let Π be an minimisation problem and α ∈ Q+.
A (factor) α-approximation algorithm for Π is a
polynomial-time algorithm A, which computes for every
instance I of Π a value A(I) such that

A(I)
OPT(I)

≤ α.

We call α the approximation factor.

� An additive approximation guarantee can seldomly be
achieved; but sometimes there is a multiplicative . . .

maximisation

≥

11 - 5

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 20

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

Proof.
d(A) ≤ d(cycle) = 2d(MST) ≤ 2OPT

Theorem 5.
The MST edge doubling algorithm
is a 2-approximation algorithm for
metric TSP.

12 - 12

Nearest addition algorithm for Metric TSP

Theorem 6.
The NearestAdditionAlgorithm
is a 2-approximation algorithm for
metric TSP.

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

Proof.
� Exercise.

� Hints: MST and Prim’s algorithm.

k

ji

13 - 5

Approximation schemes

� In some cases, we can get arbitrarily good approximations.

Examples.

� O
(

n2 + n
1
ε

)
⇒ PTAS but not FPTAS

Definition.
Let Π be a minimisation problem. An algorithm A is called
an polynomial-time approximation scheme (PTAS), if
A computes for every input (I, ε) consisting of an instance
I of Π and ε > 0 a value A(I), such that:

A is called a fully polynomial-time approximation
scheme (FPTAS), if it runs polynomial in |I| and 1/ε.

� A(I) ≤ (1 + ε) ·OPT, and
� the runtime of A is polynomiell in |I| für every ε > 0.

maximisation

≥ (1− ε)

� O
(

n2 · 3 1
ε

)
⇒ PTAS but not FPTAS

� O
(

n4 ·
(

1
ε

)2
)
⇒ FPTAS

14 - 5

Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Input. � m identical machines (m < n)

Output. Distribution of jobs to machines such that the time when all
jobs have been processed is minimal.
This is called the makespan of the distribution.

� Multiprocess scheduling is NP-hard.

makespan

p5

p7

p4

p3

p1

p2

p6

15 - 2

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p4

15 - 7

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

� ListScheduling runs in O(n) time.

Theorem 7.
ListScheduling is a(

2− 1
m

)
-approximation algorithm.

p4

16 - 9

Multiprocessor Scheduling – List scheduling (proof)

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For an optimal Makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

n

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

=

(
2− 1

m

)
· TOPT

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

� Hence:

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation

algorithm.

17 - 11

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 15

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

O(n log n)
O(m`)

� For ε > 0, choose ` such that Aε = A`(ε)

is a (1 + ε)-approximation algorithm.

� {Aε | ε > 0} isn’t a FPTAS, since the
running time is not polynomial in 1

ε .

� Polynomial time for
constant `:
O(m` + n log n)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A`

is a 1 +
1− 1

m
1+b `

m c
-approximation algorithm.

O(n)

Corollary 9.
For a constant number of machines,
{Aε | ε > 0} is a PTAS.

18 - 5

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

Case 1. Jk is one of the longest ` jobs J1, . . . , J`.

Sk Tk = MakespanA`

M1

M2

M3

M4 J1
J2
J3

J5 = Jk

J6J4
� Solution is optimal for J1, . . . , Jk

� Hence, solution is optimal for J1, . . . , Jn

Case 2. Jk is not one of the longest ` jobs J1, . . . , J`.
M1

M2

M3

M4 J1
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk� Similar analysis to ListScheduling

� Use that there are ` + 1 jobs that are at least as
long as Jk (including Jk).

18 - 12

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi � TOPT ≥ 1

m

n
∑

i=1
pi

� TOPT ≥ pk ·
(

1 +
⌊

`
m

⌋)

M1

M2

M3

M4
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

� Consider only J1, . . . , J`, Jk:

each has lenght ≥ pk

one machine has
this many jobs?

� ? on average, each machine has more than `
m of the `+ 1 jobs

� at least one machine achieves the average

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +
1− 1

m

1 +
⌊

`
m

⌋ · TOPT
J1

19 - 3

Discussion

� Only “easy” NP-hard problems admit FPTAS (PTAS).

� Not all problems can be approximated (Max Clique).

� Study of approximability of NP-hard problems yields a more
fine-grained classification of the difficulty.

� Approximation algorithms exist also for non-NP-hard problems

� Approximation algorithms can be of various types:
greedy, local search, geometric, DP, . . .

� One important technique is LP-relaxation (next lecture).

� Min Vertex Coloring on planar graphs can be approximated
with an additive approximation guarantee of 2.

� Christofides’ approximation algorithm for Metric TSP has
approximation factor 1.5.

20

Literature

Main references

� [Jansen, Margraf Ch3] “Approximative
Algorithmen und Nichtapproximierbarkeit”

� [Williamson, Shmoys Ch3] “The Design of
Approximation Algorithms”

Another book recommendation:

� [Vazirani] “Approximation Algorithms”

and don’t forget our lecture
� Approximation Algorithms.

For more precise definitions see
� https://go.uniwue.de/approxdef

	Title page
	Dealing with NP-hard problems

	Approximation algorithms
	Approximation with additive guarantee
	Minimum vertex coloring
	Minimum edge coloring
	Minimum edge coloring -- upper bound
	Minimum edge coloring -- recoloring
	Minimum edge coloring - algorithm

	Approximation with relative factor
	2-approximation for Metric TSP (from AGT)
	Nearest addition algorithm for Metric TSP

	Approximation schemes
	Multiprocessor Scheduling
	Multiprocessor Scheduling -- List scheduling
	Multiprocessor Scheduling -- List scheduling (proof)
	Multiprocessor Scheduling -- PTAS
	Multiprocessor Scheduling -- PTAS (proof)

	Discussion
	Literature

