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Motivation

B So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

B Why straight-line? Why planar?

B Bennett, Ryall, Spaltzeholz and Gooch, 2007
“The Aesthetics of Graph Visualization”

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic
is to minimize the number of edge crossings in a graph
[BMRW98, Har98, DHY96, Pur(02, TR05, TBB88]. The impor-
tance of avoiding edge crossings has also been extensively
validated in terms of user preference and performance (see
Section 4). Similarly, based on perceptual principles, it is
beneficial to minimize the number of edge bends within a
graph [Pur02, TRO5, TBB88]. Edge bends make edges more
difficult to follow because an edge with a sharp bend is more
likely to be perceived as two separate objects. This leads to
the heuristic of keeping edge bends uniform with respect to
the bend’s position on the edge and its angle [TROS5]. If an
edge must be bent to satisfy other aesthetic criteria, the an-
gle of the bend should be as little as possible, and the bend
placement should evenly divide the edge.



Planar graphs

B Characterisation: A graph is planar iff it contains neither a Kg nor a K3 3 minor.
[Kuratowski 1930]

B Recognition: For a graph G with n vertices, there is an O(n) time algorithm to
test if G is planar. [Hopcroft & Tarjan 1974]
m Also computes an embedding in O(n).

B Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [\Wagner 1936, Fary 1948, Stein 1951]
m The algorithms implied by this theory produce drawings with area not bounded
by any polynomial on n.



Planar graphs

B Coin graph: Every planar graph is a circle contact graph
(implies straight-line drawing). [Koebe 1936] %

B Every 3-connected planar graph has an embedding with convex polygons as its
faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph|
m ldea: Place vertices in the barycentre of neighbours.
m Drawback: Requires large grids.

with planar embedding @
B We focus on triangulations: & «
m A plane (inner) triangulation is a plane graph where @
h

every (inner) face is a triangle.

m Every plane graph is subgraph of a plane triangulation. @




Planar straight-line drawings

‘Theorem. [De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line
drawing of size (2n —4) X (n —2).

ldea.

B Start with singe edge (v1,v2). Let this be Go.
B To obtain G, add v;,1 to G; so that
neighbours of v;, 1 are on the outer face of G;.

B Neighbours of v; 11 In G; have to form path of
length at least two. 01 02

Theorem. |Schnyder "90| Every n-vertex planar graph has a
planar straight-line drawing of size (n —2) x (n — 2).




Canonical order — definition

‘Definition.
Let G = (V, E) be a triangulated plane graph on n > 3 vertices.
An order T = (221, U2, ..., Un) Is called a canonical order, if the

following conditions hold for each k, 3 < k < n:

B (C1) Vertices {v1,...0;} induce a biconnected internally
triangulated graph; call it Gy.
B (C2) Edge (v1,v2) belongs to the outer face of G;.

W (C3) If k < n then vertex vy 1 lies in the outer face of Gy,
and all neighbors of vy, in Gy appear on the boundary of G

consecutively.

.




Canonical order — example
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Canonical order — example
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Canonical order — example

chord

edge joining two
nonadjacent
vertices in a cycle
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Canonical order — existence

Lemma.
Every triangulated plane graph has a canonical order.

Proof.
B Let G, = G, and let v1, vy, v, be the vertices of the
outer face of G,. Conditions C1-C3 hold.

B Induction hypothesis: Vertices v,,_1,..., Uxa1 have been
chosen such that conditions C1-C3 hold for
k+1<i<n.

B Induction step: Consider Gy. We search for vy. Have to show:

1. u; not adjacent

3¢ .
N 2 to chord is
&Y fficient
N sufficien
,ba;@ 2. Such v; exists




Canonical order — existence

‘Claim 1. If Uy Is not adjacent to a 1 (Claim 2. )
chord then removal of v} leaves the There exists a vertex in Gy that is not
\graph biconnected. ) \adjacent to a chord as choice for vy. )

contradiction to edges

Gy e - : G
k being consecutive k o Uk .
not triangulated \
Gr—1
(%] (%, 01 (%

This completes proof of Lemma.




Canonical order — implementation

Algorithm CanonicalOrder

forall v € V do
| chords(v) < 0; out(v) < false; mark(v) < false;

out(v1), out(vy), out(vy) < true

for k =n to 3 do

choose v # v1, v such that mark(v) = false,
out(v) = true, and chords(v) = 0

Uk <— 0; mark(v) < true

// Let w1 = 01, Wo, ..., W¢_1, Wt = Vo denote the
boundary of Gy_1 and let wy, ..., Wy be the
unmarked neighbors of vy

out(w;) < true for all p <1 < g

update number of chords for w; and its neighbours

B chord(v) — # chords
adjacent to v

B mark(v) = true iff vertex
v was numbered

B out(v) = true iff v is
currently outer vertex

‘'Lemma.

Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)

Time.
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Shift method

Algorithm invariants/constraints:

Gy_1 is drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of Gy_1 (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of Gy_1 (minus
edge (v1,v2)) is drawn with slopes +1.

’—.QN
- ,,“\\N

Overlaps!

What could be the solution?




Shift method

Algorithm invariants/constraints:
Gy_1 is drawn such that

4 B vy ison (0,0), vpison (2k—4,0),
QG| B boundary of Gy_1 (minus edge (v1,v2)) is
- drawn x-monotone,
N§ \‘~?\_ B each edge of the boundary of G;_1 (minus
~— — edge (v1,05)) is drawn with slopes 1.
B U, on grid, beause we o
had even Manhattan

distance
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Shift method — example
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Shift method — example

PRIV

A
Y




Shift method — example
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Shift method — planarity

‘Lemma. Let 0 < 01 <09 < --- <9 €N, such
that 0, — 0y > 2 and even.

If we shift L(w;) by é; to the right, we get a planar
\straight—line drawing. )

~\

Observations.
B Each internal vertex is covered exactly once.

B Covering relation defines a tree in G
M andaforestin G;, 1 <i1<n-—1.

12 -



Shift method — planarity

‘Lemma. Let 0 < 01 <09 < --- <9 €N, such
that 0, — 0y > 2 and even.

If we shift L(w;) by é; to the right, we get a planar
kstraight—line drawing. )

~\

Proof by induction:
If Gj_1 straight-line planar, then also Gy.

Observations.
B Each internal vertex is covered exactly once.

B Covering relation defines a tree in G
M andaforestin G;, 1 <i1<n-—1.

12 -



Shift method — pseudocode

Let v1, ..., v, be a canonical order of G
fori =1to 3 do

| L(v;) < {vi}
P(v1) < (0,0); P(v2) < (2,0), P(v3) < (1,1)
fori =4 to n do

Let w1 = vy, wy, ..., ws_1, Wt = vy denote the boundary of G;_1
and let Wy, . .1. , Wg be the neighbours of vy
for Vo € UT " L(w;) do .
j—p+1 L)) B Runtime O(n?)

| x(0) « x(v) +1 B Can we do better?
for Vv € U?ZqL(w]-) do

| x(v) + x(v) 42

P(v;) < intersection of +1/—1 edges from P(w,) and P(w,)

L(v;) UL, 1 L(w)) U {07}

13 -
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Shift method — linear time implementation

B Ildea 1. To compute x(vy) & y(vy), we only need
y(w,) and and x(w,) — x(wy)

B ldea 2. Instead of storing explicit x-coordinates,
we store certain x differences.
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Shift method — linear time implementation

Relative x distance tree.
For each vertex v store

B x-offset Ay(v) from parent
B y-coordinate y(v)

Calculations. B Ay (wpp1)++, Ax(wg)++
B Ay (wp, wy) = Ax(Wps1) + ...+ Ax(wy)
x(vk) by (3)  m y(vg) by (2)

2 (Wpi1) = Axl(jijq) — Ay (vp) B After v,, use preorder
traversal to compute
(1) x(ox) = 5 (x(wy) + x(wp) + — y(wp)) x-coordinates
(2) y(v) = 5 (x(wy) — x(wp) + +y(wp))
(3) x(vy) — x(wp) = 5(x(wy) — x(wp) + —y(wp))



| iterature

B [PGD Ch. 4.2] for detailed explanation of shift method

B [dFPPI0] de Fraysseix, Pach, Pollack "How to draw a planar graph on a
grid” 1990 — original paper on shift method
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