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Dealing with NP-hard problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal Solutions
� Exact exponential-time algorithms
� Fine-grained analysis – parameterized algorithms

� Sacrifice optimality for speed
� Heuristics
� Approximation Algorithms

What should we do?
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Approximation algorithms

Problem.
� For NP-hard optimisation problems, we cannot compute the

optimal solution of each instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.



3 - 2

Approximation algorithms

Problem.
� For NP-hard optimisation problems, we cannot compute the

optimal solution of each instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.

Goal.
� Design approximation algorithms that

� run in polynomial time and
� compute solutions of guaranteed quality.

� Study techniques for the design and analysis of
approximation algorithms.



3 - 3

Approximation algorithms

Problem.
� For NP-hard optimisation problems, we cannot compute the

optimal solution of each instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.

Goal.
� Design approximation algorithms that

� run in polynomial time and
� compute solutions of guaranteed quality.

� Study techniques for the design and analysis of
approximation algorithms.

Overview.
� Approximation algorithms that compute solutions with/that are

� additive guarantee, � relative guarantee, � “arbitraility good”.
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Approximation with additive guarantee

Definition.
Let Π be an optimisation problem and let A be a
polynomial-time algorithm that computes the value
A(I) for an instance I of Π.
A is called an approximation algorithm with
additive guarantee δ if

|OPT(I)−A(I)| ≤ δ(I)

for every instance I of Π.
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� Most problems do not admit an approximation
algorithm with additive guarantee.

Definition.
Let Π be an optimisation problem and let A be a
polynomial-time algorithm that computes the value
A(I) for an instance I of Π.
A is called an approximation algorithm with
additive guarantee δ if

|OPT(I)−A(I)| ≤ δ(I)

for every instance I of Π.
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A graph G = (V, E). Let ∆ be the maximum degree of G.Input.
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Theorem 1.
The algorithm GreedyVertexColoring computes a vertex
coloring with at most ∆ + 1 colors in O(n + m) time.
Hence, it has an additive approximation gurantee of ∆− 1.
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A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

An edge coloring, that is, an assignment of colors to the
edges of G such that now two incident edges get the same
color, with minimum number of colors.

Output.

� Min Edge Coloring is NP-hard.

� Even Edge 3-Coloring is NP-complete.

� The minimum number of colors needed for an edge co-
loring of G is called the chromatic index χ′(G).

� χ′(G) is lower bounded by ∆.

� We show that χ′(G) ≤ ∆ + 1.
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Vizing’s Theorem.
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Minimum edge coloring – recoloring

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.
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αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1
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vj−1
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¬β,¬α1

vj+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.
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Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.
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,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.

vj+1



8 - 27

Minimum edge coloring – recoloring

β
¬β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

αjαj ¬αj

vj+1



8 - 28

Minimum edge coloring – recoloring

β
¬β

β

β
¬β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1
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Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj

vj+1
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Proof continued for
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Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj

� u, vj, vh have degree 1 in G′

⇒ they are not all in same component

¬αj ¬β

vj+1
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Proof continued for
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we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by
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αjαj ¬αj

αjαj
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¬αj

� u, vj, vh have degree 1 in G′

⇒ they are not all in same component
� If vj and u are not in the same component:

� Recolor component ending at vj
� vj now misses β
� Color {u, vj} in β

¬αj ¬β

vj+1
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Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.
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β
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Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj

� u, vj, vh have degree 1 in G′

⇒ they are not all in same component
� If vj and u are not in the same component:

� Recolor component ending at vj
� vj now misses β
� Color {u, vj} in β

β

� What if vj and u are in the same component?

¬αj ¬β

vj+1

,¬β
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Minimum edge coloring - algorithm

VizingEdgeColoring(G = (V, E))
if E = ∅ then

return 0
else
{u, v} ← random edge of G
G′ ← G− e
VizingEdgeColoring(G′)
if ∆(G′) < ∆(G) then

Color {u, v} with lowest free color

else
Recolor E with Lemma 2
Color {u, v} with color now missing at u and v
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Minimum edge coloring - algorithm

VizingEdgeColoring(G = (V, E))
if E = ∅ then

return 0
else
{u, v} ← random edge of G
G′ ← G− e
VizingEdgeColoring(G′)
if ∆(G′) < ∆(G) then

Color {u, v} with lowest free color

else
Recolor E with Lemma 2
Color {u, v} with color now missing at u and v

Theorem 4.
VizingEdgeColoring A is an
approximation algorithm with
additive approximation guarantee
A(G)−OPT(G) ≤ 1.
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Approximation with relative factor

� An additive approximation guarantee can seldomly be
achieved; but sometimes there is a multiplicative . . .
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Approximation with relative factor

Definition.
Let Π be an minimisation problem and α ∈ Q+.
A (factor) α-approximation algorithm for Π is a
polynomial-time algorithm A, which computes for every
instance I of Π a value A(I) such that

A(I)
OPT(I)

≤ α.

We call α the approximation factor.

� An additive approximation guarantee can seldomly be
achieved; but sometimes there is a multiplicative . . .
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A (factor) α-approximation algorithm for Π is a
polynomial-time algorithm A, which computes for every
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A(I)
OPT(I)

≤ α.
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achieved; but sometimes there is a multiplicative . . .

maximisation

≥
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2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.
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Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.
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2-approximation for Metric TSP (from AGT)

u

w
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Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.
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2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

Proof.
d(A) ≤ d(cycle) = 2d(MST) ≤ 2OPT

Theorem 5.
The MST edge doubling algorithm
is a 2-approximation algorithm for
metric TSP.
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Nearest addition algorithm for Metric TSP

Theorem 6.
The NearestAdditionAlgorithm
is a 2-approximation algorithm for
metric TSP.

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

Proof.
� Exercise.

� Hints: MST and Prim’s algorithm.
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Examples.

� O
(

n2 + n
1
ε

)
⇒ PTAS but not FPTAS
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I of Π and ε > 0 a value A(I), such that:
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� A(I) ≤ (1 + ε) ·OPT, and
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� O
(

n2 · 3 1
ε

)
⇒ PTAS but not FPTAS

� O
(

n4 ·
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1
ε

)2
)
⇒ FPTAS
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� Multiprocess scheduling is NP-hard.

makespan

p5

p7

p4

p3

p1

p2

p6



15 - 1

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.



15 - 2

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p4



15 - 3

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5 p4



15 - 4

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p4



15 - 5

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

p4



15 - 6

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

� ListScheduling runs in O(n) time.

p4



15 - 7

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

� ListScheduling runs in O(n) time.

Theorem 7.
ListScheduling is a(
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)
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Use ListScheduling for the reamining jobs J`+1, . . . , Jn
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� Only “easy” NP-hard problems admit FPTAS (PTAS).

� Not all problems can be approximated (Max Clique).

� Study of approximability of NP-hard problems yields a more
fine-grained classification of the difficulty.

� Approximation algorithms exist also for non-NP-hard problems

� Approximation algorithms can be of various types:
greedy, local search, geometric, DP, . . .

� One important technique is LP-relaxation (next lecture).

� Min Vertex Coloring on planar graphs can be approximated
with an additive approximation guarantee of 2.

� Christofides’ approximation algorithm for Metric TSP has
approximation factor 1.5.
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Literature

Main references

� [Jansen, Margraf Ch3] “Approximative
Algorithmen und Nichtapproximierbarkeit”

� [Williamson, Shmoys Ch3] “The Design of
Approximation Algorithms”

Another book recommendation:

� [Vazirani] “Approximation Algorithms”

and don’t forget our lecture
� Approximation Algorithms.

For more precise definitions see
� https://go.uniwue.de/approxdef
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