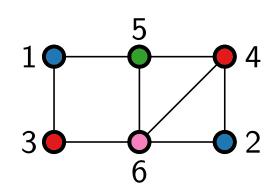
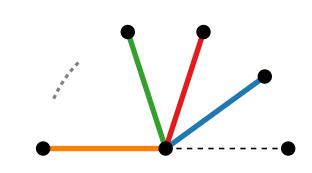


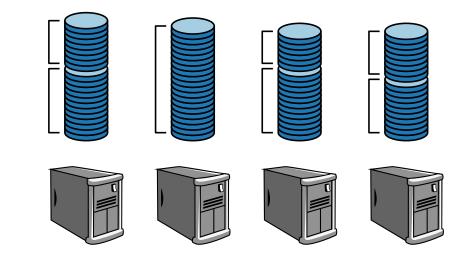
Advanced Algorithms

Approximation algorithms Coloring and scheduling problems

Jonathan Klawitter · WS20







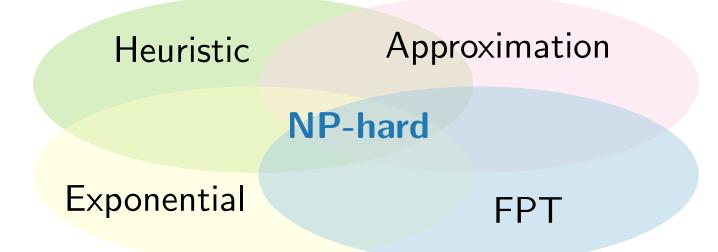
Dealing with NP-hard problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics

Approximation Algorithms ^A

- Optimal Solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis parameterized algorithms



this lecture

Approximation algorithms

Problem.

- For NP-hard optimisation problems, we cannot compute the optimal solution of each instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.

- Design approximation algorithms that
 - run in polynomial time and
 - compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Overview.

- Approximation algorithms that compute solutions with/that are
 - additive guarantee,
 relative guarantee,
 "arbitraility good".

Approximation with additive guarantee

Definition.

Let Π be an optimisation problem and let \mathcal{A} be a polynomial-time algorithm that computes the value $\mathcal{A}(I)$ for an instance I of Π . \mathcal{A} is called an approximation algorithm with additive guarantee δ if

```
|\mathsf{OPT}(I) - \mathcal{A}(I)| \le \delta(I)
```

for every instance I of Π .

Most problems do not admit an approximation algorithm with additive guarantee.

Minimum vertex coloring

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

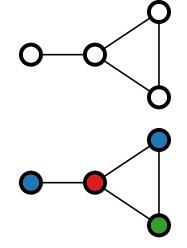
- **Output.** A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.
- Min Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

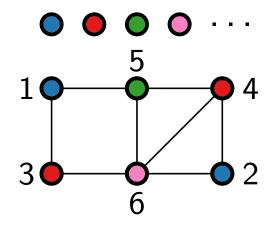
GREEDYVERTEXCOLORING(G)

Color vertices in some order with lowest feasible color.

Theorem 1.

The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta + 1$ colors in $\mathcal{O}(n+m)$ time. Hence, it has an additive approximation gurantee of $\Delta - 1$.

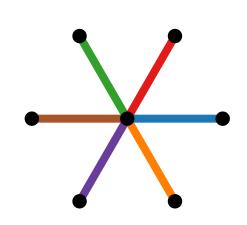




Minimum edge coloring

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** An edge coloring, that is, an assignment of colors to the edges of G such that now two incident edges get the same color, with minimum number of colors.
- Min Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the chromatic index $\chi'(G)$.
- $\chi'(G)$ is lower bounded by Δ .
- We show that $\chi'(G) \leq \Delta + 1$.



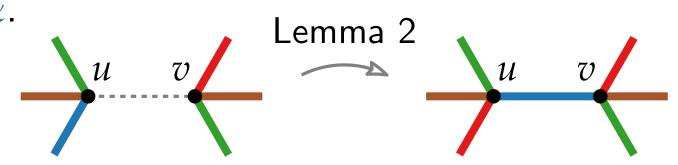
Minimum edge coloring – upper bound

Vizing's Theorem.

For every graph G = (V, E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on m = |E|.

- Base case m = 1 is trivial.
- Let G be a graph on m edges and e an edge of G.
- By induction, G e has a $\Delta(G e) + 1$ edge coloring.
- If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$.
- If $\Delta(G) = \Delta(G e)$, change coloring such that u and v(of $e = \{u, v\}$) miss the same color α .
- Then color e with with α .



е

Minimum edge coloring – recoloring

Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and deg(u), deg $(v) < \Delta$. Then c can be changed such that u and v miss the same color. v_h **Proof.** Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING ($G = (V, E), u, c, \alpha_1$) Case 1: u misses α_{h+1} . $i \leftarrow 1$ while $\exists w \in N(u)$: $c(\{u, w\}) = \alpha_i \land$ $w \notin \{v_1, \ldots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \min \text{ color missing at } w$ i + +return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$

Minimum edge coloring – recoloring

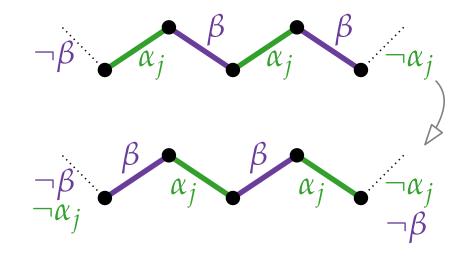
Lemma 2. v_3 Let G have a $(\Delta + 1)$ edge coloring c, let u, v be α_{3} non-adjacent, and deg(u), deg $(v) < \Delta$. Then c can be changed such that u and v miss the same color. v_h **Proof.** Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING ($G = (V, E), u, c, \alpha_1$) Case 2: $\alpha_{h+1} = \alpha_j$, j < h. $i \leftarrow 1$ while $\exists w \in N(u)$: $c(\{u, w\}) = \alpha_i \land$ $w \notin \{v_1, \ldots, v_{i-1}\} | \mathbf{do}$ 40 $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \min \text{ color missing at } w$ i + +return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$

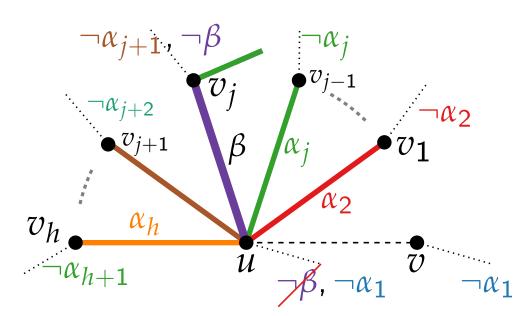
Minimum edge coloring – recoloring

Proof continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h and we need to find a color for $\{u, v_j\}$.

- Consider subgraph G' of G induced by edges with color β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- u, v_j, v_h have degree 1 in G'
 - \Rightarrow they are not all in same component
- If v_j and u are not in the same component:
 - Recolor component ending at v_j
 - v_j now misses β
 - Color $\{u, v_j\}$ in β

• What if v_j and u are in the same component?





Minimum edge coloring - algorithm

VIZINGEDGECOLORING(G = (V, E))

```
if E = \emptyset then \ \ \ \mathbf{return} \ \mathbf{0}
```

else

```
\{u, v\} \leftarrow \text{random edge of } G
G' \leftarrow G - e
VIZINGEDGECOLORING(G')
if \Delta(G') < \Delta(G) then
 \left\lfloor \text{ Color } \{u, v\} \text{ with lowest free color} \right.
```

else

```
Recolor E with Lemma 2
Color \{u, v\} with color now missing at u and v
```

Theorem 4.

VIZINGEDGECOLORING \mathcal{A} is an approximation algorithm with additive approximation guarantee $\mathcal{A}(G) - \mathsf{OPT}(G) \leq 1.$

Approximation with relative factor

An additive approximation guarantee can seldomly be achieved; but sometimes there is a multiplicative

> **Definition.** Let Π be an minimisation problem and $\alpha \in \mathbb{Q}^+$. A **(factor)** α -approximation algorithm for Π is a polynomial-time algorithm \mathcal{A} , which computes for every instance I of Π a value $\mathcal{A}(I)$ such that

$$\frac{\mathcal{A}(I)}{\mathsf{OPT}(I)} \stackrel{\geq}{\leq} \alpha$$

We call α the approximation factor.

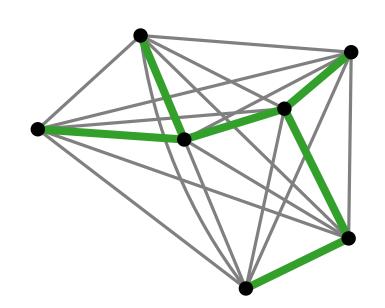
2-approximation for Metric TSP (from AGT)

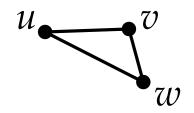
Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

Compute MST.





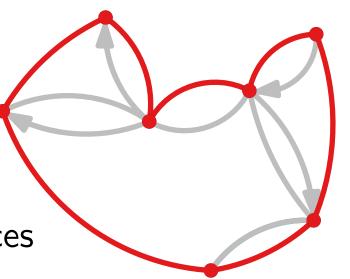
2-approximation for Metric TSP (from AGT)

Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



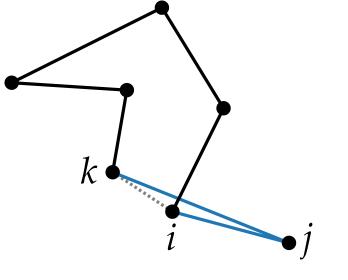
Theorem 5.

The MST edge doubling algorithm is a 2-approximation algorithm for metric TSP.

Proof. $d(\mathcal{A}) \leq d(\text{cycle}) = 2d(\text{MST}) \leq 2\text{OPT}$

Nearest addition algorithm for Metric TSP

```
NEARESTADDITIONALGORITHM (G = (V, E), d)
Find closest pair, say i and j
Set tour T to go from i to j to i
for n - 2 iterations do
Find pair i \in T and j \notin T with min d(i, j)
Let k be vertex after i in T
```



Theorem 6. The NEARESTADDITIONALGORITHM is a 2-approximation algorithm for metric TSP.

Add j between i and k

Proof.

Exercise.

Hints: MST and Prim's algorithm.

Approximation schemes

In some cases, we can get arbitrarily good approximations.

maximisation Let Π be a minimisation problem. An algorithm \mathcal{A} is called an polynomial-time approximation scheme (PTAS), if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon > 0$ a value $\mathcal{A}(I)$, such that: $\geq (1 - \varepsilon)$ $\mathcal{A}(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}, \text{ and }$ • the runtime of \mathcal{A} is polynomial in |I| für every $\varepsilon > 0$. \mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS), if it runs polynomial in |I| and $1/\varepsilon$.

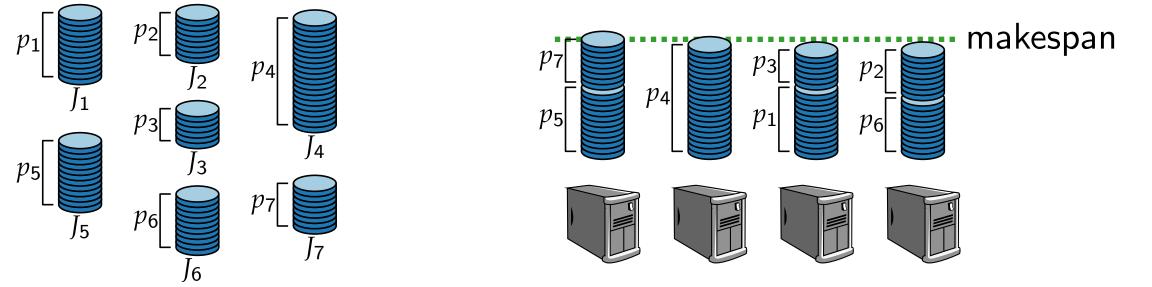
Examples.

Multiprocessor Scheduling

Input.

• *n* jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .

 \blacksquare *m* identical machines (*m* < *n*)



Output. Distribution of jobs to machines such that the time when all jobs have been processed is minimal. This is called the **makespan** of the distribution.

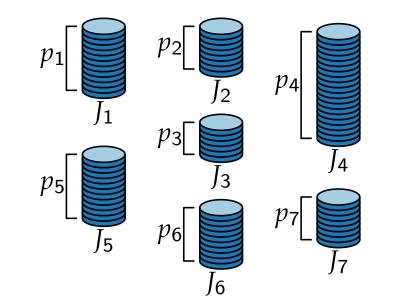
Multiprocess scheduling is NP-hard.

Multiprocessor Scheduling – List scheduling

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first *m* jobs on the *m* machines Put next job on first free machine

Example.



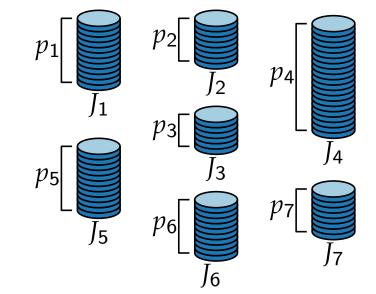


Multiprocessor Scheduling – List scheduling

LISTSCHEDULING(J_1, \ldots, J_n, m)

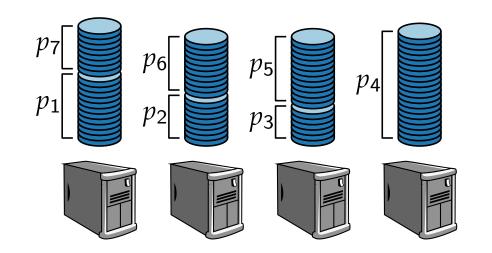
Put the first m jobs on the m machines Put next job on first free machine

Example.



LISTSCHEDULING runs in $\mathcal{O}(n)$ time.

Theorem 7. LISTSCHEDULING is a $\left(2-\frac{1}{m}\right)$ -approximation algorithm.



Multiprocessor Scheduling – List scheduling (proof)

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

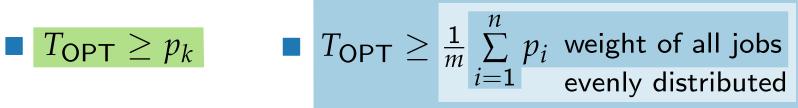
Theorem 7. LISTSCHEDULING is a $(2 - \frac{1}{m})$ -approximation algorithm.

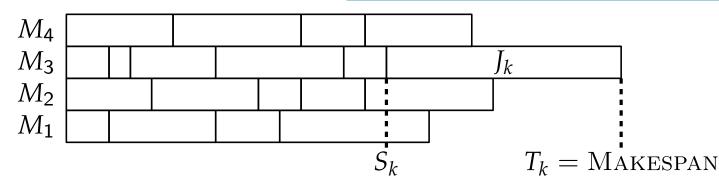
Proof. Let J_k be the last job with start time S_k and finish time $T_k = MAKESPAN$

No machine idles at time S_k .

 $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$ weight of all jobs but J_k evenly distributed on m machines

For an optimal MAKESPAN T_{OPT} , we have:





Hence:

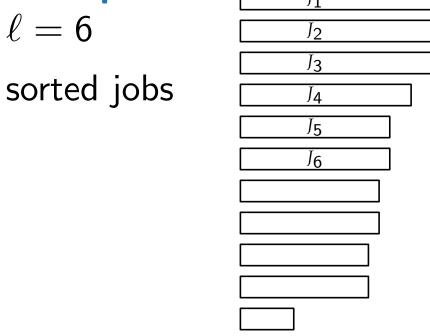
 $T_k = S_k + p_k$ $\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$ $=\frac{1}{m}\cdot\sum_{i=1}^{n}p_{i}+\left(1-\frac{1}{m}\right)\cdot p_{k}$ $\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$ $=\left(2-\frac{1}{m}\right)\cdot T_{\text{OPT}}$

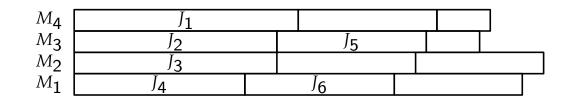
Multiprocessor Scheduling – PTAS

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use LISTSCHEDULING for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Example.





Multiprocessor Scheduling – PTAS

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)$ Sort jobs in descending order of runtime $\mathcal{O}(n \log n)$

Sort jobs in descending order of runtime CSchedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use LISTSCHEDULING for the reamining jobs $J_{\ell+1}, \ldots, J_n$

```
Polynomial time for
constant \ell:
\mathcal{O}(m^{\ell} + n \log n)
```

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

For $\varepsilon > 0$, choose ℓ such that $\mathcal{A}_{\varepsilon} = \mathcal{A}_{\ell(\varepsilon)}$ is a $(1 + \varepsilon)$ -approximation algorithm.

• $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ isn't a FPTAS, since the running time is not polynomial in $\frac{1}{\varepsilon}$.

Corollary 9.

 $\mathcal{O}(m^{\ell})$

 $\mathcal{O}(n)$

For a constant number of machines, $\{A_{\varepsilon} \mid \varepsilon > 0\}$ is a PTAS.

Multiprocessor Scheduling – PTAS (proof)

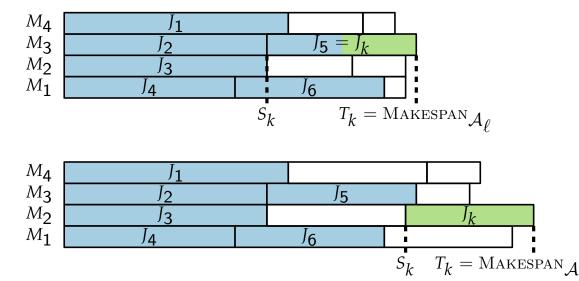
Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use LISTSCHEDULING for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Proof. Let J_k be the last job with start time S_k and finish time $T_k = MAKESPAN$

- **Case 1.** J_k is one of the longest ℓ jobs J_1, \ldots, J_ℓ .
- Solution is optimal for J_1, \ldots, J_k
- **Hence**, solution is optimal for J_1, \ldots, J_n
- **Case 2.** J_k is not one of the longest ℓ jobs J_1, \ldots, J_ℓ .
- **Similar analysis to** LISTSCHEDULING
- Use that there are $\ell + 1$ jobs that are at least as long as J_k (including J_k).



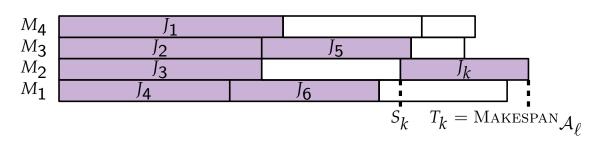
Multiprocessor Scheduling – PTAS (proof)

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

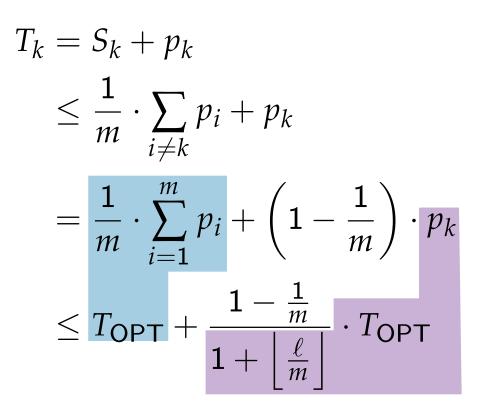
Consider only
$$J_1, \ldots, J_\ell, J_k$$
:
 $T_{OPT} \ge p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor\right)$ one machine has
this many jobs*
each has lenght $\ge p_k$

* on average, each machine has more than \$\frac{\ell}{m}\$ of the \$\ell + 1\$ jobs
 at least one machine achieves the average



 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use LISTSCHEDULING for the reamining jobs $J_{\ell+1}, \ldots, J_n$



Discussion

- Only "easy" NP-hard problems admit FPTAS (PTAS).
- Not all problems can be approximated (Max Clique).
- Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.
- Approximation algorithms exist also for non-NP-hard problems
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
- One important technique is LP-relaxation (next lecture).
- Min Vertex Coloring on planar graphs can be approximated with an additive approximation guarantee of 2.
- Christofides' approximation algorithm for Metric TSP has approximation factor 1.5.

Literature

Main references

- [Jansen, Margraf Ch3] "Approximative Algorithmen und Nichtapproximierbarkeit"
- [Williamson, Shmoys Ch3] "The Design of Approximation Algorithms"
- Another book recommendation:
- [Vazirani] "Approximation Algorithms" and don't forget our lecture
 Approximation Algorithms.
 For more precise definitions see
 https://go.uniwue.de/approxdef

