Advanced Algorithms

Approximation algorithms
Coloring and scheduling problems

Jonathan Klawitter • WS20

1

Dealing with NP-hard problems

What should we do?

- Sacrifice optimality for speed

■ Heuristics

- Approximation Algorithms
- Optimal Solutions
- Exact exponential-time algorithms
- Fine-grained analysis - parameterized algorithms

Heuristic | Approximation | |
| ---: | :--- |
| NP-hard | |
| Exponential | FPT |

Dealing with NP-hard problems

What should we do?

- Sacrifice optimality for speed

■ Heuristics

- Approximation Algorithms
- Optimal Solutions
- Exact exponential-time algorithms
- Fine-grained analysis - parameterized algorithms

Heuristic | Approximation | |
| ---: | :--- |
| NP-hard | |
| Exponential | FPT |

Approximation algorithms

Problem.

- For NP-hard optimisation problems, we cannot compute the optimal solution of each instance efficiently (unless $P=N P$).
■ Heuristics offer no guarantee on the quality of their solutions.

Approximation algorithms

Problem.

- For NP-hard optimisation problems, we cannot compute the optimal solution of each instance efficiently (unless $P=N P$).

■ Heuristics offer no guarantee on the quality of their solutions. Goal.
■ Design approximation algorithms that
\square run in polynomial time and

- compute solutions of guaranteed quality.

■ Study techniques for the design and analysis of approximation algorithms.

Approximation algorithms

Problem.

- For NP-hard optimisation problems, we cannot compute the optimal solution of each instance efficiently (unless $P=N P$).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.

■ Design approximation algorithms that

- run in polynomial time and
- compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Overview.

- Approximation algorithms that compute solutions with/that are \square additive guarantee, ■ relative guarantee, ■ "arbitraility good".

Approximation with additive guarantee

Definition.

Let Π be an optimisation problem and let \mathcal{A} be a polynomial-time algorithm that computes the value $\mathcal{A}(I)$ for an instance I of Π.
\mathcal{A} is called an approximation algorithm with additive guarantee δ if

$$
|\mathrm{OPT}(I)-\mathcal{A}(I)| \leq \delta(I)
$$

for every instance I of Π.

Approximation with additive guarantee

Definition.

Let Π be an optimisation problem and let \mathcal{A} be a polynomial-time algorithm that computes the value $\mathcal{A}(I)$ for an instance I of Π.
\mathcal{A} is called an approximation algorithm with additive guarantee δ if

$$
|\mathrm{OPT}(I)-\mathcal{A}(I)| \leq \delta(I)
$$

for every instance I of Π.

- Most problems do not admit an approximation algorithm with additive guarantee.

Minimum vertex coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.

Minimum vertex coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

Minimum vertex coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

- Min Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

Minimum vertex coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

- Min Vertex Coloring is NP-hard.

■ Even Vertex 3-Coloring is NP-complete.
GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

Minimum vertex coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

- Min Vertex Coloring is NP-hard.

■ Even Vertex 3-Coloring is NP-complete.
GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

Minimum vertex coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

- Min Vertex Coloring is NP-hard.

■ Even Vertex 3-Coloring is NP-complete.
GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

Minimum vertex coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

- Min Vertex Coloring is NP-hard.

■ Even Vertex 3-Coloring is NP-complete.
GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

Minimum vertex coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

- Min Vertex Coloring is NP-hard.

■ Even Vertex 3-Coloring is NP-complete.
GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

Minimum vertex coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

- Min Vertex Coloring is NP-hard.

■ Even Vertex 3-Coloring is NP-complete.
GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

Minimum vertex coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

- Min Vertex Coloring is NP-hard.

■ Even Vertex 3-Coloring is NP-complete.
GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

Minimum vertex coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

- Min Vertex Coloring is NP-hard.

■ Even Vertex 3-Coloring is NP-complete.
GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

Theorem 1.

The algorithm GreedyVertexColoring computes a vertex $0000 \cdots$ coloring with at most $\Delta+1$ colors in $\mathcal{O}(n+m)$ time. Hence, it has an additive approximation gurantee of $\Delta-1$.

Minimum edge coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.

Minimum edge coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. An edge coloring, that is, an assignment of colors to the edges of G such that now two incident edges get the same color, with minimum number of colors.

Minimum edge coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. An edge coloring, that is, an assignment of colors to the edges of G such that now two incident edges get the same color, with minimum number of colors.

- Min Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.

Minimum edge coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. An edge coloring, that is, an assignment of colors to the edges of G such that now two incident edges get the same color, with minimum number of colors.

- Min Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the chromatic index $\chi^{\prime}(G)$.
- $\chi^{\prime}(G)$ is lower bounded by

Minimum edge coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. An edge coloring, that is, an assignment of colors to the edges of G such that now two incident edges get the same color, with minimum number of colors.

- Min Edge Coloring is NP-hard.

■ Even Edge 3-Coloring is NP-complete.

- The minimum number of colors needed for an edge coloring of G is called the chromatic index $\chi^{\prime}(G)$.
- $\chi^{\prime}(G)$ is lower bounded by Δ.

Minimum edge coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. An edge coloring, that is, an assignment of colors to the edges of G such that now two incident edges get the same color, with minimum number of colors.

- Min Edge Coloring is NP-hard.

■ Even Edge 3-Coloring is NP-complete.

- The minimum number of colors needed for an edge coloring of G is called the chromatic index $\chi^{\prime}(G)$.
- $\chi^{\prime}(G)$ is lower bounded by Δ.
- We show that $\chi^{\prime}(G) \leq \Delta+1$.

Minimum edge coloring - upper bound

Vizing's Theorem.
For every graph $G=(V, E)$ with maximum degree Δ holds that $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.

Minimum edge coloring - upper bound

Vizing's Theorem.

For every graph $G=(V, E)$ with maximum degree Δ holds that $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.
Proof by induction on $m=|E|$.

- Base case $m=1$ is trivial.

Minimum edge coloring - upper bound

Vizing's Theorem.

For every graph $G=(V, E)$ with maximum degree Δ holds that $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.
Proof by induction on $m=|E|$.

- Base case $m=1$ is trivial.

Let G be a graph on m edges and e an edge of G.
$■$ By induction, $G-e$ has a $\Delta(G-e)+1$ edge coloring.

Minimum edge coloring - upper bound

Vizing's Theorem.

For every graph $G=(V, E)$ with maximum degree Δ holds that $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.
Proof by induction on $m=|E|$.

- Base case $m=1$ is trivial.

Let G be a graph on m edges and e an edge of G.
\square By induction, $G-e$ has a $\Delta(G-e)+1$ edge coloring.

- If $\Delta(G)>\Delta(G-e)$, color e with color $\Delta(G)+1$.

Minimum edge coloring - upper bound

Vizing's Theorem.

For every graph $G=(V, E)$ with maximum degree Δ holds that $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.
Proof by induction on $m=|E|$.
\square Base case $m=1$ is trivial.
Let G be a graph on m edges and e an edge of G.
\square By induction, $G-e$ has a $\Delta(G-e)+1$ edge coloring.
■ If $\Delta(G)>\Delta(G-e)$, color e with color $\Delta(G)+1$.

- If $\Delta(G)=\Delta(G-e)$, change coloring such that u and v (of $e=\{u, v\}$) miss the same color α.

Minimum edge coloring - upper bound

Vizing's Theorem.

For every graph $G=(V, E)$ with maximum degree Δ holds that $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.
Proof by induction on $m=|E|$.
\square Base case $m=1$ is trivial.
Let G be a graph on m edges and e an edge of G.
\square By induction, $G-e$ has a $\Delta(G-e)+1$ edge coloring.
■ If $\Delta(G)>\Delta(G-e)$, color e with color $\Delta(G)+1$.

- If $\Delta(G)=\Delta(G-e)$, change coloring such that u and v (of $e=\{u, v\}$) miss the same color α.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

$\operatorname{VizingRECOLORING}\left(G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do

$$
v_{i} \leftarrow w
$$

$$
\alpha_{i+1} \leftarrow \min \text { color missing at } w
$$

$$
i++
$$

return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do

$$
v_{i} \leftarrow w
$$

$$
\alpha_{i+1} \leftarrow \min \text { color missing at } w
$$

$$
i++
$$

return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do

$$
v_{i} \leftarrow w
$$

$$
\alpha_{i+1} \leftarrow \min \text { color missing at } w
$$

$$
i++
$$

return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do

$$
v_{i} \leftarrow w
$$

$$
\alpha_{i+1} \leftarrow \min \text { color missing at } w
$$

$$
i++
$$

return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do

$$
v_{i} \leftarrow w
$$

$$
\alpha_{i+1} \leftarrow \min \text { color missing at } w
$$

$$
i++
$$

return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do

$$
v_{i} \leftarrow w
$$

$$
\alpha_{i+1} \leftarrow \min \text { color missing at } w
$$

$$
i++
$$

return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do

$$
v_{i} \leftarrow w
$$

$$
\alpha_{i+1} \leftarrow \min \text { color missing at } w
$$

$$
i++
$$

return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$ Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$
$w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$ $w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$ $w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$ $w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$ $w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring $\left(G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$ $w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

$\operatorname{VizingREColoring}\left(G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$ $w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring $\left(G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$ $w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring $\left(G=(V, E), u, c, \alpha_{1}\right)$
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$ $w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.

Minimum edge coloring - recoloring

Lemma 2.

Let G have a $(\Delta+1)$ edge coloring c, let u, v be non-adjacent, and $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed such that u and v miss the same color.
Proof. Note, each vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring($\left.G=(V, E), u, c, \alpha_{1}\right)$ Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.
$i \leftarrow 1$
while $\exists w \in N(u): \quad c(\{u, w\})=\alpha_{i} \wedge$ $w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w
$i++$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum edge coloring - recoloring

Proof continued for
Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$ and we need to find a color for $\left\{u, v_{j}\right\}$.

Minimum edge coloring - recoloring

Proof continued for
Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$ and we need to find a color for $\left\{u, v_{j}\right\}$.

- Consider subgraph G^{\prime} of G induced by edges with color β and α_{j}.

Minimum edge coloring - recoloring

Proof continued for
Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$ and we need to find a color for $\left\{u, v_{j}\right\}$.
■ Consider subgraph G^{\prime} of G induced by edges with color β and α_{j}.

- Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.
$\neg \beta \cdot \alpha_{j}^{\beta} \alpha_{j}^{\beta} \prec_{\alpha}$

Minimum edge coloring - recoloring

Proof continued for
Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$ and we need to find a color for $\left\{u, v_{j}\right\}$.
■ Consider subgraph G^{\prime} of G induced by edges with color β and α_{j}.

- Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

Minimum edge coloring - recoloring

Proof continued for

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$ and we need to find a color for $\left\{u, v_{j}\right\}$.

- Consider subgraph G^{\prime} of G induced by edges with color β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

- u, v_{j}, v_{h} have degree 1 in G^{\prime}
\Rightarrow they are not all in same component

Minimum edge coloring - recoloring

Proof continued for

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$ and we need to find a color for $\left\{u, v_{j}\right\}$.
■ Consider subgraph G^{\prime} of G induced by edges with color β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

- u, v_{j}, v_{h} have degree 1 in G^{\prime}
\Rightarrow they are not all in same component
- If v_{j} and u are not in the same component:
- Recolor component ending at v_{j}

Minimum edge coloring - recoloring

Proof continued for

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$ and we need to find a color for $\left\{u, v_{j}\right\}$.

- Consider subgraph G^{\prime} of G induced by edges with color β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

- u, v_{j}, v_{h} have degree 1 in G^{\prime}
\Rightarrow they are not all in same component
- If v_{j} and u are not in the same component:
- Recolor component ending at v_{j}
- v_{j} now misses β

Minimum edge coloring - recoloring

Proof continued for

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$ and we need to find a color for $\left\{u, v_{j}\right\}$.

- Consider subgraph G^{\prime} of G induced by edges with color β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

- u, v_{j}, v_{h} have degree 1 in G^{\prime}
\Rightarrow they are not all in same component
- If v_{j} and u are not in the same component:
- Recolor component ending at v_{j}
- v_{j} now misses β
\square Color $\left\{u, v_{j}\right\}$ in β

Minimum edge coloring - recoloring

Proof continued for

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$ and we need to find a color for $\left\{u, v_{j}\right\}$.

- Consider subgraph G^{\prime} of G induced by edges with color β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

- u, v_{j}, v_{h} have degree 1 in G^{\prime}
\Rightarrow they are not all in same component
- If v_{j} and u are not in the same component:
- Recolor component ending at v_{j}
- v_{j} now misses β
- Color $\left\{u, v_{j}\right\}$ in β
\square What if v_{j} and u are in the same component?

Minimum edge coloring - algorithm

```
VizingEdgeColoring(G = (V,E))
    if }E=\varnothing\mathrm{ then
    L return 0
    else
    {u,v}\leftarrow random edge of G
    G}\leftarrow\leftarrowG-
    VizingEdgeColoring(G')
    if }\Delta(\mp@subsup{G}{}{\prime})<\Delta(G)\mathrm{ then
    Color {u,v} with lowest free color
        else
    Recolor E with Lemma 2
    Color {u,v} with color now missing at u}\mathrm{ and v
```


Minimum edge coloring - algorithm

```
VizingEdgeColoring(G = (V,E))
    if }E=\varnothing\mathrm{ then
    Lreturn 0
    else
        {u,v}\leftarrow random edge of G
        G}\leftarrow\leftarrowG-
        VizingEdgeColoring(G')
        if }\Delta(\mp@subsup{G}{}{\prime})<\Delta(G)\mathrm{ then
        Color {u,v} with lowest free color
        else
            Recolor E with Lemma 2
            Color {u,v} with color now missing at u and v
```


Approximation with relative factor

■ An additive approximation guarantee can seldomly be achieved; but sometimes there is a multiplicative ...

Approximation with relative factor

- An additive approximation guarantee can seldomly be achieved; but sometimes there is a multiplicative ...

Definition.

Let Π be an minimisation problem and $\alpha \in \mathbb{Q}^{+}$. A (factor) α-approximation algorithm for Π is a polynomial-time algorithm \mathcal{A}, which computes for every instance I of Π a value $\mathcal{A}(I)$ such that

$$
\frac{\mathcal{A}(I)}{\mathrm{OPT}(I)} \leq \alpha
$$

We call α the approximation factor.

Approximation with relative factor

- An additive approximation guarantee can seldomly be achieved; but sometimes there is a multiplicative ...

Definition.
Let Π be an minimisation problem and $\alpha \in \mathbb{Q}^{+}$.
A (factor) α-approximation algorithm for Π is a polynomial-time algorithm \mathcal{A}, which computes for every instance I of Π a value $\mathcal{A}(I)$ such that

$$
\frac{\mathcal{A}(I)}{\operatorname{OPT}(I)} \geq \alpha
$$

We call α the approximation factor.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.
Algorithm.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

■ Compute MST.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.
- Walk along tree,

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.

■ Walk along tree,

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.

■ Walk along tree,

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.

■ Walk along tree,

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.

■ Walk along tree,
■ skipping visited vertices

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.

■ Walk along tree,
■ skipping visited vertices

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.

■ Walk along tree,
■ skipping visited vertices
■ and adding shortcuts.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

■ Compute MST.

- Double edges.

■ Walk along tree,
■ skipping visited vertices
■ and adding shortcuts.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.

■ Walk along tree,
■ skipping visited vertices
■ and adding shortcuts.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.

■ Walk along tree,
■ skipping visited vertices
■ and adding shortcuts.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.
Algorithm.

- Compute MST.
- Double edges.

■ Walk along tree,
■ skipping visited vertices

- and adding shortcuts.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.
- Walk along tree,

■ skipping visited vertices
■ and adding shortcuts.

2-approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.

■ Walk along tree,
■ skipping visited vertices
■ and adding shortcuts.

Theorem 5.

The MST edge doubling algorithm is a 2 -approximation algorithm for metric TSP.

Proof.

$d(\mathcal{A}) \leq d($ cycle $)=2 d(\mathrm{MST}) \leq 2 \mathrm{OPT}$

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j
Set tour T to go from i to j to i
for $n-2$ iterations do
Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$
Let k be vertex after i in T
Add j between i and k

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j
Set tour T to go from i to j to i
for $n-2$ iterations do
Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$ Let k be vertex after i in T Add j between i and k

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j Set tour T to go from i to j to i for $n-2$ iterations do

Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$ Let k be vertex after i in T
 Add j between i and k

Nearest addition algorithm for Metric TSP
NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j
Set tour T to go from i to j to i
for $n-2$ iterations do
Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$
Let k be vertex after i in T
Add j between i and k

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j
Set tour T to go from i to j to i
for $n-2$ iterations do
Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$
Let k be vertex after i in T
Add j between i and k

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j Set tour T to go from i to j to i for $n-2$ iterations do

Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$ Let k be vertex after i in T Add j between i and k

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j
Set tour T to go from i to j to i
for $n-2$ iterations do
Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$
Let k be vertex after i in T
Add j between i and k

Nearest addition algorithm for Metric TSP
NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j Set tour T to go from i to j to i for $n-2$ iterations do

Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$ Let k be vertex after i in T Add j between i and k

Nearest addition algorithm for Metric TSP
NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j Set tour T to go from i to j to i for $n-2$ iterations do

Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$ Let k be vertex after i in T Add j between i and k

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j
Set tour T to go from i to j to i
for $n-2$ iterations do
Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$ Let k be vertex after i in T
 Add j between i and k

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j Set tour T to go from i to j to i for $n-2$ iterations do

Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$ Let k be vertex after i in T
 Add j between i and k

Theorem 6.
 The NearestAdditionAlgorithm is a 2-approximation algorithm for metric TSP.

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and j Set tour T to go from i to j to i for $n-2$ iterations do

Find pair $i \in T$ and $j \notin T$ with $\min d(i, j)$
Let k be vertex after i in T
 Add j between i and k

```
Theorem 6.
The NearestAdDitionAlgorithm
is a 2-approximation algorithm for metric TSP.
```


Proof.

■ Exercise.
■ Hints: MST and Prim's algorithm.

Approximation schemes

■ In some cases, we can get arbitrarily good approximations.

Approximation schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimisation problem. An algorithm \mathcal{A} is called an polynomial-time approximation scheme (PTAS), if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon>0$ a value $\mathcal{A}(I)$, such that:

- $\mathcal{A}(I) \leq(1+\varepsilon) \cdot$ OPT, and
- the runtime of \mathcal{A} is polynomiell in $|I|$ für every $\varepsilon>0$.

Approximation schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimisation problem. An algorithm \mathcal{A} is called an polynomial-time approximation scheme (PTAS), if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon>0$ a value $\mathcal{A}(I)$, such that:

- $\mathcal{A}(I) \geq(1-\varepsilon)$. OPT, and
- the runtime of \mathcal{A} is polynomiell in $|I|$ für every $\varepsilon>0$.

Approximation schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimisation problem. An algorithm \mathcal{A} is called an polynomial-time approximation scheme (PTAS), if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon>0$ a value $\mathcal{A}(I)$, such that:

- $\mathcal{A}(I) \geq(1-\varepsilon)$. OPT, and
- the runtime of \mathcal{A} is polynomiell in $|I|$ für every $\varepsilon>0$.
\mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS), if it runs polynomial in $|I|$ and $1 / \varepsilon$.

Approximation schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimisation problem. An algorithm \mathcal{A} is called an polynomial-time approximation scheme (PTAS), if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon>0$ a value $\mathcal{A}(I)$, such that:

- $\mathcal{A}(I) \geq(1-\varepsilon)$. OPT, and
- the runtime of \mathcal{A} is polynomiell in $|I|$ für every $\varepsilon>0$.
\mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS), if it runs polynomial in $|I|$ and $1 / \varepsilon$.

Examples.

- $\mathcal{O}\left(n^{2} \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow$ PTAS but not FPTAS
- $\mathcal{O}\left(n^{2}+n^{\frac{1}{\varepsilon}}\right) \Rightarrow$ PTAS but not FPTAS

■ $\mathcal{O}\left(n^{4} \cdot\left(\frac{1}{\varepsilon}\right)^{2}\right) \Rightarrow$ FPTAS

Multiprocessor Scheduling

Input. $\square n$ jobs J_{1}, \ldots, J_{n} with durations p_{1}, \ldots, p_{n}.

- m identical machines $(m<n)$

Multiprocessor Scheduling

Input.
$\square n$ jobs J_{1}, \ldots, J_{n} with durations p_{1}, \ldots, p_{n}.

■ m identical machines $(m<n)$

Output. Distribution of jobs to machines such that the time when all jobs have been processed is minimal.
This is called the makespan of the distribution.

Multiprocessor Scheduling

Input.
$\square n$ jobs J_{1}, \ldots, J_{n} with durations p_{1}, \ldots, p_{n}.

- m identical machines $(m<n)$

Output. Distribution of jobs to machines such that the time when all jobs have been processed is minimal.
This is called the makespan of the distribution.

Multiprocessor Scheduling

Input.
■ n jobs J_{1}, \ldots, J_{n} with durations p_{1}, \ldots, p_{n}.

- m identical machines $(m<n)$

Output. Distribution of jobs to machines such that the time when all jobs have been processed is minimal.
This is called the makespan of the distribution.

Multiprocessor Scheduling

Input.
■ n jobs J_{1}, \ldots, J_{n} with durations p_{1}, \ldots, p_{n}.

- m identical machines $(m<n)$

Output. Distribution of jobs to machines such that the time when all jobs have been processed is minimal.
This is called the makespan of the distribution.
■ Multiprocess scheduling is NP-hard.

Multiprocessor Scheduling - List scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Example.

Multiprocessor Scheduling - List scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Example.

Multiprocessor Scheduling - List scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Example.

Multiprocessor Scheduling - List scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Example.

Multiprocessor Scheduling - List scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Example.

Multiprocessor Scheduling - List scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Example.

■ ListScheduling runs in $\mathcal{O}(n)$ time.

Multiprocessor Scheduling - List scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines Put next job on first free machine

Example.

■ ListScheduling runs in $\mathcal{O}(n)$ time.

Theorem 7.
 ListScheduling is a
 $\left(2-\frac{1}{m}\right)$-approximation algorithm.

Multiprocessor Scheduling - List scheduling (proof)

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Theorem 7.

ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation algorithm.

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN

Multiprocessor Scheduling - List scheduling (proof)

$\operatorname{ListScheduLing}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation algorithm.

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \begin{aligned}
& \text { weight of all jobs but } J_{k} \\
& \text { evenly distributed on } m \text { machines }
\end{aligned}
$$

Multiprocessor Scheduling - List scheduling (proof)

$\operatorname{ListScheduLing}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation algorithm.

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \text { weight of all jobs but } J_{k}
$$

\square For an optimal MAKESPAN T_{OPT}, we have:

- $T_{\mathrm{OPT}} \geq p_{k}$

Multiprocessor Scheduling - List scheduling (proof)

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation algorithm.

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \text { weight of all jobs but } J_{k}
$$

\square For an optimal Makespan T_{OPT}, we have:

- $T_{\text {OPT }} \geq p_{k}$
- $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i} \begin{aligned} & \text { weight of all jobs } \\ & \text { evenly distributed }\end{aligned}$

Multiprocessor Scheduling - List scheduling (proof)

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation algorithm.

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \text { weight of all jobs but } J_{k}
$$

- Hence:

$$
T_{k}=S_{k}+p_{k}
$$

- For an optimal MAKESPAN T_{OPT}, we have:
- $T_{\text {OPT }} \geq p_{k}$
- $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i} \begin{aligned} & \text { weight of all jobs } \\ & \text { evenly distributed }\end{aligned}$

Multiprocessor Scheduling - List scheduling (proof)

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation algorithm.

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \text { weight of all jobs but } J_{k}
$$

\square For an optimal MAKESPAN T_{OPT}, we have:

- Hence:

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
\end{aligned}
$$

- $T_{\text {OPT }} \geq p_{k}$
$\square T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i} \begin{aligned} & \text { weight of all jobs } \\ & \text { evenly distributed }\end{aligned}$

Multiprocessor Scheduling - List scheduling (proof)

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation algorithm.

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN

No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \text { weight of all jobs but } J_{k}
$$

- For an optimal MAKESPAN $T_{\text {OPT }}$, we have:
- $T_{\text {OPT }} \geq p_{k}$
- $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i} \begin{aligned} & \text { weight of all jobs } \\ & \text { evenly distributed }\end{aligned}$
- Hence:

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k} \\
& =\frac{1}{m} \cdot \sum_{i=1}^{n} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k}
\end{aligned}
$$

Multiprocessor Scheduling - List scheduling (proof)

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation algorithm.

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN

No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \text { weight of all jobs but } J_{k}
$$

\square For an optimal MAKESPAN $T_{\text {OPT }}$, we have:
$\square T_{\mathrm{OPT}} \geq p_{k} \quad \square T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$ weight of all jobs

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{m} \cdot \sum_{i=1}^{n} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k} \\
& \leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
\end{aligned}
$$

Multiprocessor Scheduling - List scheduling (proof)

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines
Put next job on first free machine

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation algorithm.

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN

No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \text { weight of all jobs but } J_{k}
$$

- For an optimal MAKESPAN $T_{\text {OPT }}$, we have:
- Hence:

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
\end{aligned}
$$

- $T_{\mathrm{OPT}} \geq p_{k}$
$\square T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$ weight of all jobs

$$
=\frac{1}{m} \cdot \sum_{i=1}^{n} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k}
$$

$$
\leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
$$

$$
=\left(2-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
$$

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Example.

$\ell=6$

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Example.

$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$
Example.
$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Example.

$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Example.

$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Example.

$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Example.

$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Example.

$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Example.

$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Example.

$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
$\mathcal{O}(n \log n)$
$\mathcal{O}\left(m^{\ell}\right)$
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n} \quad \mathcal{O}(n)$

- Polynomial time for constant ℓ : $\mathcal{O}\left(m^{\ell}+n \log n\right)$

Example.

$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

- Polynomial time for constant ℓ : $\mathcal{O}\left(m^{\ell}+n \log n\right)$

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
$\mathcal{O}(n \log n)$
$\mathcal{O}\left(m^{\ell}\right)$ Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n} \quad \mathcal{O}(n)$

- Polynomial time for constant ℓ : $\mathcal{O}\left(m^{\ell}+n \log n\right)$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

■ For $\varepsilon>0$, choose ℓ such that $\mathcal{A}_{\varepsilon}=\mathcal{A}_{\ell(\varepsilon)}$ is a (1+ $)$-approximation algorithm.

Corollary 9.
For a constant number of machines, $\left\{\mathcal{A}_{\varepsilon} \mid \varepsilon>0\right\}$ is a PTAS.

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$
$\mathcal{O}(n \log n)$
$\mathcal{O}\left(m^{\ell}\right)$ $\mathcal{O}(n)$

- Polynomial time for constant ℓ : $\mathcal{O}\left(m^{\ell}+n \log n\right)$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

■ For $\varepsilon>0$, choose ℓ such that $\mathcal{A}_{\varepsilon}=\mathcal{A}_{\ell(\varepsilon)}$ is a $(1+\varepsilon)$-approximation algorithm.
$\square\left\{\mathcal{A}_{\varepsilon} \mid \varepsilon>0\right\}$ isn't a FPTAS, since the running time is not polynomial in $\frac{1}{\varepsilon}$.

Corollary 9.
For a constant number of machines, $\left\{\mathcal{A}_{\varepsilon} \mid \varepsilon>0\right\}$ is a PTAS.

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN
Case 1. J_{k} is one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN
Case 1. J_{k} is one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.

- Solution is optimal for J_{1}, \ldots, J_{k}
- Hence, solution is optimal for J_{1}, \ldots, J_{n}

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN
Case 1. J_{k} is one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.

- Solution is optimal for J_{1}, \ldots, J_{k}
- Hence, solution is optimal for J_{1}, \ldots, J_{n}

Case 2. J_{k} is not one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Proof. Let J_{k} be the last job with start time S_{k} and finish time $T_{k}=$ MAKESPAN
Case 1. J_{k} is one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.

- Solution is optimal for J_{1}, \ldots, J_{k}
- Hence, solution is optimal for J_{1}, \ldots, J_{n}

Case 2. J_{k} is not one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.

- Similar analysis to ListScheduling

■ Use that there are $\ell+1$ jobs that are at least as
 long as J_{k} (including J_{k}).

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \quad T_{\text {OPT }} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
- $T_{\mathrm{OPT}} \geq p_{k}$
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \quad T_{\text {OPT }} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
- $T_{\mathrm{OPT}} \geq p_{k}$
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.
$\square S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \square T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$

- $T_{\text {OPT }} \geq p_{k}$
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$
- $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
- $T_{\mathrm{OPT}} \geq p_{k}$
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$
- $T_{\text {OPT }} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
- $T_{\mathrm{OPT}} \geq p_{k}$
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Proof of Case 2.
$\square S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \quad T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
■ Consider only $J_{1}, \ldots, J_{\ell}, J_{k}$:
$T_{\mathrm{OPT}} \geq p_{k} \cdot\left(1+\left\lfloor\frac{\ell}{m}\right\rfloor\right) \begin{aligned} & \text { one machine has } \\ & \text { this many jobs }{ }^{\star} \\ & \text { each has lenght } \geq p_{k}\end{aligned}$
■ * on average, each machine has more than $\frac{\ell}{m}$ of the $\ell+1$ jobs

- at least one machine achieves the average

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{m} \cdot \sum_{i=1}^{m} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k} \\
& \leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
\end{aligned}
$$

Multiprocessor Scheduling - PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally
Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_{n}$

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$
$\mathrm{T}_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
■ Consider only $J_{1}, \ldots, J_{\ell,} J_{k}$:
$\square T_{\mathrm{OPT}} \geq p_{k} \cdot\left(1+\left\lfloor\frac{\ell}{m}\right\rfloor\right) \begin{aligned} & \text { one machine has } \\ & \text { this many jobs }{ }^{\star} \\ & \text { each has lenght } \geq p_{k}\end{aligned}$
■ * on average, each machine has more than $\frac{\ell}{m}$ of the $\ell+1$ jobs ■ at least one machine achieves the average

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{m} \cdot \sum_{i=1}^{m} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k} \\
& \leq T_{\mathrm{OPT}}+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor} \cdot T_{\mathrm{OPT}}
\end{aligned}
$$

Discussion

■ Only "easy" NP-hard problems admit FPTAS (PTAS).
■ Not all problems can be approximated (Max Clique).

- Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.
- Only "easy" NP-hard problems admit FPTAS (PTAS).

■ Not all problems can be approximated (Max Clique).
■ Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.

- Approximation algorithms exist also for non-NP-hard problems

■ Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...

■ One important technique is LP-relaxation (next lecture).

■ Only "easy" NP-hard problems admit FPTAS (PTAS).
■ Not all problems can be approximated (Max Clique).
■ Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.

- Approximation algorithms exist also for non-NP-hard problems

■ Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
■ One important technique is LP-relaxation (next lecture).
■ Min Vertex Coloring on planar graphs can be approximated with an additive approximation guarantee of 2 .
■ Christofides' approximation algorithm for Metric TSP has approximation factor 1.5 .

Literature

Main references
■ [Jansen, Margraf Ch3] "Approximative Algorithmen und Nichtapproximierbarkeit"

- [Williamson, Shmoys Ch3] "The Design of Approximation Algorithms"
Another book recommendation:
■ [Vazirani] "Approximation Algorithms" and don't forget our lecture
■ Approximation Algorithms.

Klaus Jansen
Marian Margraf
Approximative Algorithmen und Nichtapproximierbarkeit

The DESIGN of APPROXIMATION ALGORITHMS

Approximation
Algorithms

For more precise definitions see
■ https://go.uniwue.de/approxdef

