

Visualisation of graphs

Planar straight-line drawings

Schnyder realiser

Jonathan Klawitter · Summer semester 2020

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem. [Schnyder '90] Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

 $(2n-5) \times (2n-5)$

Idea.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle
 - and how much space there has to be for other vertices
- using barycentric coordinates.

(0, 1, 0)

(0, 0, 1)

Barycentric coordinates

Definition.

Let $A, B, C, P \in \mathbb{R}^2$.

The barycentric coordinates of P with respect to $\triangle ABC$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3_{>0}$ such that

$$\alpha + \beta + \gamma = 1$$

$$P = \alpha A + \beta B + \gamma C.$$

Barycentric representation

Definition.

A barycentric representation of a graph G=(V,E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi\colon V\to\mathbb{R}^3_{\geq 0},\ v\mapsto (v_1,v_2,v_3)$ with the following properties:

- $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$.

Barycentric representations & planar graphs

Lemma.

Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping

$$f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a planar drawing of G inside $\triangle ABC$.

- **Proof.** No vertices occur "inside" an edge
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u'_{i} > u_{i}, v_{i} \quad v'_{j} > u_{j}, v_{j} \quad u_{k} > u'_{k}, v'_{k} \quad v_{l} > u'_{l}, v'_{l}$$

$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

wlog $i = j = 1 \Rightarrow u'_1, v'_1 > u_1, v_1 \Rightarrow$ separated by straight line

How to get vertices on grid?

Angle labeling

Observation

Let $v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a triangulated plane graph G = (V, E).

We can **uniquely** label each angle $\angle(xy, xz)$ with $k \in \{1, 2, 3\}$.

Schnyder labeling

Definition.

A **Schnyder labeling** (normal labeling) of a triangulated plane graph G is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces Each internal face contain vertices with all three labels 1, 2 and 3 appearing in a counterclockwise order.

Vertices The ccw order of labels around each vertex consists of a nonempty interval of 1's followed by a nonempty interval of 2's followed by a nonempty interval of 3's.

Schnyder realiser

Schnyder labeling induces an edge labeling

Schnyder realiser

Schnyder labeling induces an edge labeling

Schnyder realiser

Schnyder labeling induces an edge labeling

Definition.

A **Schnyder forest** or **realiser** of a triangulated plane graph G = (V, E) is a partition of the inner edges of E into three sets of oriented edges T_1 , T_2 , T_3 such that for each inner vertex $v \in V$ holds:

- lacksquare v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3 , leaving in T_2 , entering in T_1 , leaving in T_3 , entering in T_2 .

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Proof by induction on # vertices via edge contractions.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Proof also gives an algorithm to produce a Schnyder labeling. It can be implemented in $\mathcal{O}(n)$ time . . . as exercise.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Proof also gives an algorithm to produce a Schnyder labeling. It can be implemented in $\mathcal{O}(n)$ time . . . as exercise.

Theorem and previous construction imply:

Corollary.

Every triangulated plane graph has a Schnyder realiser.

Schnyder realiser – properties

- For each v there exists a directed red, blue, green path from v to a, b, c, respectively.
- No monochromatix cycle exists
- Each monochromatic subgraph is a tree!
- The sinks of red/blue/green trees are the vertices *a*, *b*, *c*.

This is ensured by construction via contraction operation.

(Bonus: Can construct all valid Schnyder realiser.)

Schnyder drawing

How to get from Schnyder realiser to barycentric representation

Face regions

- \blacksquare $P_i(v)$ path from v to source of T_i
- \blacksquare $R_1(v)$, $R_2(v)$, $R_3(v)$ are sets of faces

Lemma.

- Paths $P_1(v)$, $P_2(v)$, $P_3(v)$ cross only at vertex v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

Proof ...

Schnyder drawing

Let barycentric coordinates of $v \in G \setminus \{a, b, c\}$ be (v_1, v_2, v_3) , where $v_1 = |R_1(v)|/(2n-5)$, $v_2 = |R_2(v)|/(2n-5)$ and $v_3 = |R_3(v)|/(2n-5)$.

Theorem.

The mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G in a $(2n-5)\times(2n-5)$ grid.

Proof. Condition 1: $v_1 + v_2 + v_3 = 1$

Condition 2: For each edge
$$\{u,v\}$$
 and vertex $w \neq u,v$ at least one of three is true: $w_1 > u_1, v_1, w_2 > u_2, v_2, w_3 > u_3, v_3$.

Set

$$A = (2n - 5, 0)$$

$$B = (0, 2n - 5)$$

$$C = (0, 0)$$

Weak barycentric representation

Definition.

A weak barycentric representation of a graph G = (V, E) is an *injective* map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3$ with the following properties:

- $v_1 + v_2 + v_3 = 1$ for every $v \in V$
- for every $\{x,y\} \in E$ and every $z \in V \setminus \{x,y\}$ there is $k \in \{1,2,3\}$ with $(x_k, x_{k+1}) <_{lex} (z_k, z_{k+1})$ and $(y_k, y_{k+1}) <_{lex} (z_k, z_{k+1})$.

i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

Weak barycentric representation

Definition.

A weak barycentric representation of a graph G = (V, E) is an *injective* map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3$ with the following properties:

- $v_1 + v_2 + v_3 = 1$ for every $v \in V$
- for every $\{x,y\} \in E$ and every $z \in V \setminus \{x,y\}$ there is $k \in \{1,2,3\}$ with $(x_k,x_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$ and $(y_k,y_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$.

A weak barycentric representation still provides a planar drawing.

i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

Proof is similar to before, and thus an exercise.

New barycentric coordinates

- Set $v_i' = |V(R_i(v))| |P_{i-1}(v)|$
- Additionally, for outer vertices set

$$a_1' = n - 2$$

- $a_2' = 1$
- $a_3^7 = 0$

and analogously for b' and c'

Lemma.

For inner vertices $u \neq v$ it holds that

$$u \in R_i(v) \Rightarrow (u'_i, u'_{i+1}) <_{\mathsf{lex}} (v'_i, v'_{i+1})$$

Schnyder drawing

Theorem.

The mapping

$$f \colon v \mapsto \frac{1}{n-1}(v_1', v_2', v_3')$$

is a weak barycentric representaion of G.

Remarks.

- By setting A = (n 1, 0), B = (0, n 1), C = (0, 0), one obtains a planar straight-line drawing of G on an $(n 2) \times (n 2)$ grid.
- To calculate all the coordinates, a constant number of tree traversals are enough — exercise.

Why do vertices land on a grid?

Literature

- [PGD Ch. 4.3] for detailed explanation of shift method
- [Sch90] Schnyder "Embedding planar graphs on the grid" 1990 original paper on Schnyder realiser method