
1

Advanced Algorithms

Coloring and scheduling problems
Approximation algorithms

Jonathan Klawitter · WS20

1

6
3 2

4
5

2 - 1

Dealing with NP-hard problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal Solutions
� Exact exponential-time algorithms
� Fine-grained analysis – parameterized algorithms

� Sacrifice optimality for speed
� Heuristics
� Approximation Algorithms

What should we do?

2 - 2

Dealing with NP-hard problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal Solutions
� Exact exponential-time algorithms
� Fine-grained analysis – parameterized algorithms

� Sacrifice optimality for speed
� Heuristics
� Approximation Algorithms

What should we do?

this lecture

3 - 1

Approximation algorithms

Problem.
� For NP-hard optimisation problems, we cannot compute the

optimal solution of each instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.

3 - 2

Approximation algorithms

Problem.
� For NP-hard optimisation problems, we cannot compute the

optimal solution of each instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.

Goal.
� Design approximation algorithms that

� run in polynomial time and
� compute solutions of guaranteed quality.

� Study techniques for the design and analysis of
approximation algorithms.

3 - 3

Approximation algorithms

Problem.
� For NP-hard optimisation problems, we cannot compute the

optimal solution of each instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.

Goal.
� Design approximation algorithms that

� run in polynomial time and
� compute solutions of guaranteed quality.

� Study techniques for the design and analysis of
approximation algorithms.

Overview.
� Approximation algorithms that compute solutions with/that are

� additive guarantee, � relative guarantee, � “arbitraility good”.

4 - 1

Approximation with additive guarantee

Definition.
Let Π be an optimisation problem and let A be a
polynomial-time algorithm that computes the value
A(I) for an instance I of Π.
A is called an approximation algorithm with
additive guarantee δ if

|OPT(I)−A(I)| ≤ δ(I)

for every instance I of Π.

4 - 2

Approximation with additive guarantee

� Most problems do not admit an approximation
algorithm with additive guarantee.

Definition.
Let Π be an optimisation problem and let A be a
polynomial-time algorithm that computes the value
A(I) for an instance I of Π.
A is called an approximation algorithm with
additive guarantee δ if

|OPT(I)−A(I)| ≤ δ(I)

for every instance I of Π.

5 - 1

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

5 - 2

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A vertex coloring, that is, an assignment of colors to the
vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

Output.

5 - 3

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A vertex coloring, that is, an assignment of colors to the
vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

Output.

� Min Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

5 - 4

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A vertex coloring, that is, an assignment of colors to the
vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

Output.

� Min Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

. . .

1

6
3 2

4
5

5 - 5

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A vertex coloring, that is, an assignment of colors to the
vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

Output.

� Min Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

. . .

1

6
3 2

4
5

5 - 6

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A vertex coloring, that is, an assignment of colors to the
vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

Output.

� Min Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

. . .

1

6
3 2

4
5

5 - 7

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A vertex coloring, that is, an assignment of colors to the
vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

Output.

� Min Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

. . .

1

6
3 2

4
5

5 - 8

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A vertex coloring, that is, an assignment of colors to the
vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

Output.

� Min Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

. . .

1

6
3 2

4
5

5 - 9

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A vertex coloring, that is, an assignment of colors to the
vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

Output.

� Min Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

. . .

1

6
3 2

4
5

5 - 10

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A vertex coloring, that is, an assignment of colors to the
vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

Output.

� Min Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

. . .

1

6
3 2

4
5

5 - 11

Minimum vertex coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A vertex coloring, that is, an assignment of colors to the
vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

Output.

� Min Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(G)
Color vertices in some order with lowest feasible color.

. . .

1

6
3 2

4
5

Theorem 1.
The algorithm GreedyVertexColoring computes a vertex
coloring with at most ∆ + 1 colors in O(n + m) time.
Hence, it has an additive approximation gurantee of ∆− 1.

6 - 1

Minimum edge coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

6 - 2

Minimum edge coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

An edge coloring, that is, an assignment of colors to the
edges of G such that now two incident edges get the same
color, with minimum number of colors.

Output.

6 - 3

Minimum edge coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

An edge coloring, that is, an assignment of colors to the
edges of G such that now two incident edges get the same
color, with minimum number of colors.

Output.

� Min Edge Coloring is NP-hard.

� Even Edge 3-Coloring is NP-complete.

6 - 4

Minimum edge coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

An edge coloring, that is, an assignment of colors to the
edges of G such that now two incident edges get the same
color, with minimum number of colors.

Output.

� Min Edge Coloring is NP-hard.

� Even Edge 3-Coloring is NP-complete.

� The minimum number of colors needed for an edge co-
loring of G is called the chromatic index χ′(G).

� χ′(G) is lower bounded by ∆.

6 - 5

Minimum edge coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

An edge coloring, that is, an assignment of colors to the
edges of G such that now two incident edges get the same
color, with minimum number of colors.

Output.

� Min Edge Coloring is NP-hard.

� Even Edge 3-Coloring is NP-complete.

� The minimum number of colors needed for an edge co-
loring of G is called the chromatic index χ′(G).

� χ′(G) is lower bounded by ∆.

6 - 6

Minimum edge coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

An edge coloring, that is, an assignment of colors to the
edges of G such that now two incident edges get the same
color, with minimum number of colors.

Output.

� Min Edge Coloring is NP-hard.

� Even Edge 3-Coloring is NP-complete.

� The minimum number of colors needed for an edge co-
loring of G is called the chromatic index χ′(G).

� χ′(G) is lower bounded by ∆.

� We show that χ′(G) ≤ ∆ + 1.

7 - 1

Minimum edge coloring – upper bound

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆
holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

7 - 2

Minimum edge coloring – upper bound

Proof by induction on m = |E|.
� Base case m = 1 is trivial.

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆
holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

7 - 3

Minimum edge coloring – upper bound

Proof by induction on m = |E|.
� Base case m = 1 is trivial.

Let G be a graph on m edges and e an edge of G.
� By induction, G− e has a ∆(G− e) + 1 edge coloring.

� If ∆(G) > ∆(G− e), color e with color ∆(G) + 1.

� If ∆(G) = ∆(G− e), change coloring such that u and v
(of e = {u, v}) miss the same color α.

� Then color e with with α.

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆
holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

e

7 - 4

Minimum edge coloring – upper bound

Proof by induction on m = |E|.
� Base case m = 1 is trivial.

Let G be a graph on m edges and e an edge of G.
� By induction, G− e has a ∆(G− e) + 1 edge coloring.

� If ∆(G) > ∆(G− e), color e with color ∆(G) + 1.

� If ∆(G) = ∆(G− e), change coloring such that u and v
(of e = {u, v}) miss the same color α.

� Then color e with with α.

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆
holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

e

7 - 5

Minimum edge coloring – upper bound

Proof by induction on m = |E|.
� Base case m = 1 is trivial.

Let G be a graph on m edges and e an edge of G.
� By induction, G− e has a ∆(G− e) + 1 edge coloring.

� If ∆(G) > ∆(G− e), color e with color ∆(G) + 1.

� If ∆(G) = ∆(G− e), change coloring such that u and v
(of e = {u, v}) miss the same color α.

� Then color e with with α.

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆
holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

e

u v u v
Lemma 2

e

7 - 6

Minimum edge coloring – upper bound

Proof by induction on m = |E|.
� Base case m = 1 is trivial.

Let G be a graph on m edges and e an edge of G.
� By induction, G− e has a ∆(G− e) + 1 edge coloring.

� If ∆(G) > ∆(G− e), color e with color ∆(G) + 1.

� If ∆(G) = ∆(G− e), change coloring such that u and v
(of e = {u, v}) miss the same color α.

� Then color e with with α.

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆
holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

e

u v u v
Lemma 2

e

8 - 1

Minimum edge coloring – recoloring

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 2

Minimum edge coloring – recoloring

Proof. Note, each vertex is missing a color.

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 3

Minimum edge coloring – recoloring

Proof. Note, each vertex is missing a color. u v¬β ¬α1Let u miss β and v miss α1; apply the following algorithm:

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 4

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1Let u miss β and v miss α1; apply the following algorithm:

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 5

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2

Let u miss β and v miss α1; apply the following algorithm:

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 6

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

α2

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 7

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

α2α3

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 8

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 9

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 10

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

¬α2
v2

¬α3v3

¬α4

vh

¬αh+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 11

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

α2

¬α2
v2

¬α3v3

¬α4

vh

¬αh+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 12

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

α2

¬α2
v2

¬α3v3

¬α4

vh

α3

¬αh+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 13

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

α2

¬α2
v2

¬α3v3

¬α4

vh

α3α4

¬αh+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 14

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

α2

¬α2
v2

¬α3v3

¬α4

αh+1vh

α3α4

¬αh+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 15

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

α2

¬α2
v2

¬α3v3

¬α4

αh+1vh

α3α4

¬αh+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 16

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 17

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

¬α2

vj−1

¬αj

vj

¬αj+1

vh
¬αh+1

¬αj+2

¬β,¬α1

vj+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 18

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh
¬αh+1

¬αj+2

¬β,¬α1

vj+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 19

Minimum edge coloring – recoloring

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

vj+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 20

Minimum edge coloring – recoloring

,¬αj

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?vj+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 21

Minimum edge coloring – recoloring

,¬αj

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?vj+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 22

Minimum edge coloring – recoloring

,¬αj

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?vj+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 23

Minimum edge coloring – recoloring

,¬αj

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?vj+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 24

Minimum edge coloring – recoloring

,¬αj

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?vj+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 25

Minimum edge coloring – recoloring

,¬αj

VizingRecoloring(G = (V, E), u, c, α1)

i← 1
while ∃w ∈ N(u) : c({u, w}) = αi ∧
w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i ++

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note, each vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

ne
ed

co
lo

r
fo

r
{u

, v
j}

¬β,¬α1

?vj+1

Lemma 2.
Let G have a (∆ + 1) edge coloring c, let u, v be
non-adjacent, and deg(u), deg(v) < ∆. Then c can be
changed such that u and v miss the same color.

8 - 26

Minimum edge coloring – recoloring

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.

vj+1

8 - 27

Minimum edge coloring – recoloring

β
¬β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

αjαj ¬αj

vj+1

8 - 28

Minimum edge coloring – recoloring

β
¬β

β

β
¬β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj

vj+1

8 - 29

Minimum edge coloring – recoloring

β
¬β

β

β
¬β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj¬αj ¬β

vj+1

8 - 30

Minimum edge coloring – recoloring

β
¬β

β

β
¬β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj

� u, vj, vh have degree 1 in G′

⇒ they are not all in same component

¬αj ¬β

vj+1

8 - 31

Minimum edge coloring – recoloring

β
¬β

β

β
¬β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj

� u, vj, vh have degree 1 in G′

⇒ they are not all in same component
� If vj and u are not in the same component:

� Recolor component ending at vj
� vj now misses β
� Color {u, vj} in β

¬αj ¬β

vj+1

8 - 32

Minimum edge coloring – recoloring

β
¬β

β

β
¬β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj

� u, vj, vh have degree 1 in G′

⇒ they are not all in same component
� If vj and u are not in the same component:

� Recolor component ending at vj
� vj now misses β
� Color {u, vj} in β

¬αj ¬β

vj+1

,¬β

8 - 33

Minimum edge coloring – recoloring

β
¬β

β

β
¬β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj

� u, vj, vh have degree 1 in G′

⇒ they are not all in same component
� If vj and u are not in the same component:

� Recolor component ending at vj
� vj now misses β
� Color {u, vj} in β

β

¬αj ¬β

vj+1

,¬β

8 - 34

Minimum edge coloring – recoloring

β
¬β

β

β
¬β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αhvh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for
Case 2: αh+1 = αj, j < h and
we need to find a color for {u, vj}.
� Consider subgraph G′ of G induced by

edges with color β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj

� u, vj, vh have degree 1 in G′

⇒ they are not all in same component
� If vj and u are not in the same component:

� Recolor component ending at vj
� vj now misses β
� Color {u, vj} in β

β

� What if vj and u are in the same component?

¬αj ¬β

vj+1

,¬β

9 - 1

Minimum edge coloring - algorithm

VizingEdgeColoring(G = (V, E))
if E = ∅ then

return 0
else
{u, v} ← random edge of G
G′ ← G− e
VizingEdgeColoring(G′)
if ∆(G′) < ∆(G) then

Color {u, v} with lowest free color

else
Recolor E with Lemma 2
Color {u, v} with color now missing at u and v

9 - 2

Minimum edge coloring - algorithm

VizingEdgeColoring(G = (V, E))
if E = ∅ then

return 0
else
{u, v} ← random edge of G
G′ ← G− e
VizingEdgeColoring(G′)
if ∆(G′) < ∆(G) then

Color {u, v} with lowest free color

else
Recolor E with Lemma 2
Color {u, v} with color now missing at u and v

Theorem 4.
VizingEdgeColoring A is an
approximation algorithm with
additive approximation guarantee
A(G)−OPT(G) ≤ 1.

10 - 1

Approximation with relative factor

� An additive approximation guarantee can seldomly be
achieved; but sometimes there is a multiplicative . . .

10 - 2

Approximation with relative factor

Definition.
Let Π be an minimisation problem and α ∈ Q+.
A (factor) α-approximation algorithm for Π is a
polynomial-time algorithm A, which computes for every
instance I of Π a value A(I) such that

A(I)
OPT(I)

≤ α.

We call α the approximation factor.

� An additive approximation guarantee can seldomly be
achieved; but sometimes there is a multiplicative . . .

10 - 3

Approximation with relative factor

Definition.
Let Π be an minimisation problem and α ∈ Q+.
A (factor) α-approximation algorithm for Π is a
polynomial-time algorithm A, which computes for every
instance I of Π a value A(I) such that

A(I)
OPT(I)

≤ α.

We call α the approximation factor.

� An additive approximation guarantee can seldomly be
achieved; but sometimes there is a multiplicative . . .

maximisation

≥

11 - 1

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

11 - 2

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

11 - 3

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 4

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 5

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 6

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 7

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 8

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 9

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 10

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 11

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 12

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 13

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 14

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 15

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 16

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 17

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 18

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 19

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

11 - 20

2-approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and distance function
d : E→ R≥0, which satisfies the triangle inequality,
i.e. ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

Shortest Hamilton cycle.Output.

Algorithm.
� Compute MST.

� Double edges.

� Walk along tree,

� skipping visited vertices

� and adding shortcuts.

Proof.
d(A) ≤ d(cycle) = 2d(MST) ≤ 2OPT

Theorem 5.
The MST edge doubling algorithm
is a 2-approximation algorithm for
metric TSP.

12 - 1

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

12 - 2

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

i
j

12 - 3

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

i
j

12 - 4

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

k

j

i

12 - 5

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

12 - 6

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

k

ji

12 - 7

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

k

j

i

12 - 8

Nearest addition algorithm for Metric TSP

k

j i

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

12 - 9

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

k

ji

12 - 10

Nearest addition algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

k

ji

12 - 11

Nearest addition algorithm for Metric TSP

Theorem 6.
The NearestAdditionAlgorithm
is a 2-approximation algorithm for
metric TSP.

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

k

ji

12 - 12

Nearest addition algorithm for Metric TSP

Theorem 6.
The NearestAdditionAlgorithm
is a 2-approximation algorithm for
metric TSP.

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and j
Set tour T to go from i to j to i
for n− 2 iterations do

Find pair i ∈ T and j 6∈ T with min d(i, j)
Let k be vertex after i in T
Add j between i and k

Proof.
� Exercise.

� Hints: MST and Prim’s algorithm.

k

ji

13 - 1

Approximation schemes

� In some cases, we can get arbitrarily good approximations.

13 - 2

Approximation schemes

� In some cases, we can get arbitrarily good approximations.

Definition.
Let Π be a minimisation problem. An algorithm A is called
an polynomial-time approximation scheme (PTAS), if
A computes for every input (I, ε) consisting of an instance
I of Π and ε > 0 a value A(I), such that:

� A(I) ≤ (1 + ε) ·OPT, and
� the runtime of A is polynomiell in |I| für every ε > 0.

13 - 3

Approximation schemes

� In some cases, we can get arbitrarily good approximations.

Definition.
Let Π be a minimisation problem. An algorithm A is called
an polynomial-time approximation scheme (PTAS), if
A computes for every input (I, ε) consisting of an instance
I of Π and ε > 0 a value A(I), such that:

� A(I) ≤ (1 + ε) ·OPT, and
� the runtime of A is polynomiell in |I| für every ε > 0.

maximisation

≥ (1− ε)

13 - 4

Approximation schemes

� In some cases, we can get arbitrarily good approximations.

Definition.
Let Π be a minimisation problem. An algorithm A is called
an polynomial-time approximation scheme (PTAS), if
A computes for every input (I, ε) consisting of an instance
I of Π and ε > 0 a value A(I), such that:

A is called a fully polynomial-time approximation
scheme (FPTAS), if it runs polynomial in |I| and 1/ε.

� A(I) ≤ (1 + ε) ·OPT, and
� the runtime of A is polynomiell in |I| für every ε > 0.

maximisation

≥ (1− ε)

13 - 5

Approximation schemes

� In some cases, we can get arbitrarily good approximations.

Examples.

� O
(

n2 + n
1
ε

)
⇒ PTAS but not FPTAS

Definition.
Let Π be a minimisation problem. An algorithm A is called
an polynomial-time approximation scheme (PTAS), if
A computes for every input (I, ε) consisting of an instance
I of Π and ε > 0 a value A(I), such that:

A is called a fully polynomial-time approximation
scheme (FPTAS), if it runs polynomial in |I| and 1/ε.

� A(I) ≤ (1 + ε) ·OPT, and
� the runtime of A is polynomiell in |I| für every ε > 0.

maximisation

≥ (1− ε)

� O
(

n2 · 3 1
ε

)
⇒ PTAS but not FPTAS

� O
(

n4 ·
(

1
ε

)2
)
⇒ FPTAS

14 - 1

Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Input. � m identical machines (m < n)

14 - 2

Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Input. � m identical machines (m < n)

Output. Distribution of jobs to machines such that the time when all
jobs have been processed is minimal.
This is called the makespan of the distribution.

14 - 3

Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

makespan

Input. � m identical machines (m < n)

Output. Distribution of jobs to machines such that the time when all
jobs have been processed is minimal.
This is called the makespan of the distribution.

p5

p7

p1

p4

p6

p3

p2

14 - 4

Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Input. � m identical machines (m < n)

Output. Distribution of jobs to machines such that the time when all
jobs have been processed is minimal.
This is called the makespan of the distribution.

makespan

p5

p7

p4

p3

p1

p2

p6

14 - 5

Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Input. � m identical machines (m < n)

Output. Distribution of jobs to machines such that the time when all
jobs have been processed is minimal.
This is called the makespan of the distribution.

� Multiprocess scheduling is NP-hard.

makespan

p5

p7

p4

p3

p1

p2

p6

15 - 1

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

15 - 2

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p4

15 - 3

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5 p4

15 - 4

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p4

15 - 5

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

p4

15 - 6

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

� ListScheduling runs in O(n) time.

p4

15 - 7

Multiprocessor Scheduling – List scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

� ListScheduling runs in O(n) time.

Theorem 7.
ListScheduling is a(

2− 1
m

)
-approximation algorithm.

p4

16 - 1

Multiprocessor Scheduling – List scheduling (proof)

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

M1

M2

M3

M4

Sk Tk = Makespan

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation

algorithm.

16 - 2

Multiprocessor Scheduling – List scheduling (proof)

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation

algorithm.

16 - 3

Multiprocessor Scheduling – List scheduling (proof)

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For an optimal Makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

� TOPT ≥ pk

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation

algorithm.

16 - 4

Multiprocessor Scheduling – List scheduling (proof)

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For an optimal Makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation

algorithm.

16 - 5

Multiprocessor Scheduling – List scheduling (proof)

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For an optimal Makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

n

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

=

(
2− 1

m

)
· TOPT

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

� Hence:

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation

algorithm.

16 - 6

Multiprocessor Scheduling – List scheduling (proof)

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For an optimal Makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

n

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

=

(
2− 1

m

)
· TOPT

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

� Hence:

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation

algorithm.

16 - 7

Multiprocessor Scheduling – List scheduling (proof)

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For an optimal Makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

n

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

=

(
2− 1

m

)
· TOPT

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

� Hence:

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation

algorithm.

16 - 8

Multiprocessor Scheduling – List scheduling (proof)

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For an optimal Makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

n

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

=

(
2− 1

m

)
· TOPT

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

� Hence:

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation

algorithm.

16 - 9

Multiprocessor Scheduling – List scheduling (proof)

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For an optimal Makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

n

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

=

(
2− 1

m

)
· TOPT

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines
Put next job on first free machine

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

� Hence:

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation

algorithm.

17 - 1

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

17 - 2

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Example.
` = 6

jobs

17 - 3

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Example.
` = 6

sorted jobs

17 - 4

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 5

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 6

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 7

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 8

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 9

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 10

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 11

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 12

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

O(n log n)
O(m`)

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

� Polynomial time for
constant `:
O(m` + n log n)

O(n)

17 - 13

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

O(n log n)
O(m`)

� Polynomial time for
constant `:
O(m` + n log n)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A`

is a 1 +
1− 1

m
1+b `

m c
-approximation algorithm.

O(n)

17 - 14

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

O(n log n)
O(m`)

� For ε > 0, choose ` such that Aε = A`(ε)

is a (1 + ε)-approximation algorithm.

� Polynomial time for
constant `:
O(m` + n log n)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A`

is a 1 +
1− 1

m
1+b `

m c
-approximation algorithm.

O(n)

Corollary 9.
For a constant number of machines,
{Aε | ε > 0} is a PTAS.

17 - 15

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

O(n log n)
O(m`)

� For ε > 0, choose ` such that Aε = A`(ε)

is a (1 + ε)-approximation algorithm.

� {Aε | ε > 0} isn’t a FPTAS, since the
running time is not polynomial in 1

ε .

� Polynomial time for
constant `:
O(m` + n log n)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A`

is a 1 +
1− 1

m
1+b `

m c
-approximation algorithm.

O(n)

Corollary 9.
For a constant number of machines,
{Aε | ε > 0} is a PTAS.

18 - 1

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

18 - 2

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

Case 1. Jk is one of the longest ` jobs J1, . . . , J`.

Sk Tk = MakespanA`

M1

M2

M3

M4 J1
J2
J3

J5 = Jk

J6J4

18 - 3

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

Case 1. Jk is one of the longest ` jobs J1, . . . , J`.

Sk Tk = MakespanA`

M1

M2

M3

M4 J1
J2
J3

J5 = Jk

J6J4
� Solution is optimal for J1, . . . , Jk

� Hence, solution is optimal for J1, . . . , Jn

18 - 4

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

Case 1. Jk is one of the longest ` jobs J1, . . . , J`.

Sk Tk = MakespanA`

M1

M2

M3

M4 J1
J2
J3

J5 = Jk

J6J4
� Solution is optimal for J1, . . . , Jk

� Hence, solution is optimal for J1, . . . , Jn

Case 2. Jk is not one of the longest ` jobs J1, . . . , J`.
M1

M2

M3

M4 J1
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

18 - 5

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof. Let Jk be the last job with start time Sk and finish time Tk = Makespan

Case 1. Jk is one of the longest ` jobs J1, . . . , J`.

Sk Tk = MakespanA`

M1

M2

M3

M4 J1
J2
J3

J5 = Jk

J6J4
� Solution is optimal for J1, . . . , Jk

� Hence, solution is optimal for J1, . . . , Jn

Case 2. Jk is not one of the longest ` jobs J1, . . . , J`.
M1

M2

M3

M4 J1
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk� Similar analysis to ListScheduling

� Use that there are ` + 1 jobs that are at least as
long as Jk (including Jk).

18 - 6

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi

� TOPT ≥ pk

� TOPT ≥ 1
m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

18 - 7

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi

� TOPT ≥ pk

� TOPT ≥ 1
m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

18 - 8

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi

� TOPT ≥ pk

� TOPT ≥ 1
m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

18 - 9

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi

� TOPT ≥ pk

� TOPT ≥ 1
m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

18 - 10

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi

� TOPT ≥ pk

� TOPT ≥ 1
m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

can we do
better?

18 - 11

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi � TOPT ≥ 1

m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

can we do
better?

� TOPT ≥ pk ·
(

1 +
⌊

`
m

⌋)

M1

M2

M3

M4
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

� Consider only J1, . . . , J`, Jk:

each has lenght ≥ pk

one machine has
this many jobs?

� ? on average, each machine has more than `
m of the `+ 1 jobs

� at least one machine achieves the average

J1

18 - 12

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime
Schedule the ` longest jobs J1, . . . , J` optimally
Use ListScheduling for the reamining jobs J`+1, . . . , Jn

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi � TOPT ≥ 1

m

n
∑

i=1
pi

� TOPT ≥ pk ·
(

1 +
⌊

`
m

⌋)

M1

M2

M3

M4
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

� Consider only J1, . . . , J`, Jk:

each has lenght ≥ pk

one machine has
this many jobs?

� ? on average, each machine has more than `
m of the `+ 1 jobs

� at least one machine achieves the average

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +
1− 1

m

1 +
⌊

`
m

⌋ · TOPT
J1

19 - 1

Discussion

� Only “easy” NP-hard problems admit FPTAS (PTAS).

� Not all problems can be approximated (Max Clique).

� Study of approximability of NP-hard problems yields a more
fine-grained classification of the difficulty.

19 - 2

Discussion

� Only “easy” NP-hard problems admit FPTAS (PTAS).

� Not all problems can be approximated (Max Clique).

� Study of approximability of NP-hard problems yields a more
fine-grained classification of the difficulty.

� Approximation algorithms exist also for non-NP-hard problems

� Approximation algorithms can be of various types:
greedy, local search, geometric, DP, . . .

� One important technique is LP-relaxation (next lecture).

19 - 3

Discussion

� Only “easy” NP-hard problems admit FPTAS (PTAS).

� Not all problems can be approximated (Max Clique).

� Study of approximability of NP-hard problems yields a more
fine-grained classification of the difficulty.

� Approximation algorithms exist also for non-NP-hard problems

� Approximation algorithms can be of various types:
greedy, local search, geometric, DP, . . .

� One important technique is LP-relaxation (next lecture).

� Min Vertex Coloring on planar graphs can be approximated
with an additive approximation guarantee of 2.

� Christofides’ approximation algorithm for Metric TSP has
approximation factor 1.5.

20

Literature

Main references

� [Jansen, Margraf Ch3] “Approximative
Algorithmen und Nichtapproximierbarkeit”

� [Williamson, Shmoys Ch3] “The Design of
Approximation Algorithms”

Another book recommendation:

� [Vazirani] “Approximation Algorithms”

and don’t forget our lecture
� Approximation Algorithms.

For more precise definitions see
� https://go.uniwue.de/approxdef

	Title page
	Dealing with NP-hard problems

	Approximation algorithms
	Approximation with additive guarantee
	Minimum vertex coloring
	Minimum edge coloring
	Minimum edge coloring -- upper bound
	Minimum edge coloring -- recoloring
	Minimum edge coloring - algorithm

	Approximation with relative factor
	2-approximation for Metric TSP (from AGT)
	Nearest addition algorithm for Metric TSP

	Approximation schemes
	Multiprocessor Scheduling
	Multiprocessor Scheduling -- List scheduling
	Multiprocessor Scheduling -- List scheduling (proof)
	Multiprocessor Scheduling -- PTAS
	Multiprocessor Scheduling -- PTAS (proof)

	Discussion
	Literature

