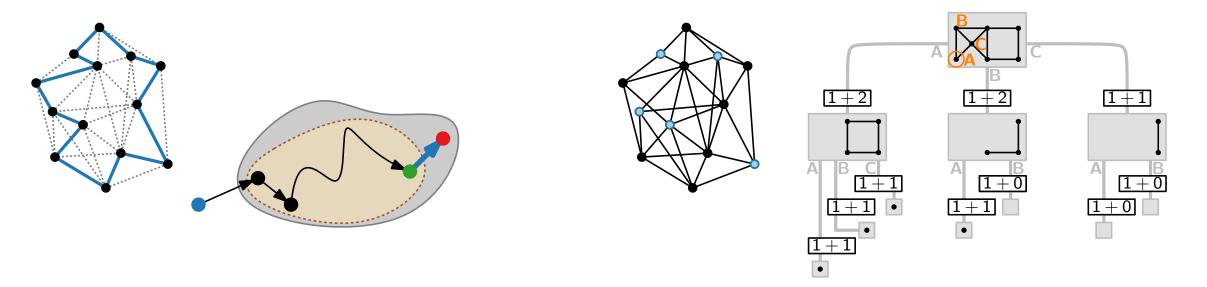


Advanced Algorithms Exact algorithms for NP-hard problems TSP and MIS

Jonathan Klawitter \cdot WS20

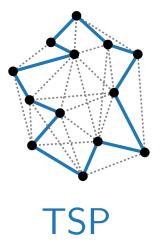


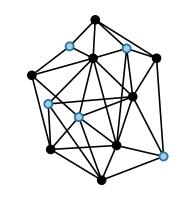
Examples of NP-hard problems

Many important (practical) problems are NP-hard, for example

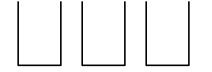
Examples of NP-hard problems

Many important (practical) problems are NP-hard, for example

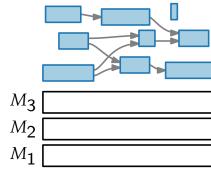




MIS



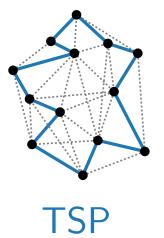
Bin Packing

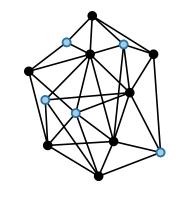


Scheduling

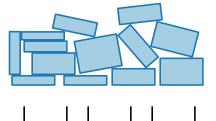
Examples of NP-hard problems

Many important (practical) problems are NP-hard, for example

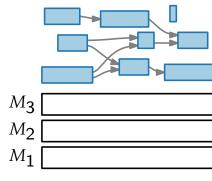




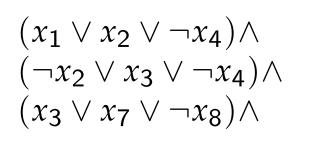
MIS



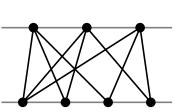
Bin Packing



Scheduling



. . .



SAT

У	
	<u></u>
222222222	6666666
	0000000
	0000000
00000 0 00000	000000
	<mark>୍ଥ ବରଟର୍</mark> ଷ
a a 🏹 a aaa a aa a a a	666 666
	999 99
	222 222
	000 00
222222 00222 22	
991	00
	x'
2222222 2222222	aaaa
888888888	<u>9,9999</u>
a to	224222422
[ADGV15]	y'
[ADGV15]	<i>y'</i>

Games

. . .

But what does NP-hard/-complete actually mean?

But what does NP-hard/-complete actually mean?

NP-hard = non-deterministic polynomial-time hard

But what does NP-hard/-complete actually mean?

- NP-hard = non-deterministic polynomial-time hard
- A decision problem *H* is NP-hard when it is "at least as hard as the hardest problems in P".
- or: There is a polynomial-time many-one reduction from an NP-hard problem L to H.

But what does NP-hard/-complete actually mean?

- NP-hard = non-deterministic polynomial-time hard
- A decision problem *H* is NP-hard when it is "at least as hard as the hardest problems in P".
- or: There is a polynomial-time many-one reduction from an NP-hard problem L to H.
- If $P \neq NP$, then NP-hard problems cannot be solved in polynomial time.

Misconceptions about NP-hardness

Common misconceptions [Mann '17]

If similar problems are NP-hard, then the problem at hand is also NP-hard.

Misconceptions about NP-hardness

Common misconceptions [Mann '17]

- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.
- NP-hard problems cannot be solved optimally.

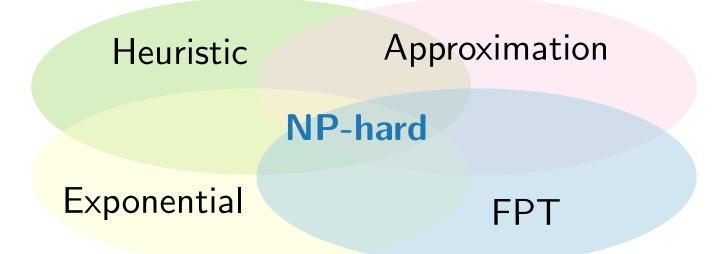
Misconceptions about NP-hardness

- Common misconceptions [Mann '17]
- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.
- NP-hard problems cannot be solved optimally.
- NP-hard problems cannot be solved more efficiently than by exhaustive search.
- For solving NP-hard problems, the only practical possibility is the use of heuristics.

Dealing with NP-hard problems

What should we do?

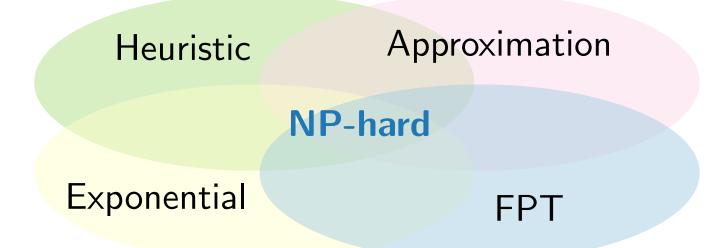
- Sacrifice optimality for speed
 - Heuristics (Simulated Annealing, Tabu-Search)
 - Approximation Algorithms (Christofides-Algorithm)
- Optimal Solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis parameterized algorithms



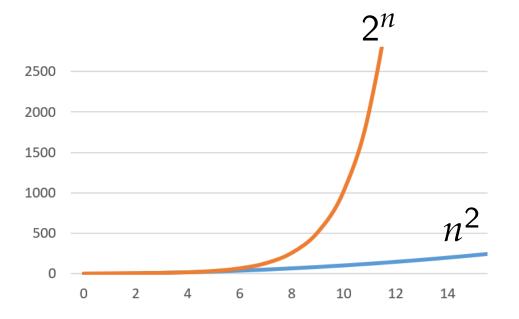
Dealing with NP-hard problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics (Simulated Annealing, Tabu-Search)
 - Approximation Algorithms (Christofides-Algorithm)
- Optimal Solutions
 - Exact exponential-time algorithms <---</p>
 - Fine-grained analysis parameterized algorithms

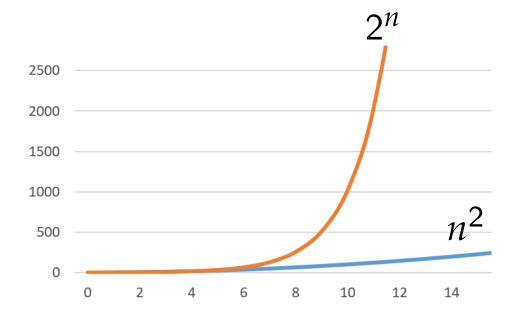


this lecture

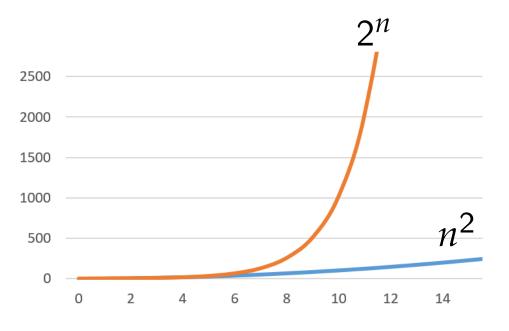


- efficient vs. inefficient algorithms
- polynomial-time vs. super-polynomial-time

Exponential runningtime ... should we just give up?



- efficient vs. inefficient algorithms
- polynomial-time vs. super-polynomial-time



- efficient vs. inefficient algorithms
- polynomial-time vs. super-polynomial-time

Exponential runningtime ... should we just give up? a... can be *"fast"* for medium-sized instances: $n^4 > 1.2^n$ for n < 100

- TSP solvable exactly for $n \le 2000$ and specialized instances with $n \le 85900$
- "hidden" constants in polynomial-time algorithms: $2^{100}n > 2^n$ for n < 100

Exponential runningtime ... maybe we need better hardware?

Exponential runningtime ... maybe we need better hardware?

- Suppose an algorithm uses a^n steps & can solve for a fixed amount of time t instances up to size n_0 .
- Improving hardware by a constant factor c only adds a constant (relative to c) to n_0 :

$$a^{n_0'} = c \cdot a^{n_0} \iff n_0' = \log_a c + n_0$$

Exponential runningtime ... maybe we need better hardware?

- Suppose an algorithm uses a^n steps & can solve for a fixed amount of time t instances up to size n_0 .
- Improving hardware by a constant factor c only adds a constant (relative to c) to n_0 :

$$a^{n_0'} = c \cdot a^{n_0} \iff n_0' = \log_a c + n_0$$

Reducing the base of the runtime to b < a results in a *multiplicative* increase:

$$b^{n'_0} = a^{n_0} \rightsquigarrow n'_0 = n_0 \cdot \log_b a$$

Exponential runningtime ... but can we at least find exact algorithms that are faster than **brute-force** (trivial) approaches?

Exponential runningtime ... but can we at least find exact algorithms that are faster than **brute-force** (trivial) approaches?

- TSP: Bellman-Held-Karp algorithm has running time $\mathcal{O}(2^n n^2)$ compared to a $\mathcal{O}(n!n)$ -time brute-force search.
- MIS: algorithm by Tarjan & Trojanowski runs in $\mathcal{O}(2^{n/3})$ time compared to a trivial $\mathcal{O}(n2^n)$ -time approach.
- COLORING: Lawler gaven an $\mathcal{O}(n(1+\sqrt[3]{3})^n)$ algorithm compared to $\mathcal{O}(n^{n+1})$ -time brute-force.

Exponential runningtime ... but can we at least find exact algorithms that are faster than **brute-force** (trivial) approaches?

- TSP: Bellman-Held-Karp algorithm has running time $\mathcal{O}(2^n n^2)$ compared to a $\mathcal{O}(n!n)$ -time brute-force search.
- MIS: algorithm by Tarjan & Trojanowski runs in $\mathcal{O}(2^{n/3})$ time compared to a trivial $\mathcal{O}(n2^n)$ -time approach.
- COLORING: Lawler gaven an $\mathcal{O}(n(1+\sqrt[3]{3})^n)$ algorithm compared to $\mathcal{O}(n^{n+1})$ -time brute-force.
- SAT: No better algorithm than trivial brute-force search known.

\mathcal{O}^* -notation

$$\mathcal{O}(1.4^n \cdot n^2) \subsetneq \mathcal{O}(1.5^n \cdot n) \subsetneq \mathcal{O}(2^n)$$

- negligible polynomial factors
- base of exponential part dominates

\mathcal{O}^* -notation

$$\mathcal{O}(1.4^n \cdot n^2) \subsetneq \mathcal{O}(1.5^n \cdot n) \subsetneq \mathcal{O}(2^n)$$

- negligible polynomial factors
- base of exponential part dominates

 $f(n) \in \mathcal{O}^*(g(n)) \Leftrightarrow \exists \text{ polynomial } p(n) \text{ with } f(n) \in \mathcal{O}(g(n)p(n))$

$\mathcal{O}^*\text{-notation}$

$$\mathcal{O}(1.4^n \cdot n^2) \subsetneq \mathcal{O}(1.5^n \cdot n) \subsetneq \mathcal{O}(2^n)$$

- negligible polynomial factors
- base of exponential part dominates

 $f(n) \in \mathcal{O}^*(g(n)) \Leftrightarrow \exists \text{ polynomial } p(n) \text{ with } f(n) \in \mathcal{O}(g(n)p(n))$

typical result

Approach	Runtime in $\mathcal O ext{-Notation}$	$\mathcal{O}^* ext{-Notation}$
Brute-Force	$\mathcal{O}(2^n)$	$\mathcal{O}^*(2^n)$
Algorithm A	$\mathcal{O}(1.5^n \cdot n)$	$\mathcal{O}^*(1.5^n)$
Algorithm B	$\mathcal{O}(1.4^n \cdot n^2)$	$\mathcal{O}^*(1.4^n)$

Traveling Salesperson Problem (TSP)

Input. Distinct cities $\{v_1, v_2, ..., v_n\}$ with distances $d(c_i, c_j) \in Q_{\geq 0}$; directed, complete graph G with edge weights d

Traveling Salesperson Problem (TSP)

- **Input.** Distinct cities $\{v_1, v_2, ..., v_n\}$ with distances $d(c_i, c_j) \in Q_{\geq 0}$; directed, complete graph G with edge weights d
- **Output.** Tour of the traveling salesperson of minimal total length that visits all the cities and returns to the starting point;

i.e. a Hamiltonian cycle $(v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)})$ of G of minimum weight

$$\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})$$

Traveling Salesperson Problem (TSP)

Input. Distinct cities $\{v_1, v_2, ..., v_n\}$ with distances $d(c_i, c_j) \in Q_{\geq 0}$; directed, complete graph *G* with edge weights *d*

Output. Tour of the traveling salesperson of minimal total length that visits all the cities and returns to the starting point;

i.e. a Hamiltonian cycle $(v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)})$ of G of minimum weight

$$\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})$$

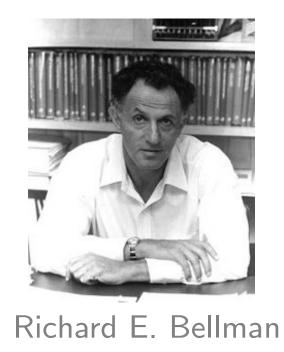
Brute-force.

Try all permutations and pick the one with smallest weight.
 Runtime: Θ(n! ⋅ n) = n ⋅ 2^{Θ(n log n)}

TSP – Dynamic programming Bellman-Held-Karp algorithm Idea.

Reuse optimal substructures with dynamic programming.

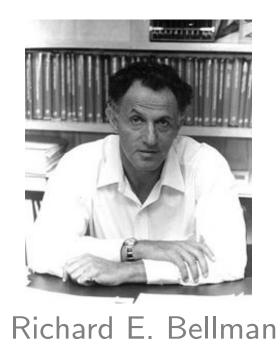
Richard M. Karp



- TSP Dynamic programming Bellman-Held-Karp algorithm Idea.
 - Reuse optimal substructures with dynamic programming.
 - Select a starting vertex $s \in V$.

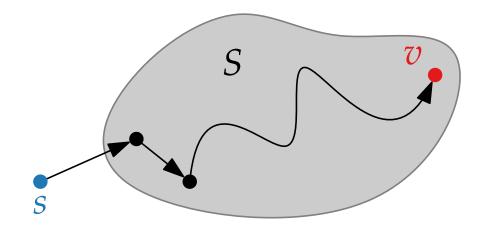
S

Richard M. Karp

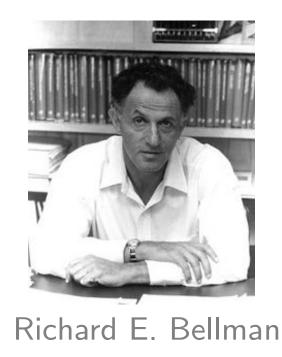


- TSP Dynamic programming Bellman-Held-Karp algorithm Idea.
 - Reuse optimal substructures with dynamic programming.
 - Select a starting vertex $s \in V$.
- For each $S \subseteq V s$ and $v \in S$, let:

 $OPT[S, v] = length of a shortest s-v-path that visits precisely the vertices of <math>S \cup \{s\}$.

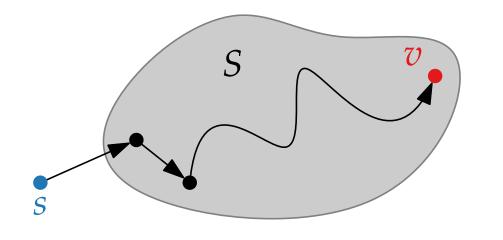


Richard M. Karp



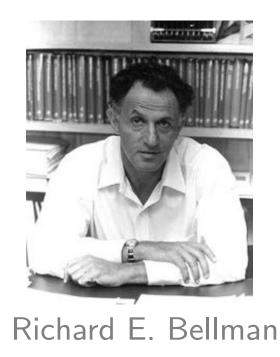
- TSP Dynamic programming Bellman-Held-Karp algorithm
 - Reuse optimal substructures with dynamic programming.
 - Select a starting vertex $s \in V$.
- For each $S \subseteq V s$ and $v \in S$, let:

 $OPT[S, v] = length of a shortest s-v-path that visits precisely the vertices of <math>S \cup \{s\}$.



■ Use OPT[S - v, u] to compute OPT[S, v].

Richard M. Karp



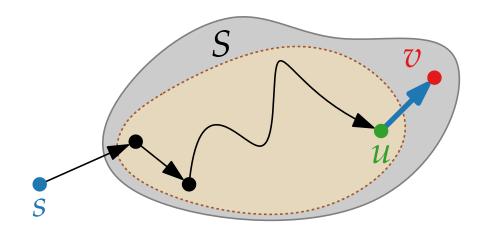
Details.

The base case $S = \{v\}$ is easy: $OPT[\{v\}, v] = d(s, v)$.

Details.

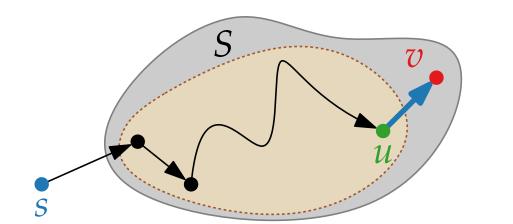
- The base case $S = \{v\}$ is easy: $OPT[\{v\}, v] = d(s, v)$.
- When $|S| \ge 2$, compute OPT[S, v] recursively:

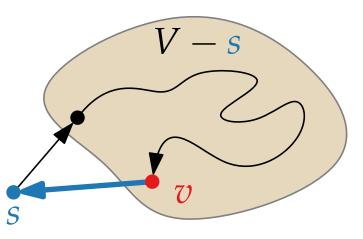
 $\mathsf{OPT}[S, v] = \min\{\mathsf{OPT}[S - v, u] + d(u, v) \mid u \in S - v\}$



Details.

- The base case $S = \{v\}$ is easy: $OPT[\{v\}, v] = d(s, v)$.
- When $|S| \ge 2$, compute OPT[S, v] recursively:
 - $\mathsf{OPT}[S, v] = \min\{\mathsf{OPT}[S v, u] + d(u, v) \mid u \in S v\}$





After computing OPT[S, v] for each $S \subseteq V - s$ and each $v \in V - s$, the optimal solution is easily obtained as follows: $OPT = \min\{OPT[V - s, v]\} + d(v, s) \mid v \in V - s\}$

Pseudocode.

```
Algorithm Bellmann-Held-Karp(G, c)
```

```
for each v \in V - s do

 \begin{bmatrix} OPT[\{v\}, v] = c(s, v) \\ \text{for } j \leftarrow 2 \text{ to } n - 1 \text{ do} \\ \text{for each } S \subseteq V - s \text{ with } |S| = j \text{ do} \\ \text{for each } v \in S \text{ do} \\ \begin{bmatrix} OPT[S, v] \leftarrow \min\{OPT[S - v, u] \\ +c(u, v) \mid u \in S - v \} \end{bmatrix}
```

return min{ $OPT[V-s, v] + c(v, s) \mid v \in V-s$ }

Pseudocode.

```
Algorithm Bellmann-Held-Karp(G, c)
```

```
for each v \in V - s do

 \begin{bmatrix} OPT[\{v\}, v] = c(s, v) \\ \text{for } j \leftarrow 2 \text{ to } n - 1 \text{ do} \\ \text{for each } S \subseteq V - s \text{ with } |S| = j \text{ do} \\ \text{for each } v \in S \text{ do} \\ \begin{bmatrix} OPT[S, v] \leftarrow \min\{OPT[S - v, u] \\ +c(u, v) \mid u \in S - v \} \end{bmatrix}
```

return min{ $OPT[V-s,v] + c(v,s) | v \in V-s$ }

A shortest tour can be produced by backtracking the DP table (as usual).

Pseudocode.

Algorithm Bellmann-Held-Karp(G, c)

```
for each v \in V - s do

\[ OPT[\{v\}, v] = c(s, v) \]
for j \leftarrow 2 to n - 1 do

for each S \subseteq V - s with |S| = j do

for each v \in S do

\[ OPT[S, v] \leftarrow \min\{OPT[S - v, u] \] + c(u, v) \mid u \in S - v \}
```

return min{ $OPT[V-s,v] + c(v,s) | v \in V-s$ }

A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

Pseudocode.

Analysis.

Algorithm Bellmann-Held-Karp(G, c)

return min{ $OPT[V-s,v] + c(v,s) \mid v \in V-s$ }

A shortest tour can be produced by backtracking the DP table (as usual).

Pseudocode.

Analysis.

Algorithm Bellmann-Held-Karp(G, c)

```
for each v \in V - s do

\begin{bmatrix} OPT[\{v\}, v] = c(s, v) \\
for j \leftarrow 2 \text{ to } n - 1 \text{ do} \\
for each S \subseteq V - s \text{ with } |S| = j \text{ do} \\
for each v \in S \text{ do} \\
OPT[S, v] \leftarrow \min\{OPT[S - v, u] \\
+c(u, v) \mid u \in S - v\}
\end{bmatrix} \mathcal{O}(2^n)
```

return min{ $OPT[V-s, v] + c(v, s) \mid v \in V-s$ }

A shortest tour can be produced by backtracking the DP table (as usual).

Pseudocode.

Algorithm Bellmann-Held-Karp(G, c)

```
for each v \in V - s do

 \begin{bmatrix} OPT[\{v\}, v] = c(s, v) \\ \text{for } j \leftarrow 2 \text{ to } n - 1 \text{ do} \\ \text{for each } S \subseteq V - s \text{ with } |S| = j \text{ do} \\ \end{bmatrix} \mathcal{O}(2^n) \\ \begin{bmatrix} \text{for each } v \in S \text{ do} \\ OPT[S, v] \leftarrow \min\{OPT[S - v, u] \\ +c(u, v) \mid u \in S - v \} \end{bmatrix} \mathcal{O}(n)
```

return min{ $OPT[V-s,v] + c(v,s) \mid v \in V-s$ }

A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

innermost loop executes
 𝒪(2ⁿ ⋅ n) iterations
 each takes 𝒪(n) time
 total of 𝒪(2ⁿn²) = 𝒪*(2ⁿ)

Pseudocode.

Algorithm Bellmann-Held-Karp(G, c)

for each $v \in V - s$ do $\begin{bmatrix} OPT[\{v\}, v] = c(s, v) \\
for j \leftarrow 2 \text{ to } n - 1 \text{ do} \\
for each S \subseteq V - s \text{ with } |S| = j \text{ do} \\
for each v \in S \text{ do} \\
OPT[S, v] \leftarrow \min\{OPT[S - v, u] \\
+c(u, v) \mid u \in S - v\}
\end{bmatrix} \mathcal{O}(2^n)$

return min{ $OPT[V-s,v] + c(v,s) \mid v \in V-s$ }

A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

- innermost loop executes
 𝒪(2ⁿ ⋅ n) iterations
 each takes 𝒪(n) time
- total of $\mathcal{O}(2^n n^2) = \mathcal{O}^*(2^n)$
- Space usage in ⊖(2ⁿ · n)
 or actually better? What table values do we need to store?

TSP – Discussion

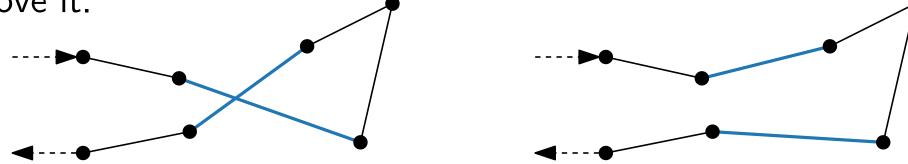
- DP algorithm that runs in $\mathcal{O}^*(2^n)$ time and $\mathcal{O}(2^n \cdot n)$ space
- Brute-force runs in $2^{\mathcal{O}(n \log n)}$ time
 - \Rightarrow Sacrifice space for speedup

TSP – Discussion

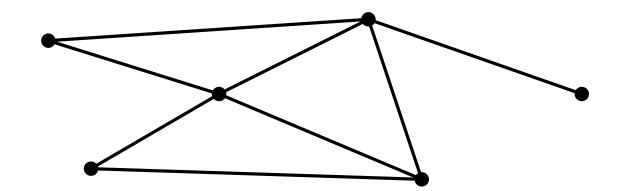
- DP algorithm that runs in $\mathcal{O}^*(2^n)$ time and $\mathcal{O}(2^n \cdot n)$ space
- Brute-force runs in $2^{\mathcal{O}(n \log n)}$ time
 - \Rightarrow Sacrifice space for speedup
- Many variants of TSP: symmetric, assymetric, metric, vehicle routing problem, ...
- Metric TSP can easily be 2-approximated. (Do you remember how?)
- Eucledian TSP considered in course Approxiomation Algorithms.

TSP – Discussion

- DP algorithm that runs in $\mathcal{O}^*(2^n)$ time and $\mathcal{O}(2^n \cdot n)$ space
- Brute-force runs in $2^{\mathcal{O}(n \log n)}$ time
 - \Rightarrow Sacrifice space for speedup
- Many variants of TSP: symmetric, assymetric, metric, vehicle routing problem, ...
- Metric TSP can easily be 2-approximated. (Do you remember how?)
- Eucledian TSP considered in course Approxiomation Algorithms.
- In practice, one successful approach is to start with a greedily computed Hamiltonian cycle and then use 2-OPT and 3-OPT swaps to improve it.

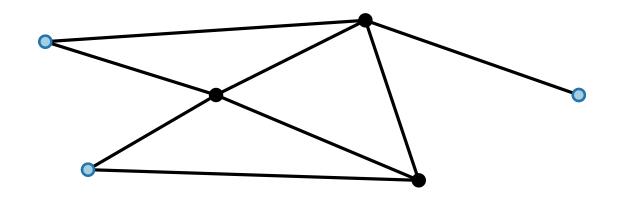


Input. Graph G = (V, E) with *n* vertices.



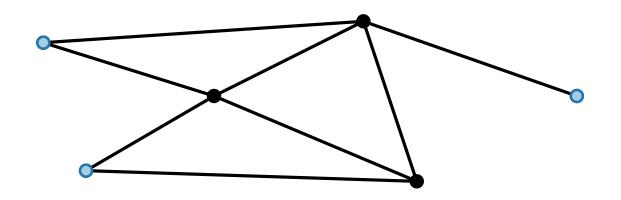
Input. Graph G = (V, E) with n vertices.

Output. Maximum size **independent** set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.



Input. Graph G = (V, E) with n vertices.

Output. Maximum size **independent** set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

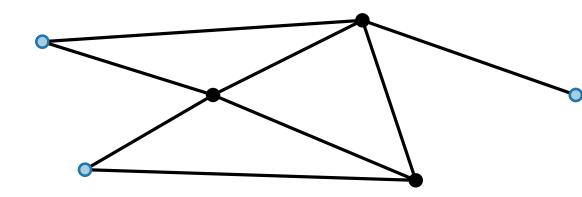


Brute-force.

- Try all subets of V.
- Runtime: $\mathcal{O}(2^n \cdot n)$

Input. Graph G = (V, E) with n vertices.

Output. Maximum size **independent** set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.



Brute-force.

Try all subets of V.

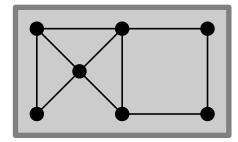
Runtime: $\mathcal{O}(2^n \cdot n)$

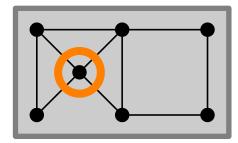
Naive MIS branching.

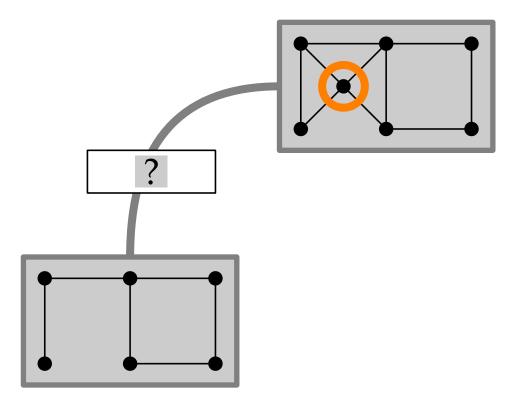
Take a vertex v or don't take it. Algorithm NaiveMIS(G)

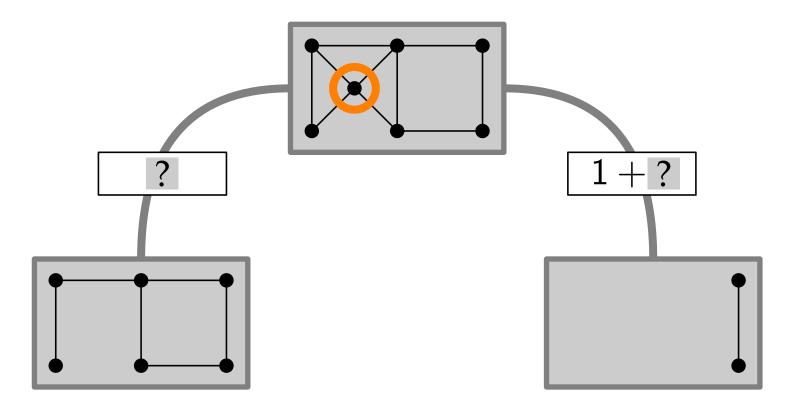
if $V = \emptyset$ then | return 0

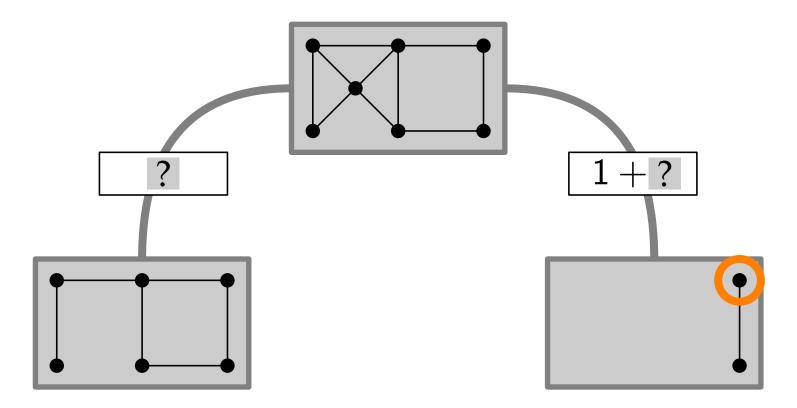
 $v \leftarrow arbitrary vertex in V(G)$ return max{1+ NaiveMIS($G - N(v) - \{v\}$), NaiveMIS($G - \{v\}$)}

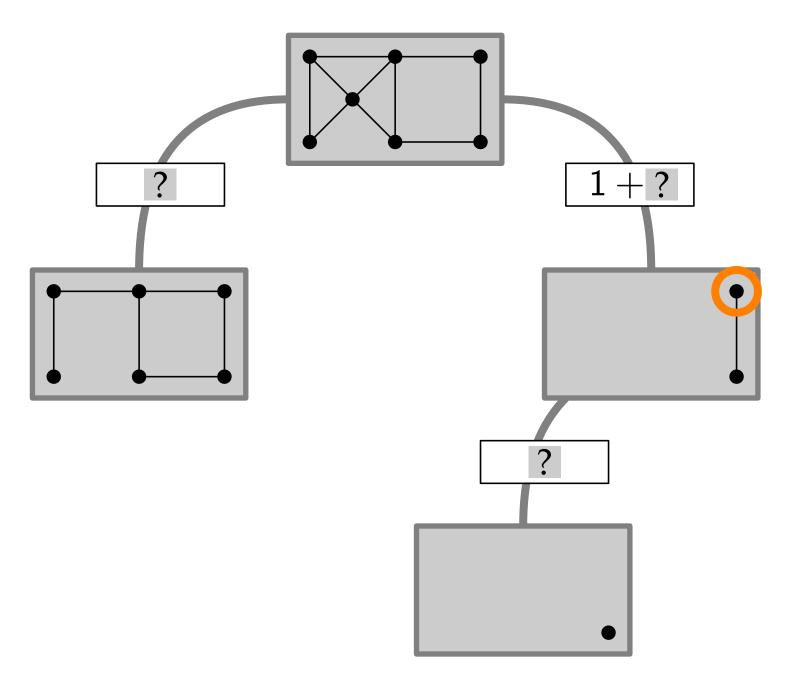


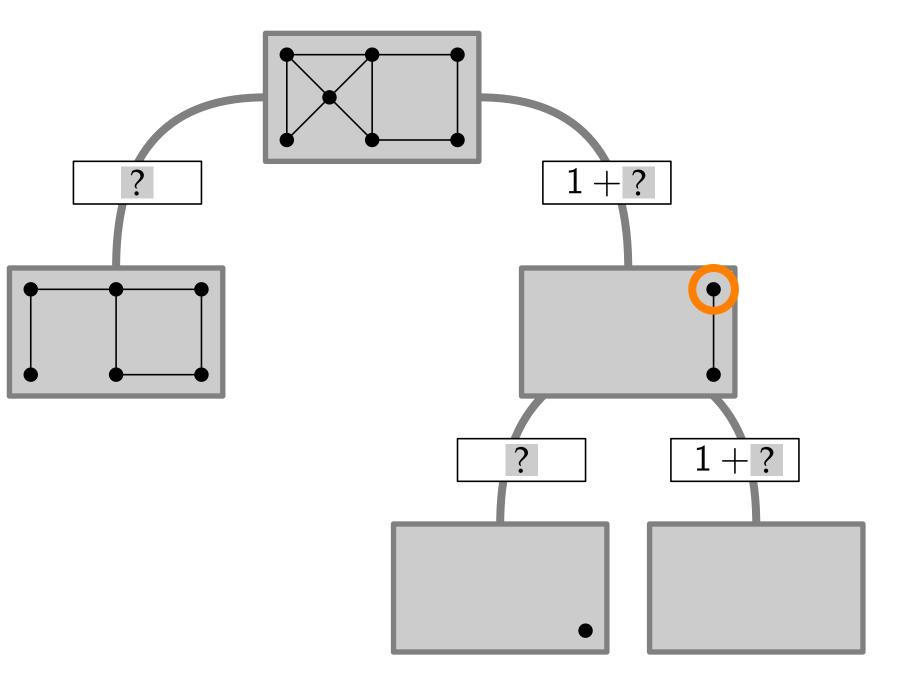


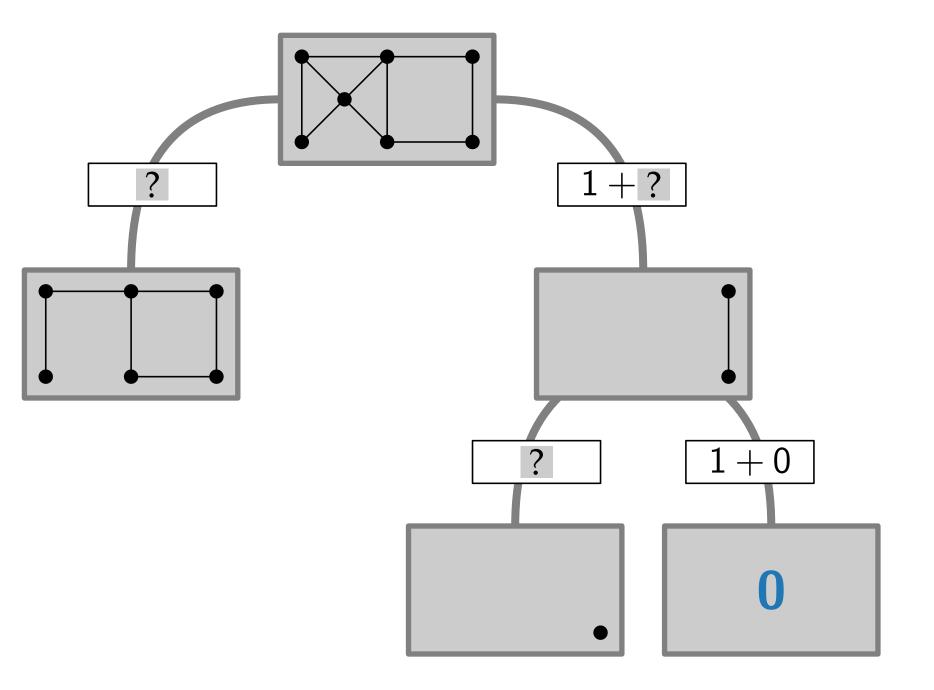


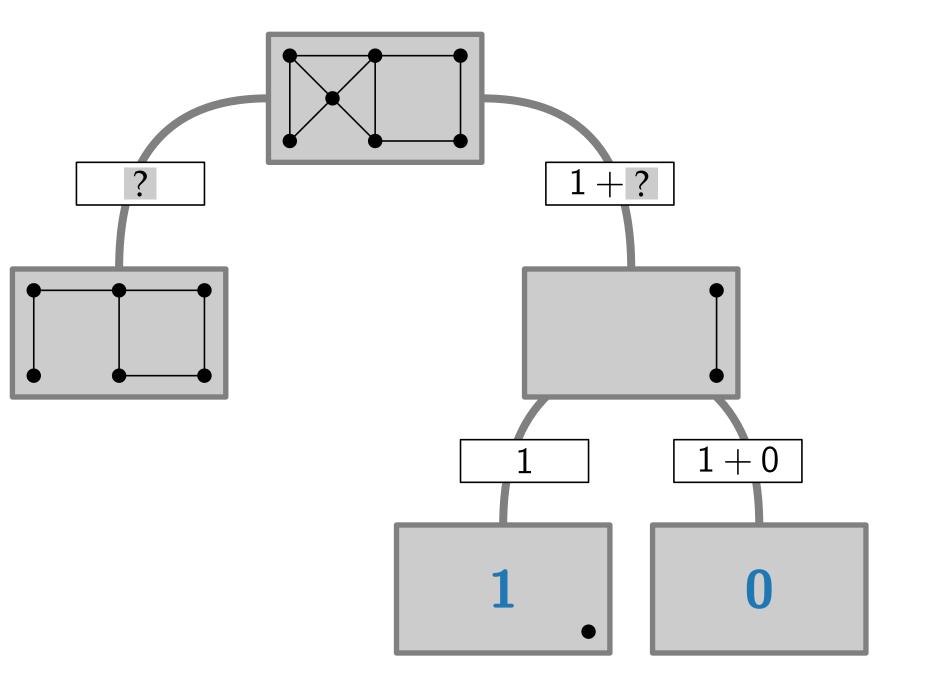


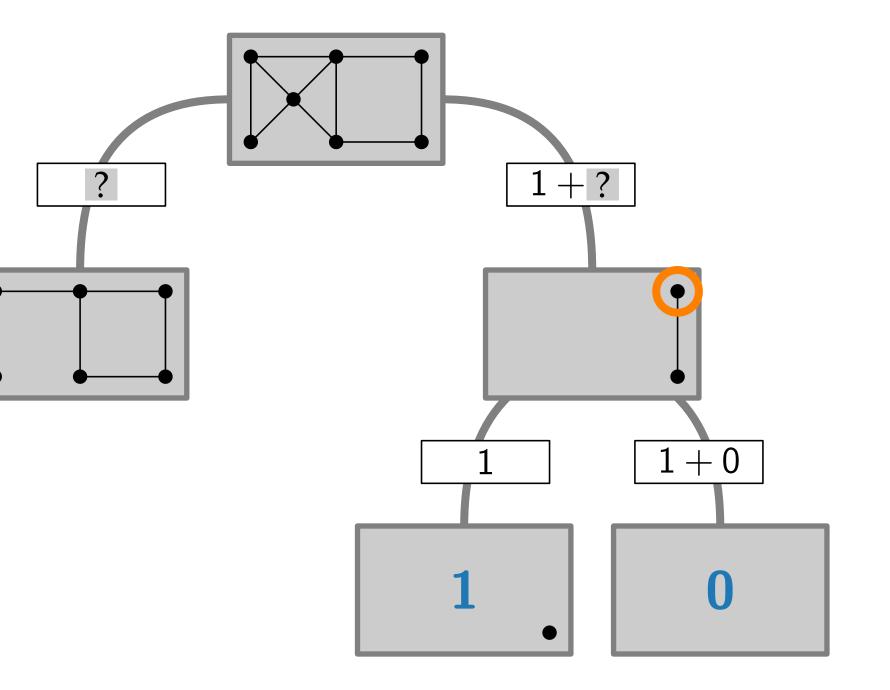


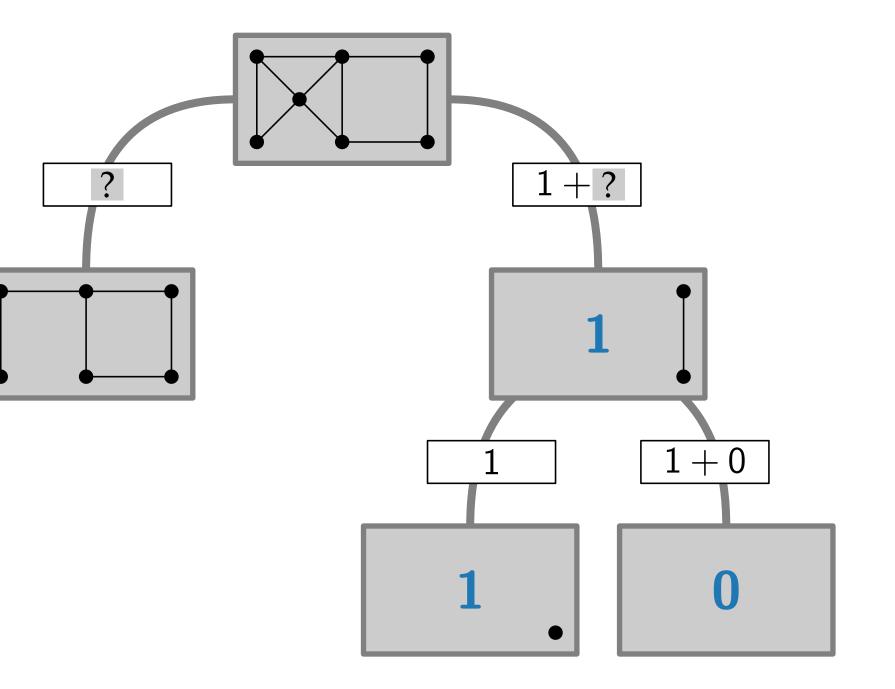




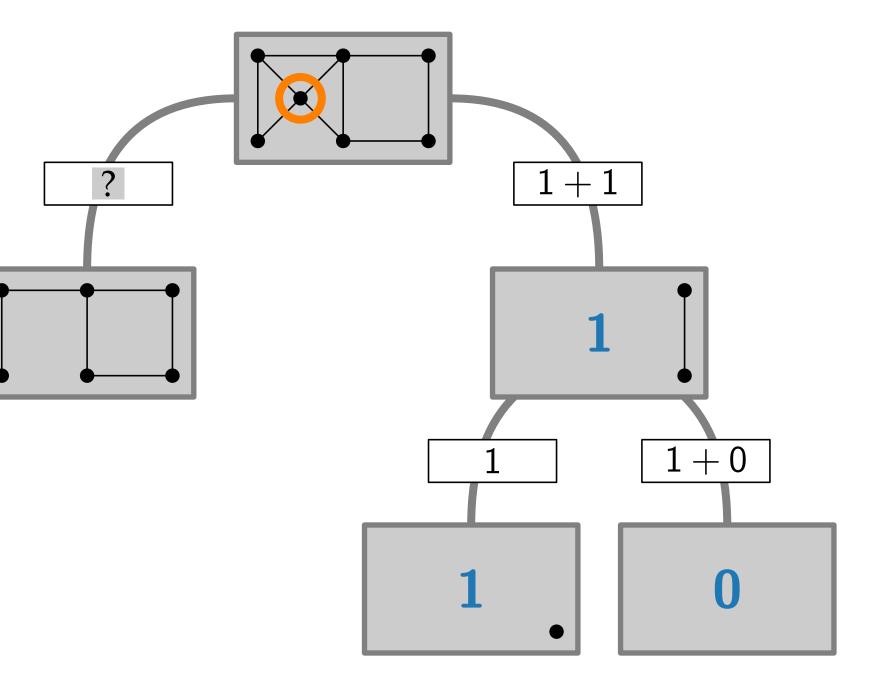


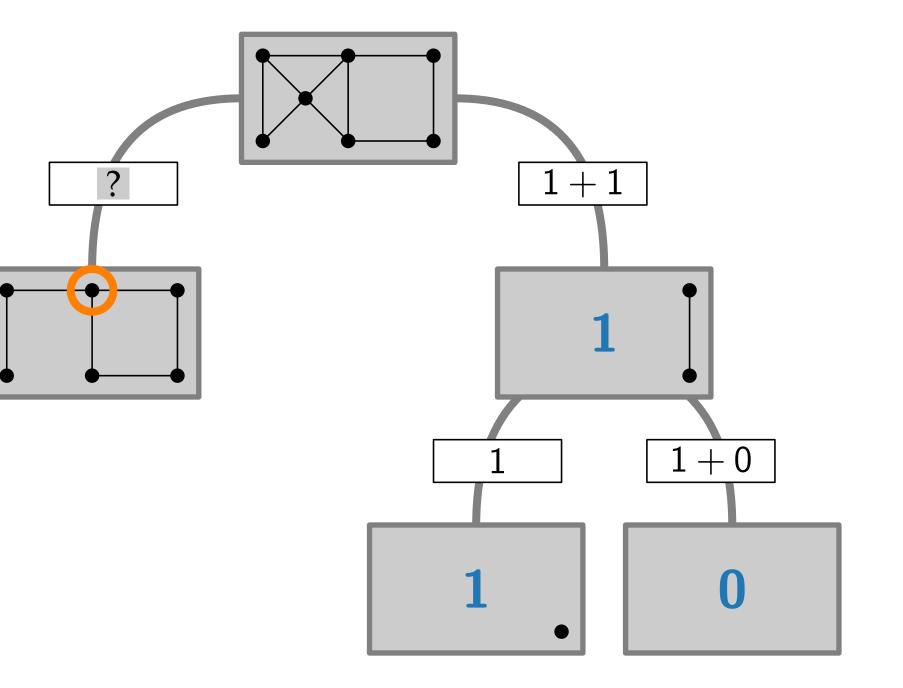


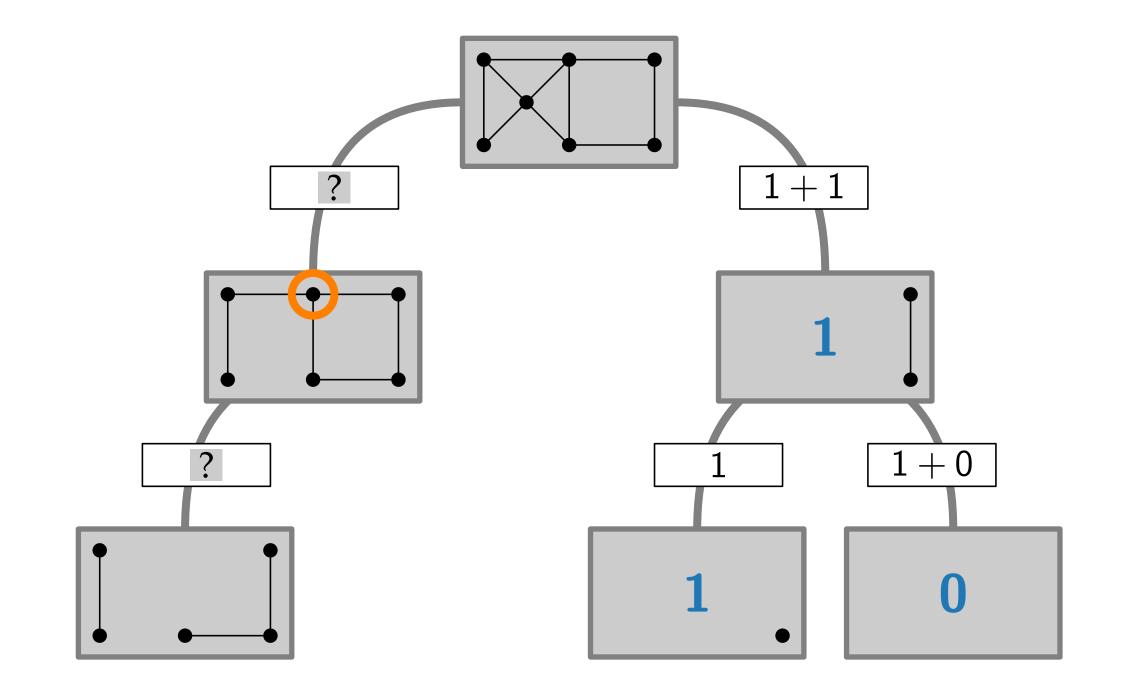


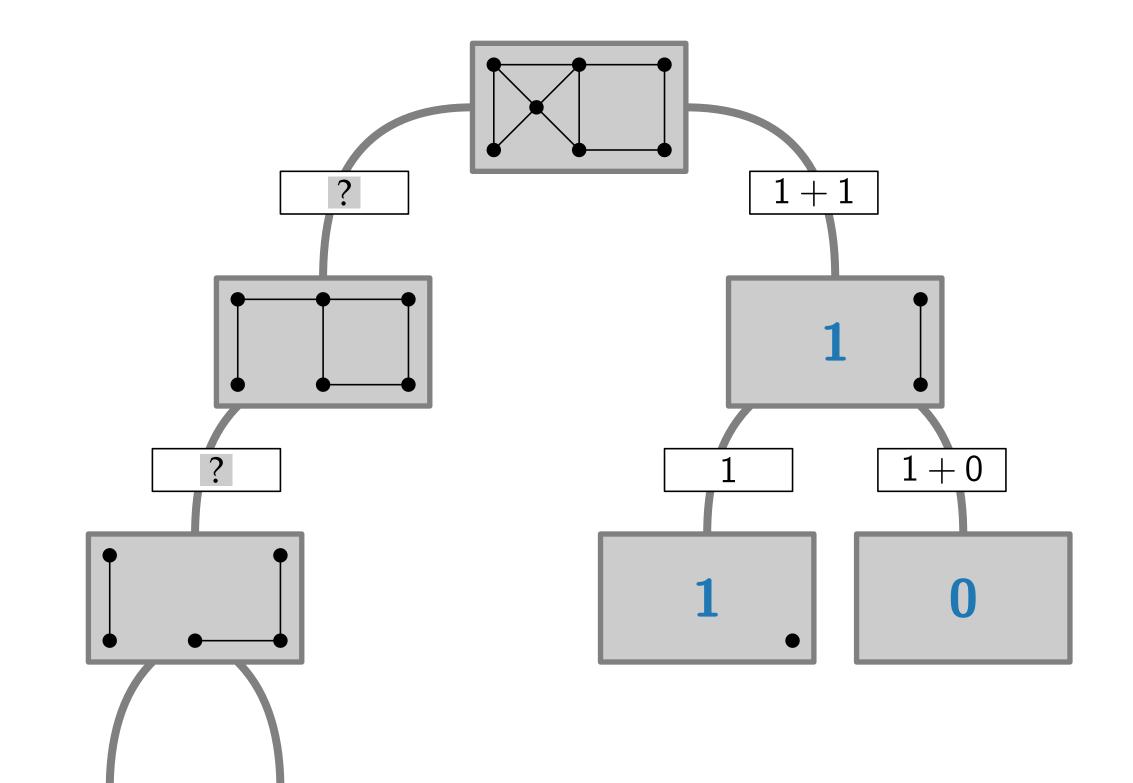


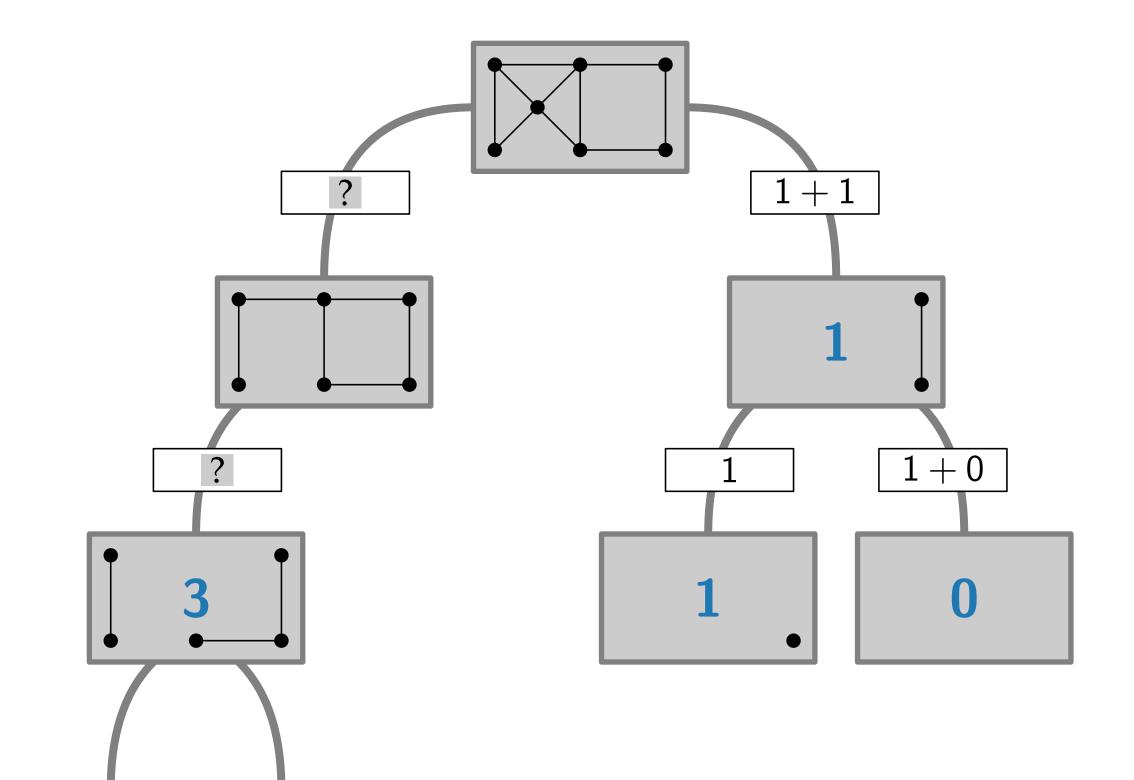
14 - 11

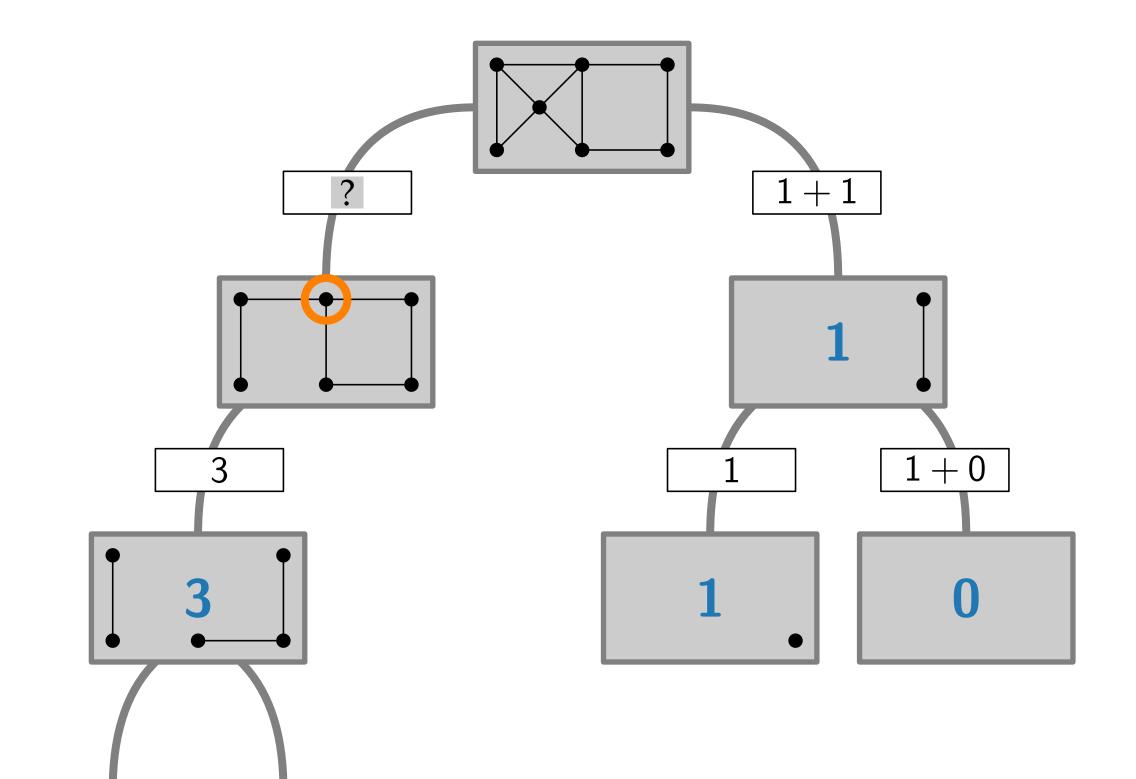




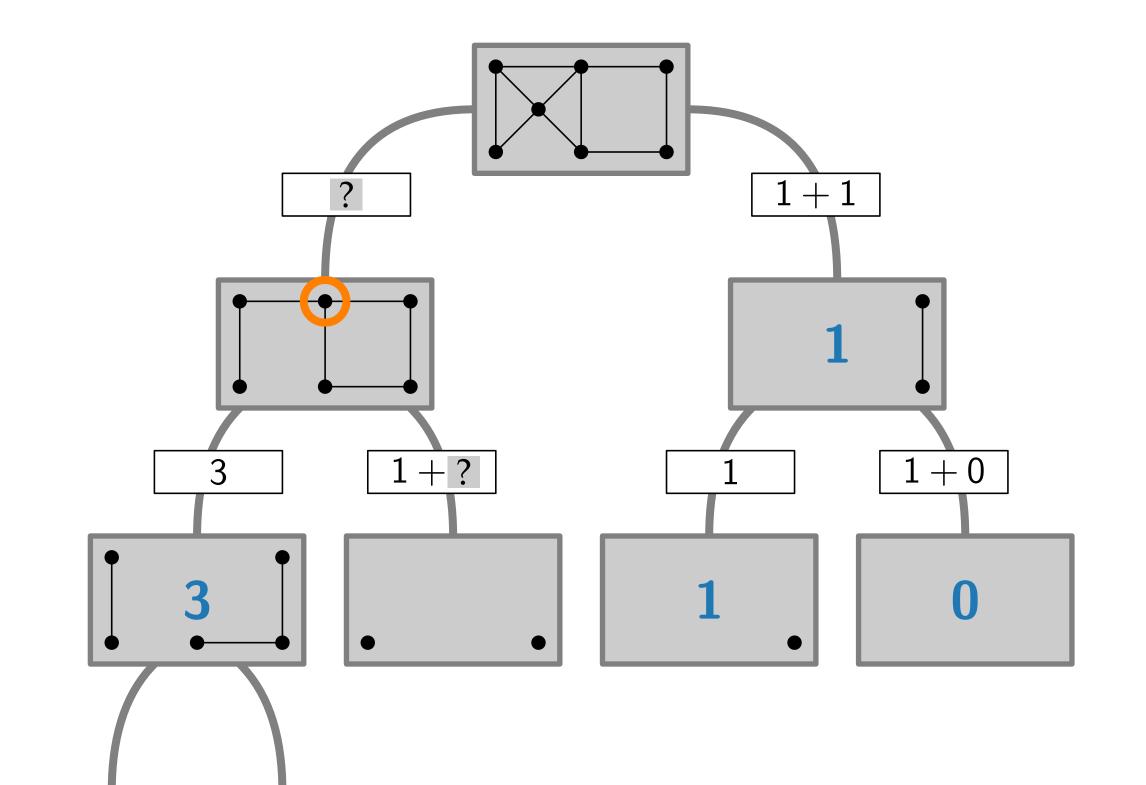


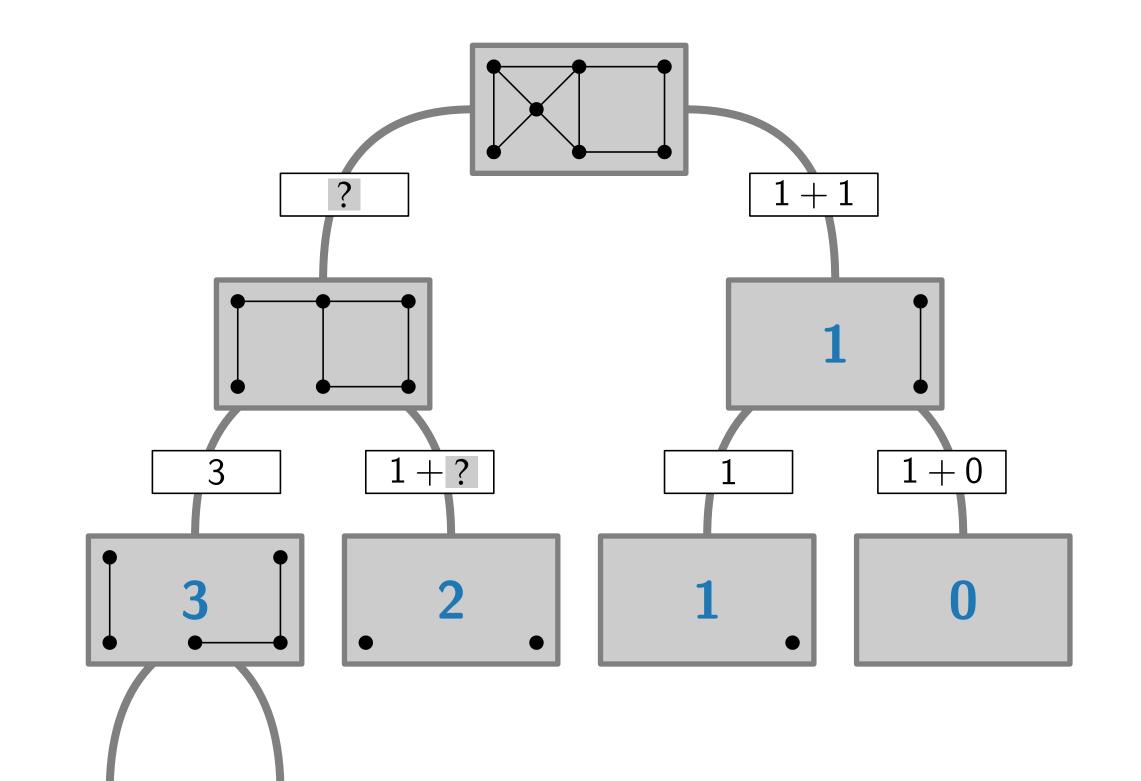


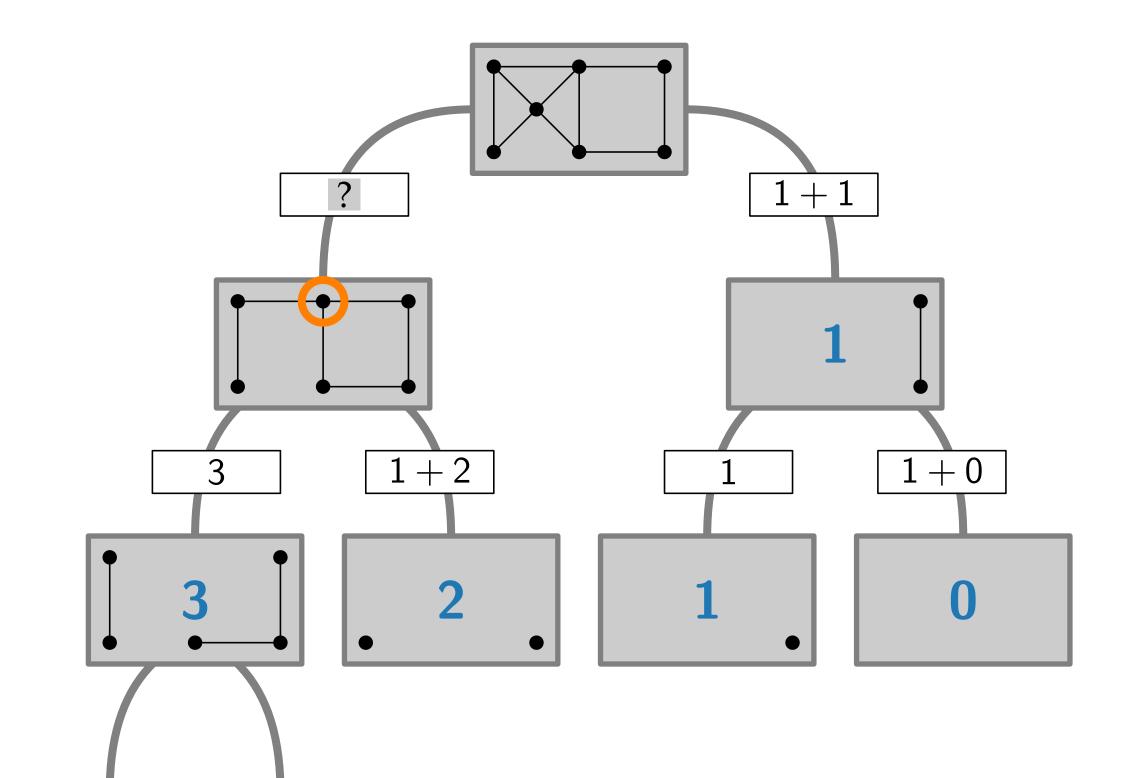


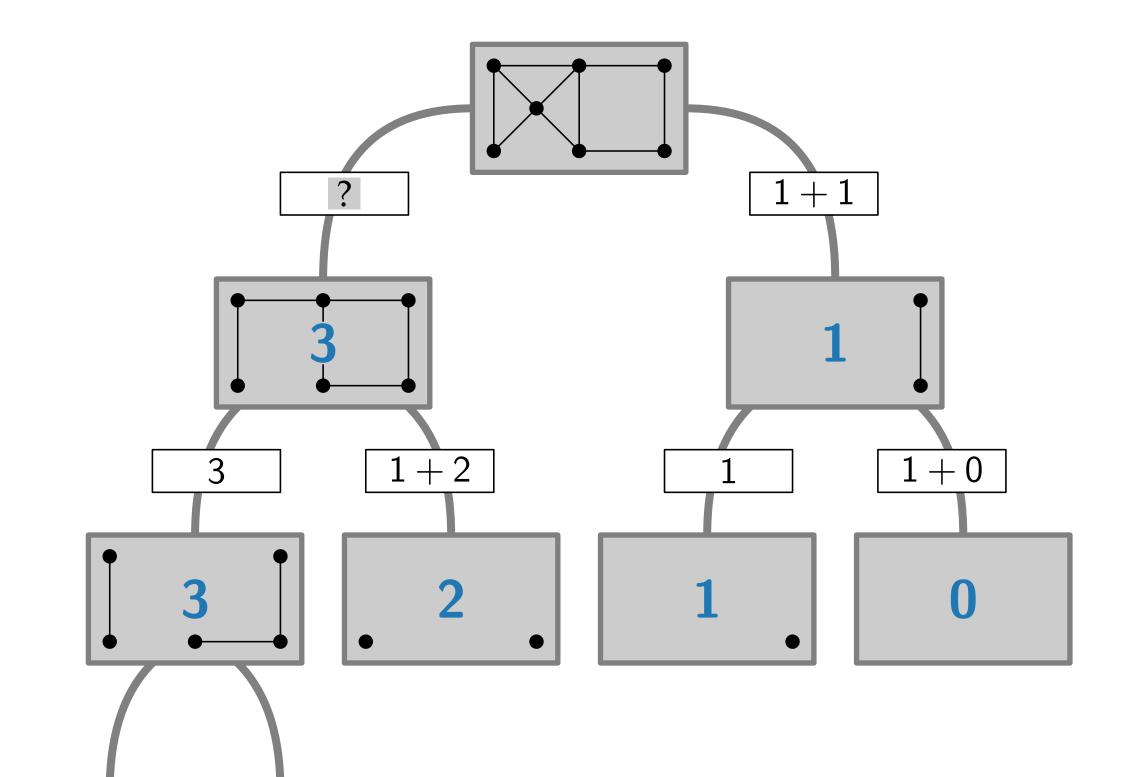


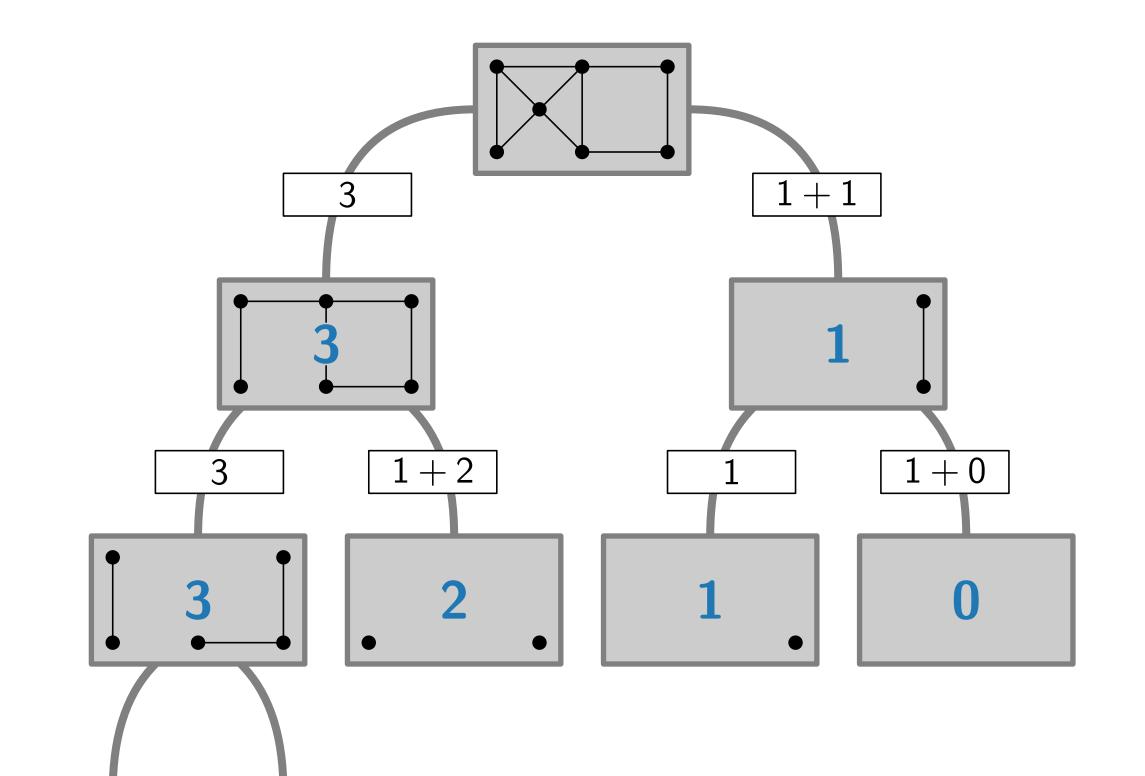
14 - 17

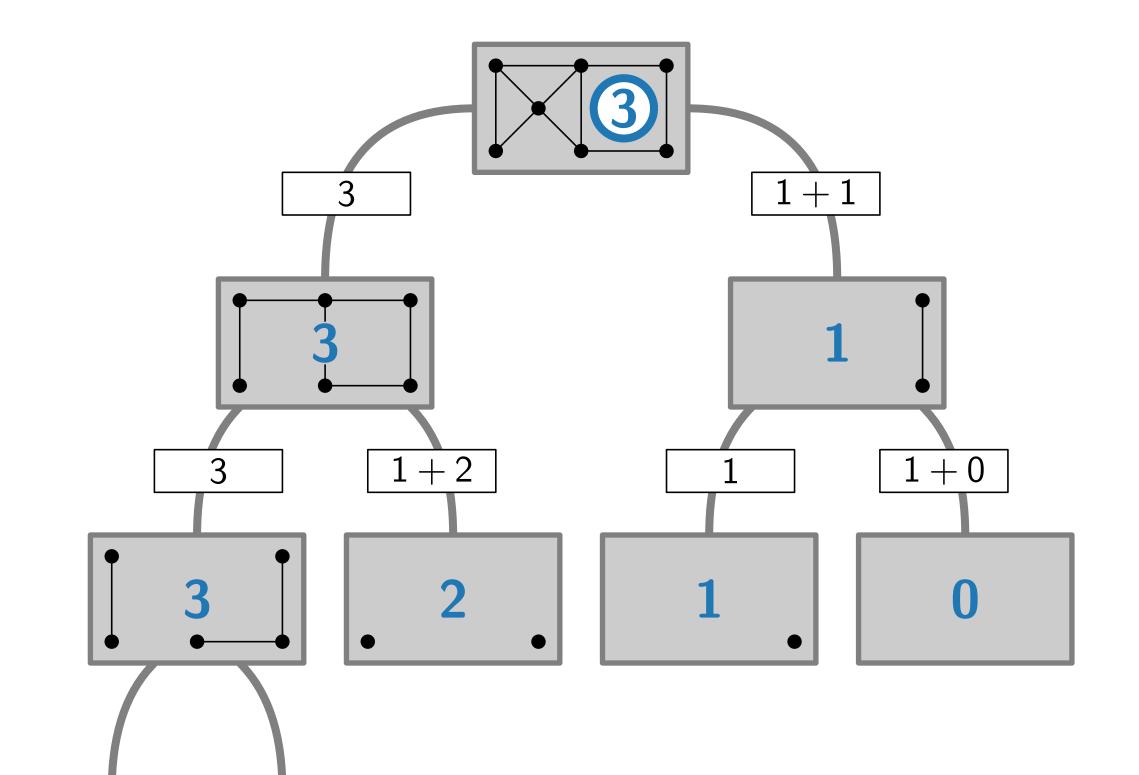








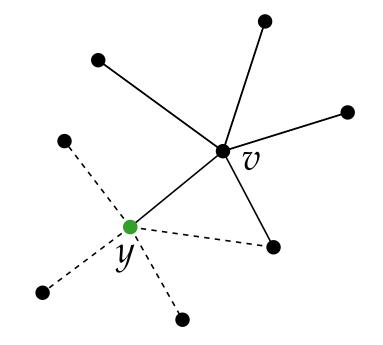




Lemma.

Let U be a maximum independent set in G. Then for each $v \in V$:

1. $v \in U \Rightarrow N(v) \cap U = \emptyset$ 2. $v \notin U \Rightarrow |N(v) \cap U| \ge 1$ Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of N[y] is in U.



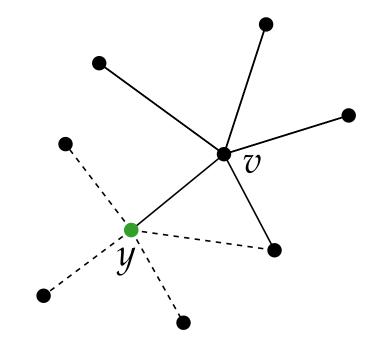
Lemma.

Let U be a maximum independent set in G. Then for each $v \in V$:

1. $v \in U \Rightarrow N(v) \cap U = \emptyset$ 2. $v \notin U \Rightarrow |N(v) \cap U| \ge 1$ Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of N[y] is in U.

Smarter MIS branching.

For some vertex v, branch on vertices in N[v].



Lemma.

Let U be a maximum independent set in G. Then for each $v \in V$:

1. $v \in U \Rightarrow N(v) \cap U = \emptyset$ 2. $v \notin U \Rightarrow |N(v) \cap U| \ge 1$ Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of N[y] is in U.

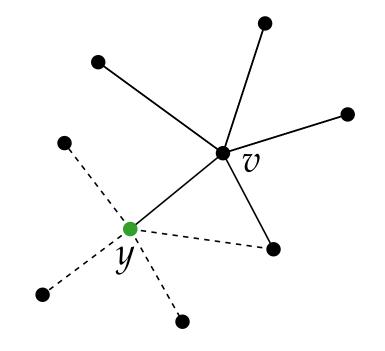
Smarter MIS branching.

For some vertex v, branch on vertices in N[v]. Algorithm MIS(G)

```
if V = \emptyset then
```

return 0

```
v \leftarrow \text{vertex of minimum degree in } V(G)
return 1 + \max\{\text{MIS}(G - N[y]) \mid y \in N[v]\}
```



Lemma.

Let U be a maximum independent set in G. Then for each $v \in V$:

1. $v \in U \Rightarrow N(v) \cap U = \emptyset$ 2. $v \notin U \Rightarrow |N(v) \cap U| \ge 1$ Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of N[y] is in U.

Smarter MIS branching.

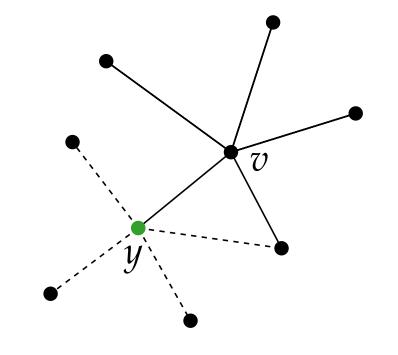
For some vertex v, branch on vertices in N[v]. Algorithm MIS(G)

```
if V = \emptyset then | return 0
```

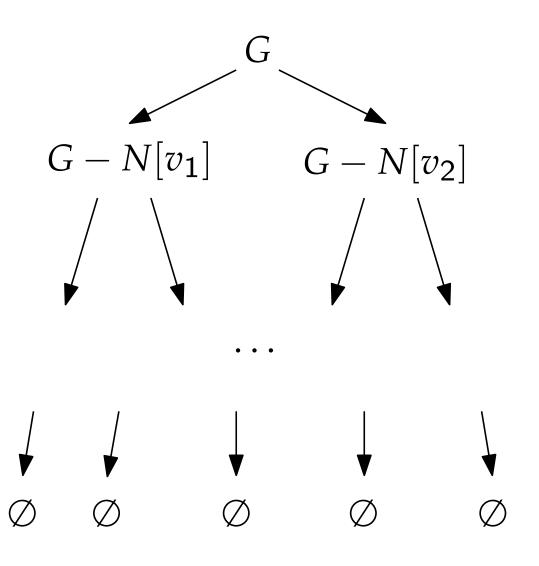
```
v \leftarrow \text{vertex of minimum degree in } V(G)
return 1 + \max\{ \text{MIS}(G - N[y]) \mid y \in N[v] \}
```



```
• We prove a runtime of \mathcal{O}^*(3^{n/3}) = \mathcal{O}^*(1.4423^n).
```

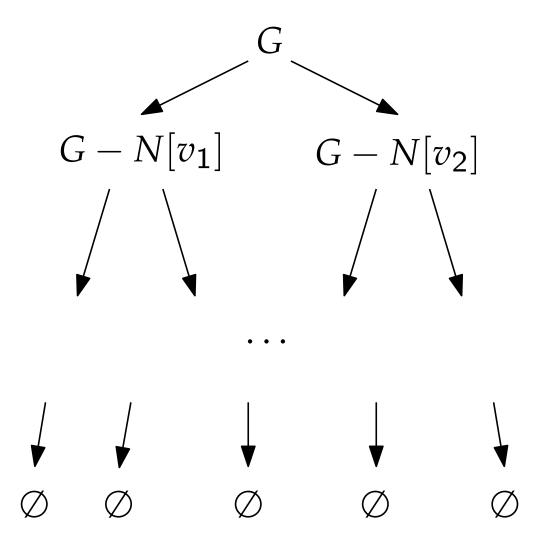


Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.



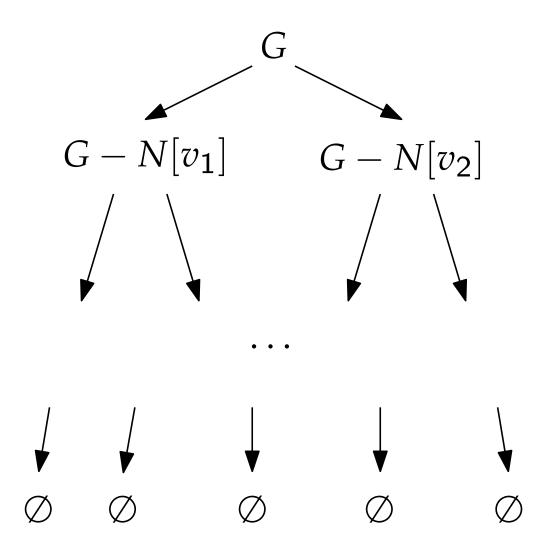
Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.

Let B(n) be the maximum number of leaves of a search tree for a graph with n vertices.



Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.

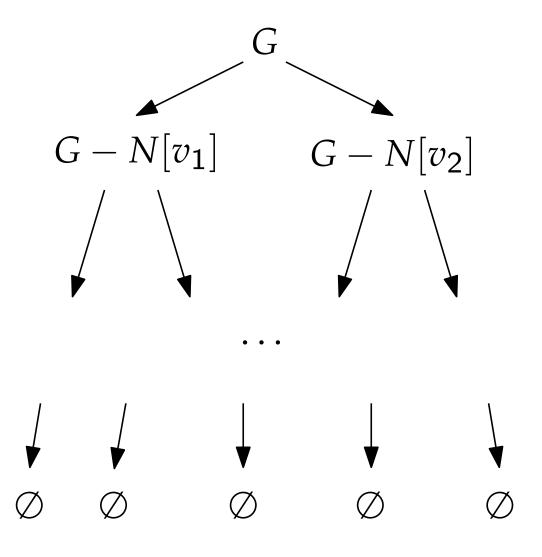
- Let B(n) be the maximum number of leaves of a search tree for a graph with n vertices.
- Search-tree has height $\leq n$.



Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.

- Let B(n) be the maximum number of leaves of a search tree for a graph with n vertices.
- Search-tree has height $\leq n$.
- \rightsquigarrow The algorithm's runtime is

 $T(n) \in O^*(nB(n)) = O^*(B(n)).$

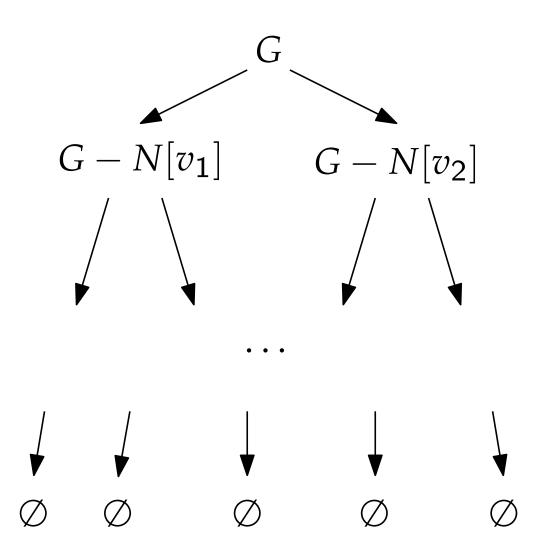


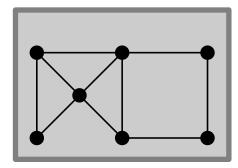
Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.

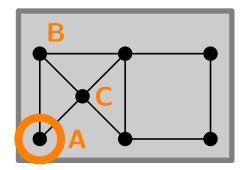
- Let B(n) be the maximum number of leaves of a search tree for a graph with n vertices.
- Search-tree has height $\leq n$.
 - \rightsquigarrow The algorithm's runtime is

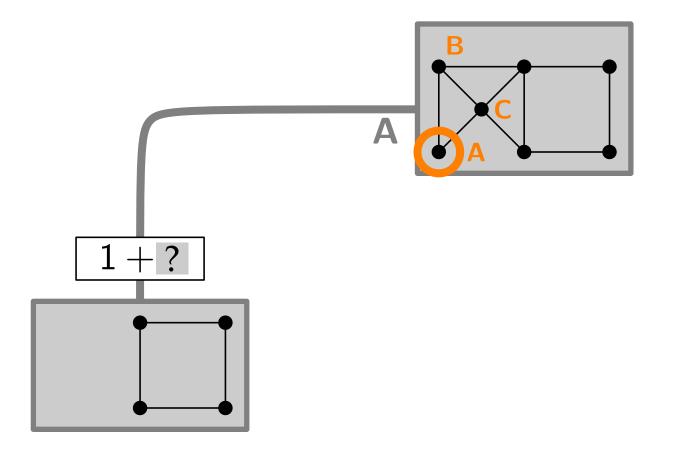
 $T(n) \in O^*(nB(n)) = O^*(B(n)).$

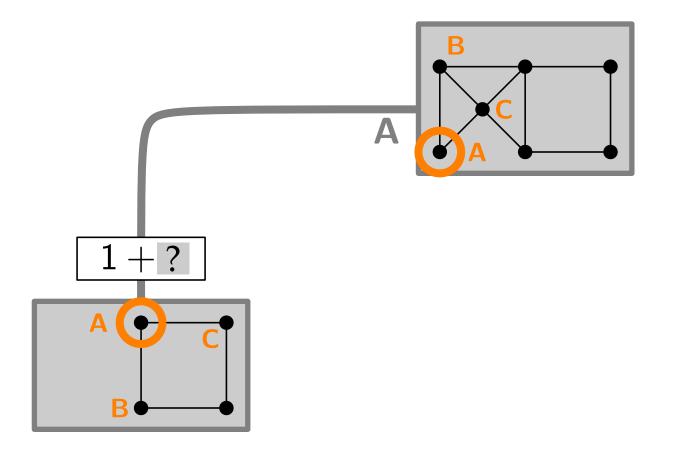
Let's consider an example run.

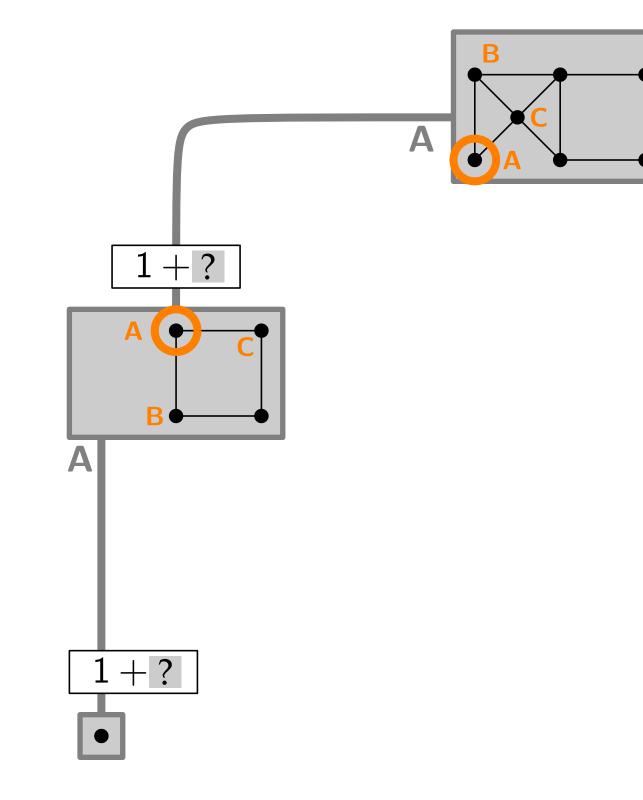


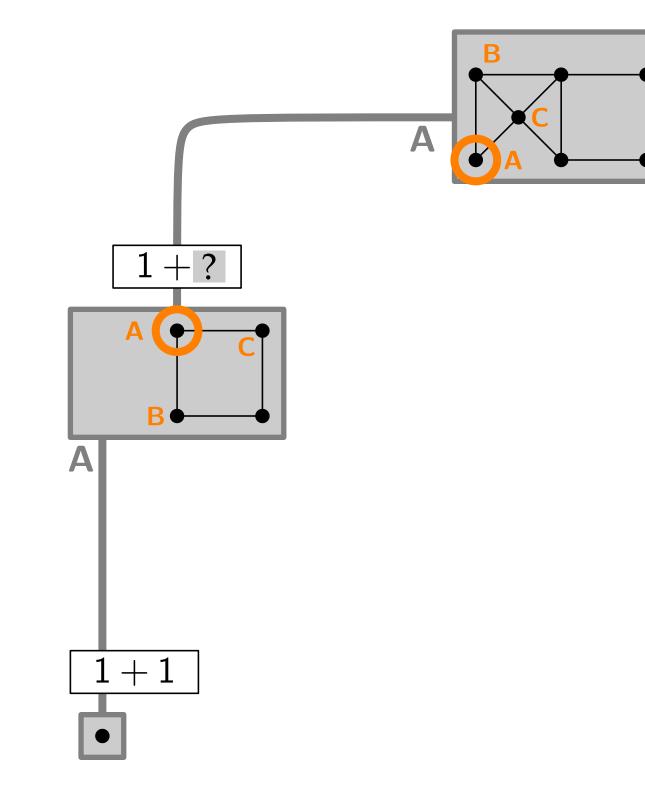


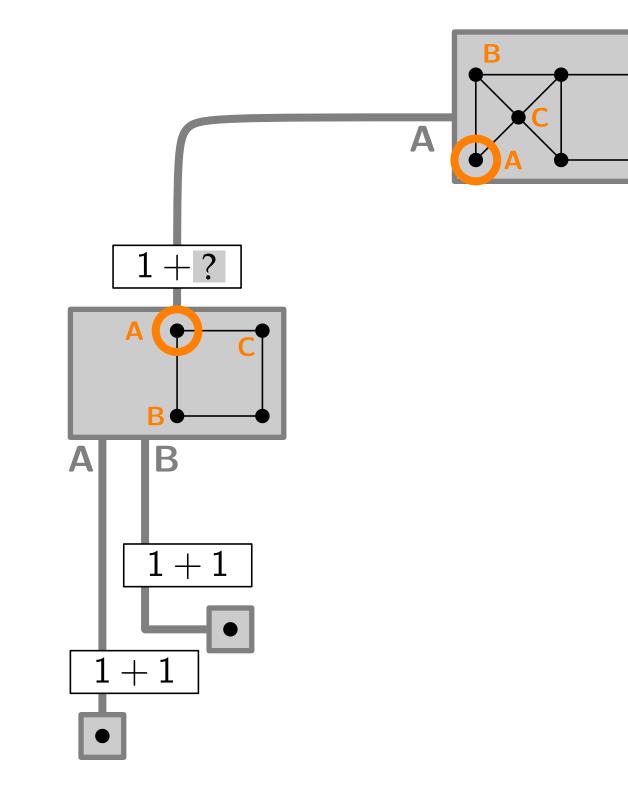


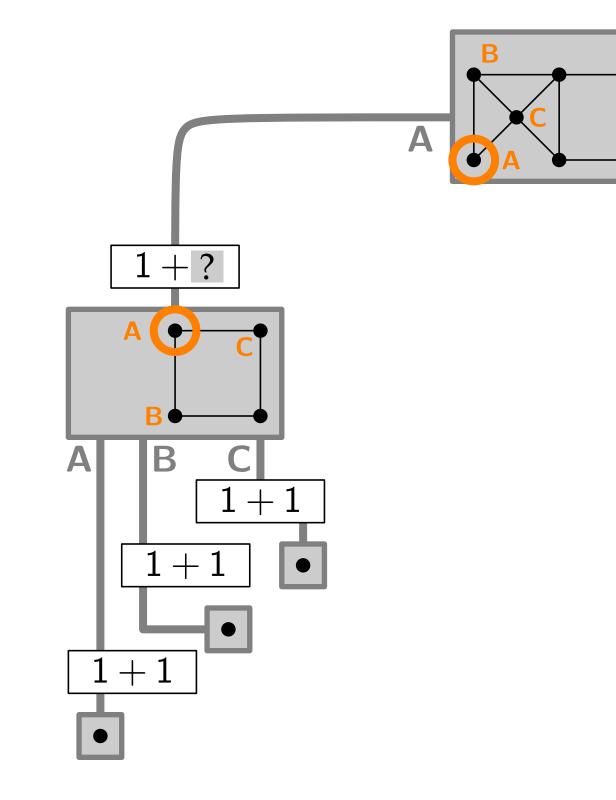


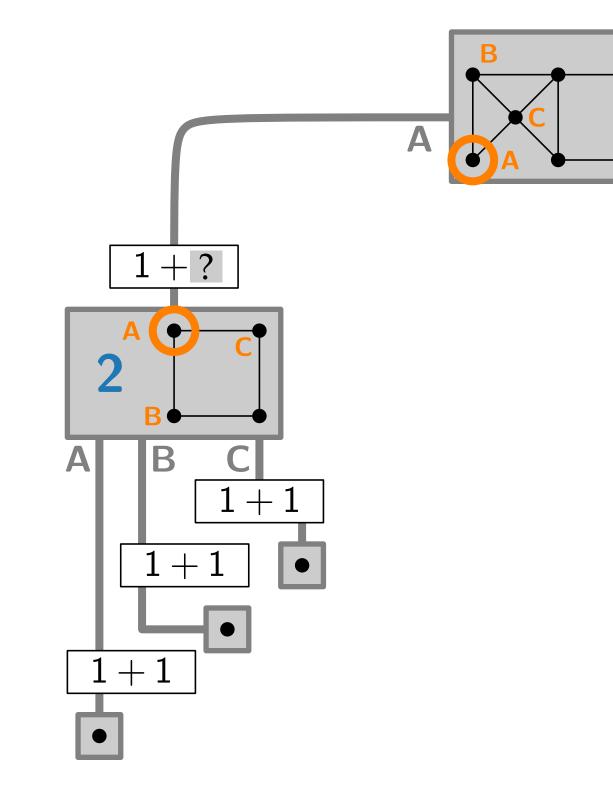


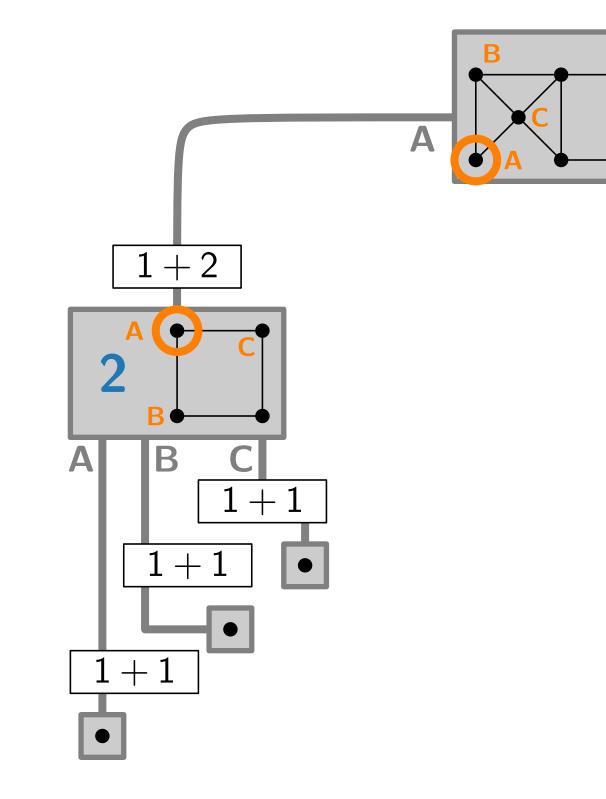


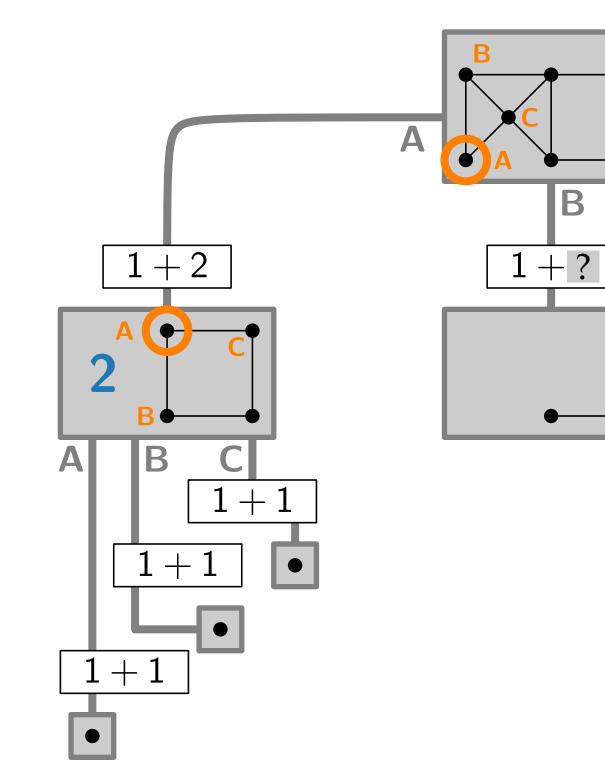


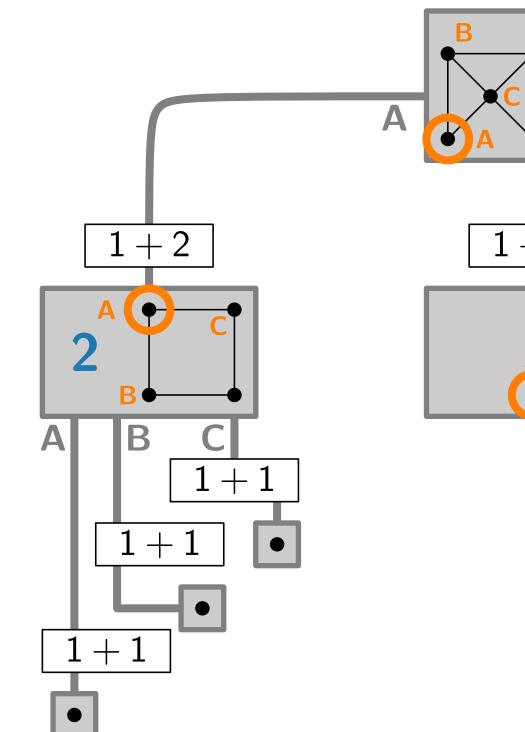


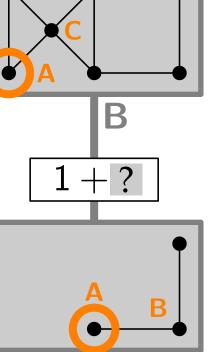


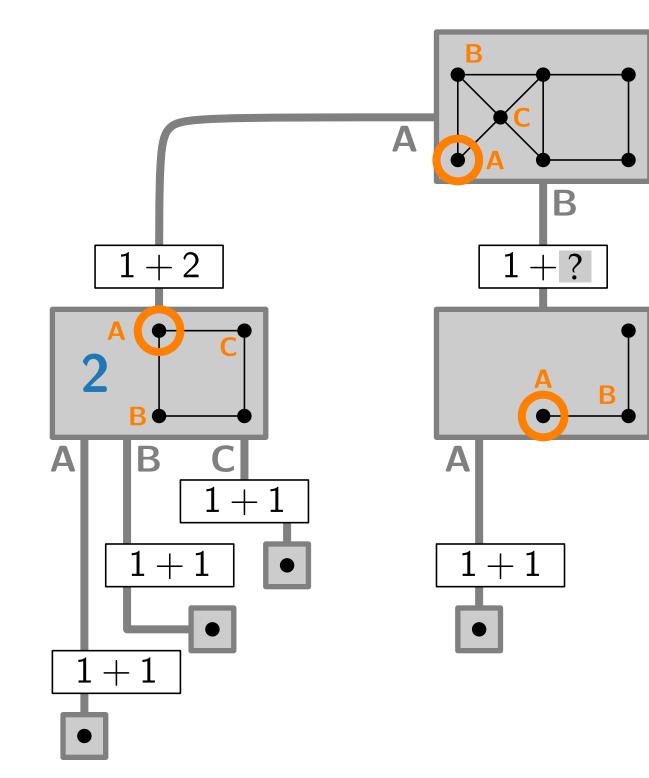


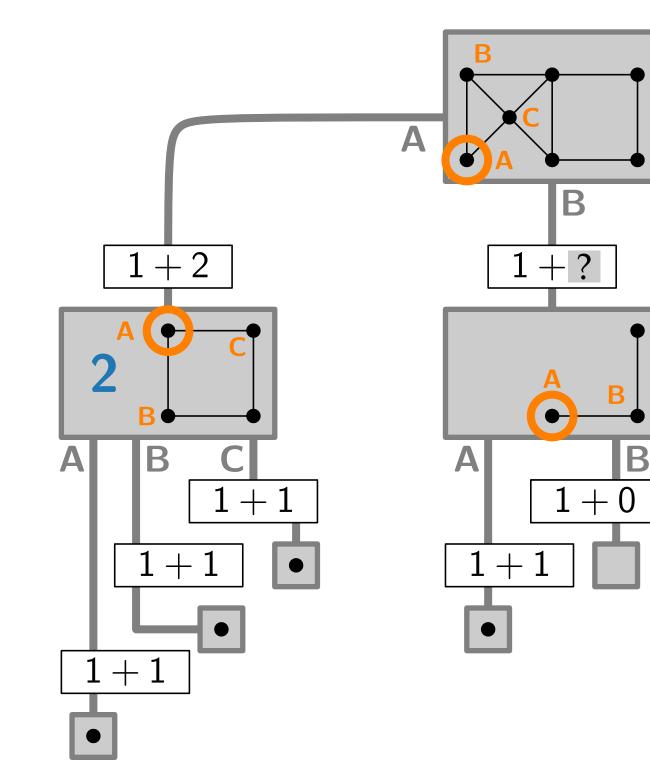


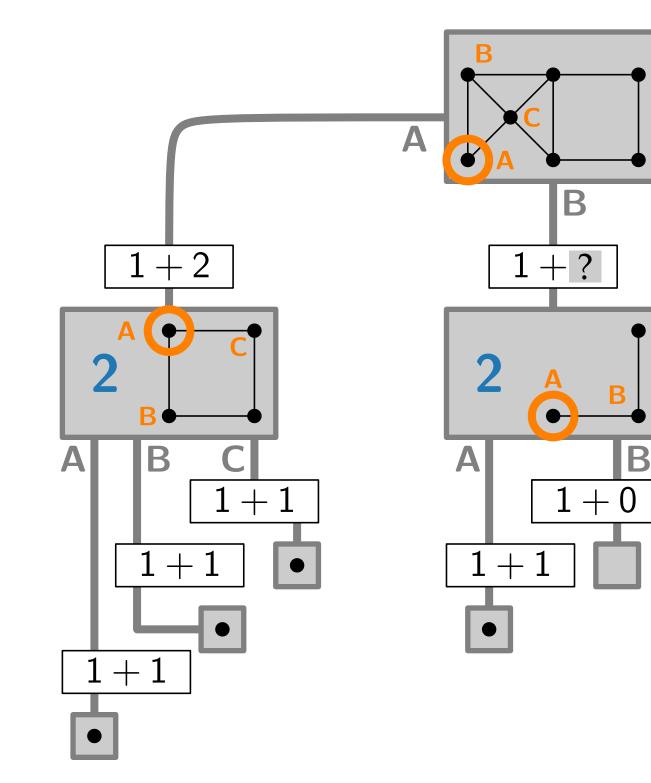




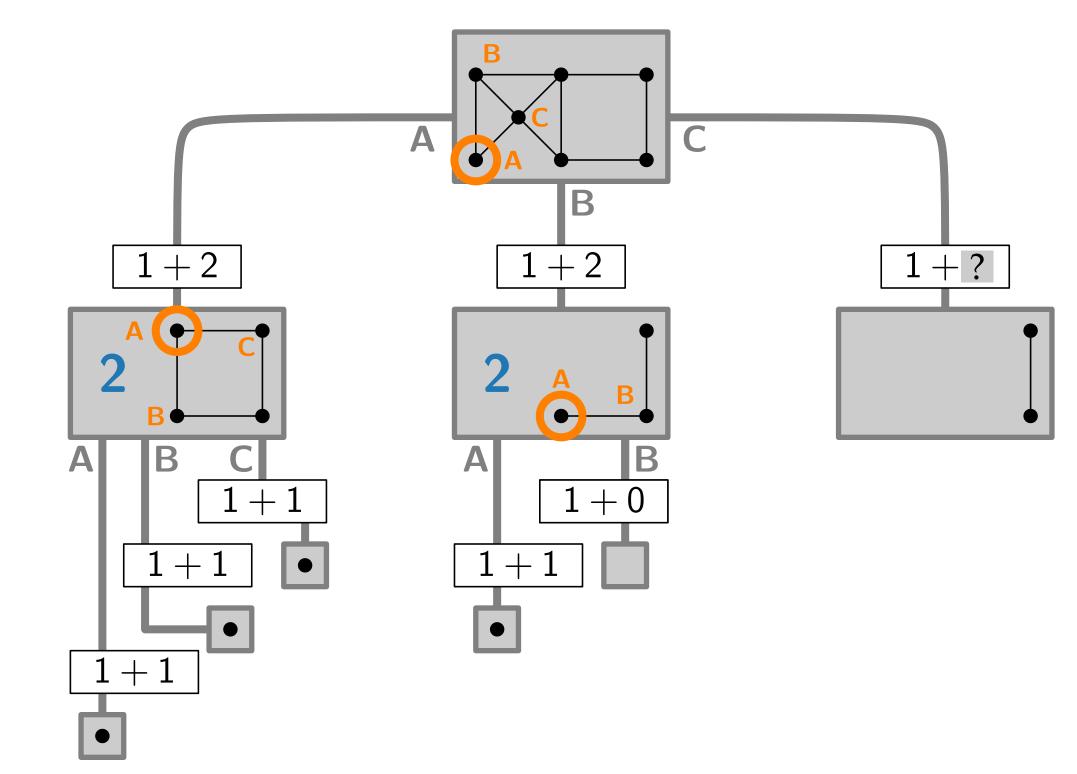


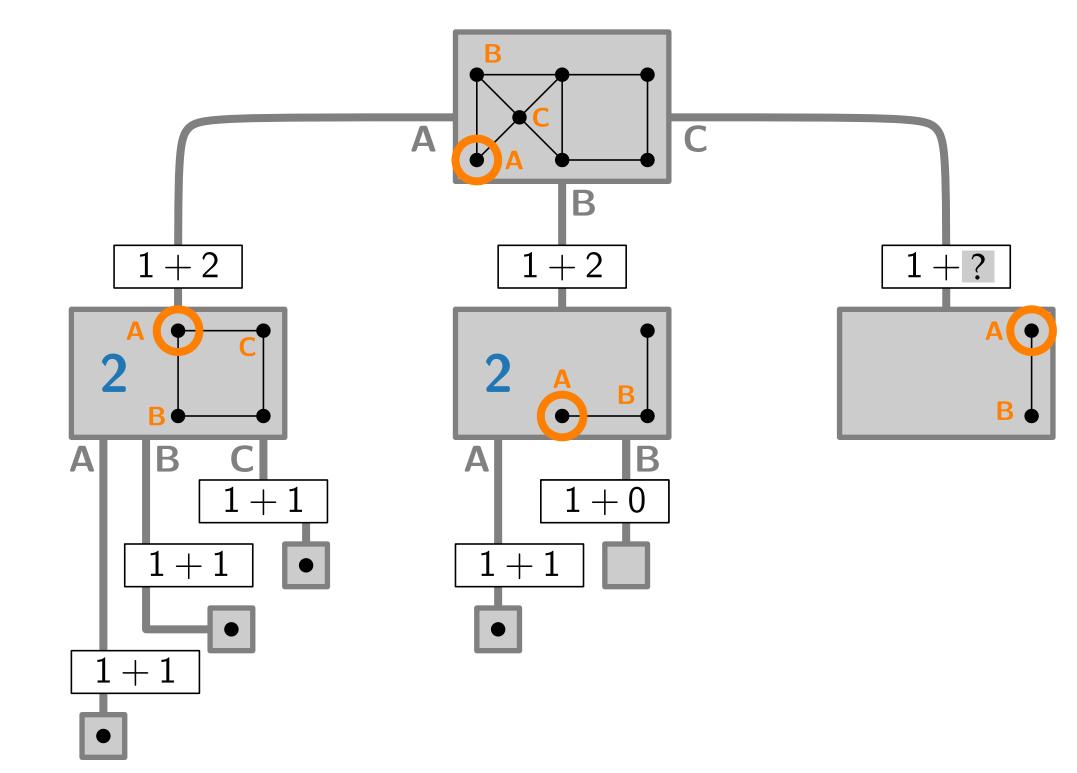


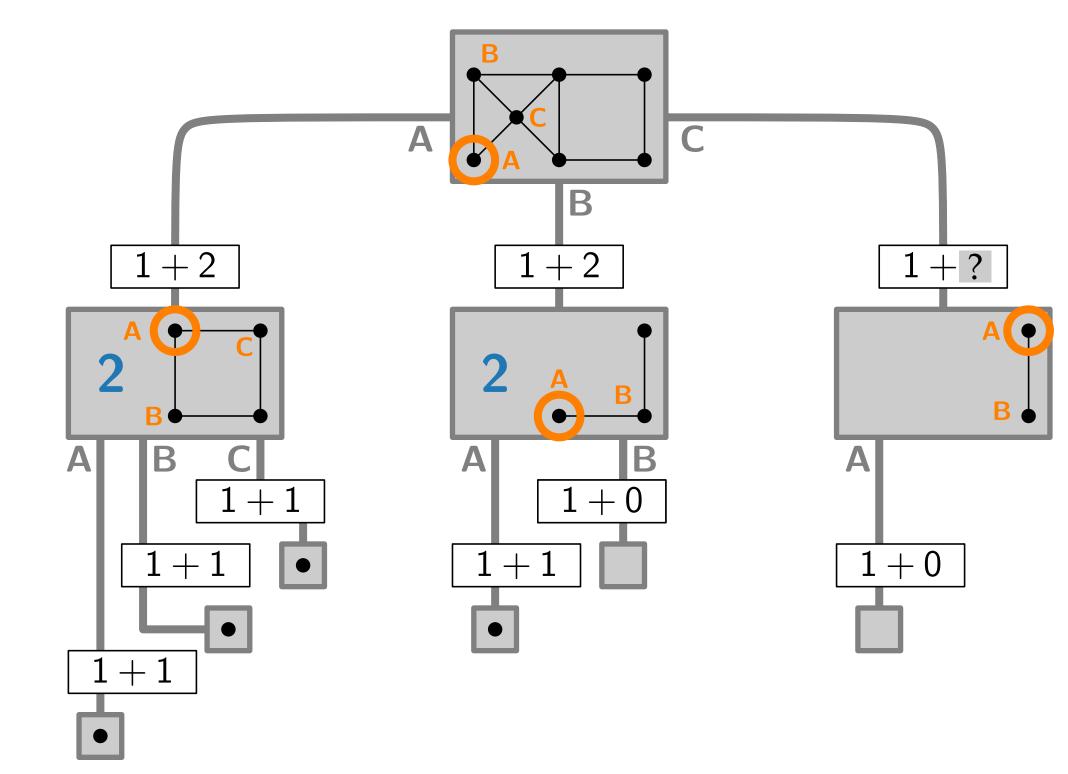


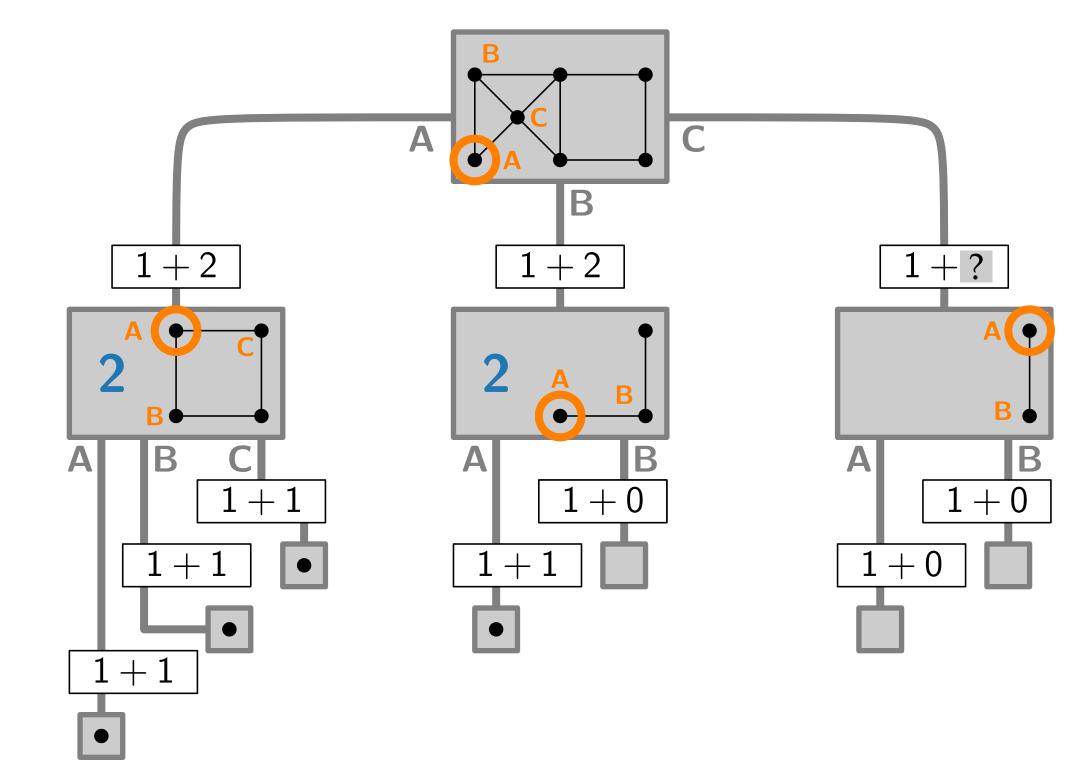


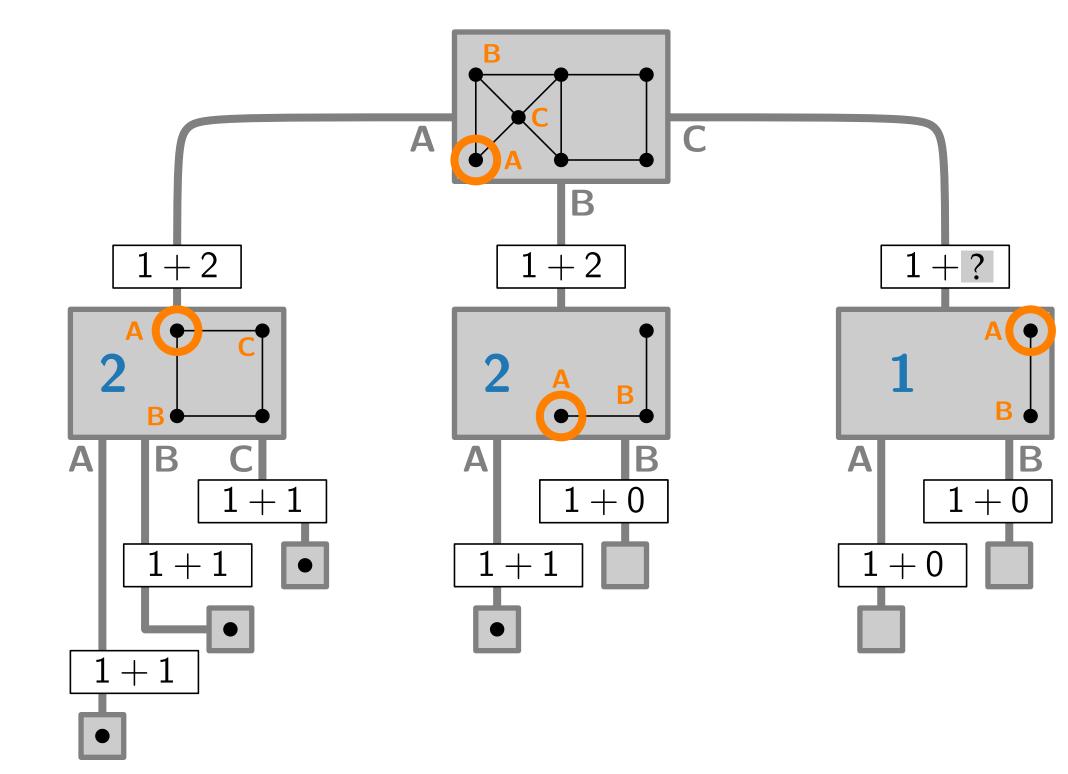


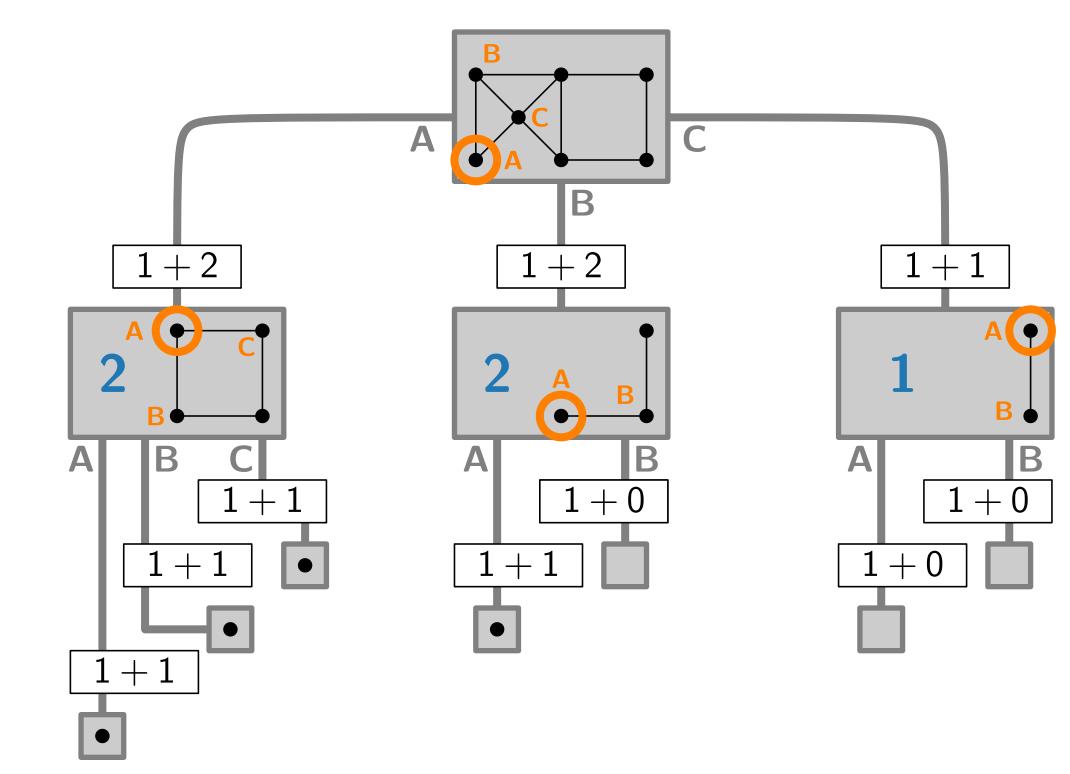


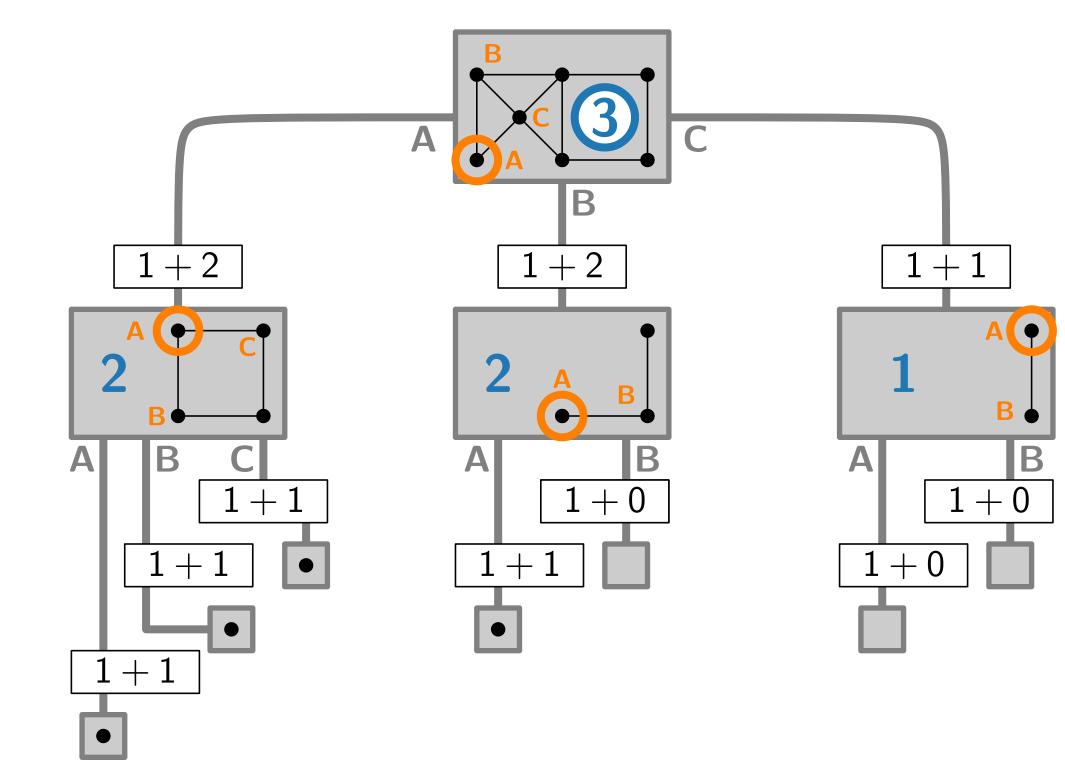












For a worst-case *n*-vertex graph G ($n \ge 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

For a worst-case *n*-vertex graph G ($n \ge 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

For a worst-case *n*-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

For a worst-case *n*-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

For a worst-case *n*-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

Base case: $B(0) = 1 \le 3^{0/3}$

For a worst-case *n*-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

Base case: $B(0) = 1 \le 3^{0/3}$

■ Hypothesis: for $n \ge 1$, set $s = \deg(v) + 1$ in the above inequality

 $B(n) \le s \cdot B(n-s)$

For a worst-case *n*-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

Base case: $B(0) = 1 \le 3^{0/3}$

■ Hypothesis: for
$$n \ge 1$$
, set $s = \deg(v) + 1$
in the above inequality

 $B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3}$

For a worst-case *n*-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

Base case: $B(0) = 1 \le 3^{0/3}$

■ Hypothesis: for
$$n \ge 1$$
, set $s = \deg(v) + 1$ in the above inequality

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3}$$

For a worst-case *n*-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

Base case: $B(0) = 1 \le 3^{0/3}$

■ Hypothesis: for
$$n \ge 1$$
, set $s = \deg(v) + 1$ in the above inequality

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \le 3^{n/3}$$

For a worst-case *n*-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

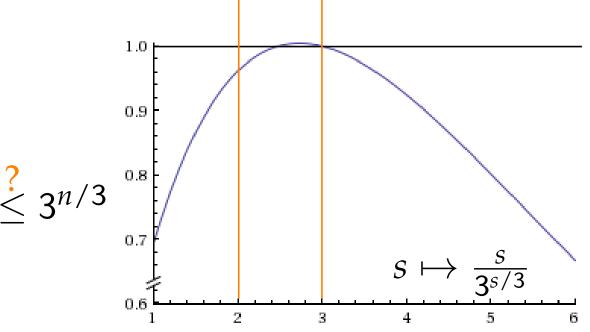
where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

Base case:
$$B(0) = 1 \le 3^{0/3}$$

• Hypothesis: for
$$n \ge 1$$
, set $s = \deg(v) + 1$ in the above inequality

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \le 3^{n/3}$$



For a worst-case *n*-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

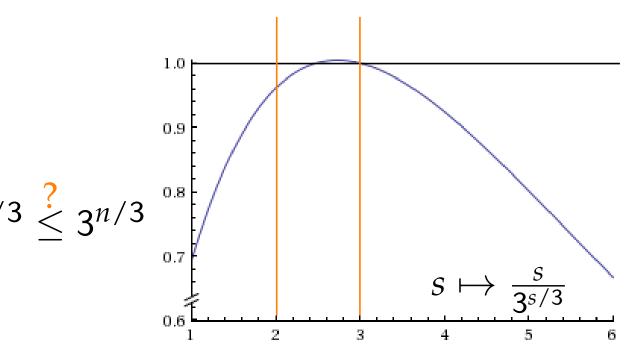
We prove by induction that $B(n) \leq 3^{n/3}$.

Base case:
$$B(0) = 1 \le 3^{0/3}$$

• Hypothesis: for
$$n \ge 1$$
, set $s = \deg(v) + 1$
in the above inequality

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \le 3^{n/3}$$

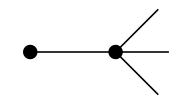
$$B(n) \in O^*(\sqrt[3]{3}^n) \subset O^*(1.44225^n)$$



- Smarter branching leads to $\mathcal{O}^*(1.44225^n)$ -time algorithme,
- compared to brute-force, which runs in $\mathcal{O}(2^n \cdot n)$ time.

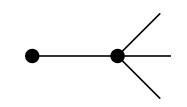
- Smarter branching leads to $\mathcal{O}^*(1.44225^n)$ -time algorithme,
- compared to brute-force, which runs in $\mathcal{O}(2^n \cdot n)$ time.
- Algorithms for MIS known that run in $\mathcal{O}^*(1.2202^n)$ time and polynomial space,
- **and** in $\mathcal{O}^*(1.2109^n)$ time and exponential space.

- Smarter branching leads to $\mathcal{O}^*(1.44225^n)$ -time algorithme,
- compared to brute-force, which runs in $\mathcal{O}(2^n \cdot n)$ time.
- Algorithms for MIS known that run in $\mathcal{O}^*(1.2202^n)$ time and polynomial space,
- and in $\mathcal{O}^*(1.2109^n)$ time and exponential space.
- What vertices are always in a MIS?
- What vertices can we savely assume are in a MIS?



Advanced case analysis in [Fomin, Kratsch Ch 2.3] leading to a $\mathcal{O}^*(1.2786^n)$ -time algorithm.

- Smarter branching leads to $\mathcal{O}^*(1.44225^n)$ -time algorithme,
- compared to brute-force, which runs in $\mathcal{O}(2^n \cdot n)$ time.
- Algorithms for MIS known that run in $\mathcal{O}^*(1.2202^n)$ time and polynomial space,
- and in $\mathcal{O}^*(1.2109^n)$ time and exponential space.
- What vertices are always in a MIS?
- What vertices can we savely assume are in a MIS?
- Advanced case analysis in [Fomin, Kratsch Ch 2.3] leading to a $\mathcal{O}^*(1.2786^n)$ -time algorithm.
- **Exercise**: Enumerating MISs
- **Exercise**: Edge-branching for MIS



Literature

Main source:

[Fomin, Kratsch Ch1] "Exact Exponential Algorithms" Referenced papers:

- [ADMV '15] Classic Nintendo Games are (Computationally) Hard
- [Mann '17] The Top Eight Misconceptions about NP-Hardness